xref: /openbmc/linux/arch/arm64/kernel/cpufeature.c (revision 812dd0202379a242f764f75aa30abfbef4398ba4)
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #define pr_fmt(fmt) "CPU features: " fmt
20 
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <asm/cpu.h>
28 #include <asm/cpufeature.h>
29 #include <asm/cpu_ops.h>
30 #include <asm/fpsimd.h>
31 #include <asm/mmu_context.h>
32 #include <asm/processor.h>
33 #include <asm/sysreg.h>
34 #include <asm/traps.h>
35 #include <asm/virt.h>
36 
37 unsigned long elf_hwcap __read_mostly;
38 EXPORT_SYMBOL_GPL(elf_hwcap);
39 
40 #ifdef CONFIG_COMPAT
41 #define COMPAT_ELF_HWCAP_DEFAULT	\
42 				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
43 				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
44 				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
45 				 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
46 				 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
47 				 COMPAT_HWCAP_LPAE)
48 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
49 unsigned int compat_elf_hwcap2 __read_mostly;
50 #endif
51 
52 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
53 EXPORT_SYMBOL(cpu_hwcaps);
54 
55 /*
56  * Flag to indicate if we have computed the system wide
57  * capabilities based on the boot time active CPUs. This
58  * will be used to determine if a new booting CPU should
59  * go through the verification process to make sure that it
60  * supports the system capabilities, without using a hotplug
61  * notifier.
62  */
63 static bool sys_caps_initialised;
64 
65 static inline void set_sys_caps_initialised(void)
66 {
67 	sys_caps_initialised = true;
68 }
69 
70 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
71 {
72 	/* file-wide pr_fmt adds "CPU features: " prefix */
73 	pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
74 	return 0;
75 }
76 
77 static struct notifier_block cpu_hwcaps_notifier = {
78 	.notifier_call = dump_cpu_hwcaps
79 };
80 
81 static int __init register_cpu_hwcaps_dumper(void)
82 {
83 	atomic_notifier_chain_register(&panic_notifier_list,
84 				       &cpu_hwcaps_notifier);
85 	return 0;
86 }
87 __initcall(register_cpu_hwcaps_dumper);
88 
89 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
90 EXPORT_SYMBOL(cpu_hwcap_keys);
91 
92 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
93 	{						\
94 		.sign = SIGNED,				\
95 		.visible = VISIBLE,			\
96 		.strict = STRICT,			\
97 		.type = TYPE,				\
98 		.shift = SHIFT,				\
99 		.width = WIDTH,				\
100 		.safe_val = SAFE_VAL,			\
101 	}
102 
103 /* Define a feature with unsigned values */
104 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
105 	__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
106 
107 /* Define a feature with a signed value */
108 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
109 	__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
110 
111 #define ARM64_FTR_END					\
112 	{						\
113 		.width = 0,				\
114 	}
115 
116 /* meta feature for alternatives */
117 static bool __maybe_unused
118 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
119 
120 
121 /*
122  * NOTE: Any changes to the visibility of features should be kept in
123  * sync with the documentation of the CPU feature register ABI.
124  */
125 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
126 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
127 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
128 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
129 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
130 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
131 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
132 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
133 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
134 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
135 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
136 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
137 	ARM64_FTR_END,
138 };
139 
140 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
141 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
142 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
143 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
144 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
145 	ARM64_FTR_END,
146 };
147 
148 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
149 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
150 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
151 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
152 				   FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
153 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
154 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
155 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
156 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
157 	/* Linux doesn't care about the EL3 */
158 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
159 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
160 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
161 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
162 	ARM64_FTR_END,
163 };
164 
165 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
166 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
167 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
168 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
169 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
170 	/* Linux shouldn't care about secure memory */
171 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
172 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
173 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
174 	/*
175 	 * Differing PARange is fine as long as all peripherals and memory are mapped
176 	 * within the minimum PARange of all CPUs
177 	 */
178 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
179 	ARM64_FTR_END,
180 };
181 
182 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
183 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
184 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
185 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
186 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
187 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
188 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
189 	ARM64_FTR_END,
190 };
191 
192 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
193 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
194 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
195 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
196 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
197 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
198 	ARM64_FTR_END,
199 };
200 
201 static const struct arm64_ftr_bits ftr_ctr[] = {
202 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1),		/* RES1 */
203 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 29, 1, 1),	/* DIC */
204 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 28, 1, 1),	/* IDC */
205 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),	/* CWG */
206 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, 20, 4, 0),	/* ERG */
207 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1),	/* DminLine */
208 	/*
209 	 * Linux can handle differing I-cache policies. Userspace JITs will
210 	 * make use of *minLine.
211 	 * If we have differing I-cache policies, report it as the weakest - VIPT.
212 	 */
213 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),	/* L1Ip */
214 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* IminLine */
215 	ARM64_FTR_END,
216 };
217 
218 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
219 	.name		= "SYS_CTR_EL0",
220 	.ftr_bits	= ftr_ctr
221 };
222 
223 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
224 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf),	/* InnerShr */
225 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),	/* FCSE */
226 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* AuxReg */
227 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),	/* TCM */
228 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),	/* ShareLvl */
229 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf),	/* OuterShr */
230 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),	/* PMSA */
231 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* VMSA */
232 	ARM64_FTR_END,
233 };
234 
235 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
236 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
237 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
238 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
239 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
240 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
241 	/*
242 	 * We can instantiate multiple PMU instances with different levels
243 	 * of support.
244 	 */
245 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
246 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
247 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
248 	ARM64_FTR_END,
249 };
250 
251 static const struct arm64_ftr_bits ftr_mvfr2[] = {
252 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),		/* FPMisc */
253 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),		/* SIMDMisc */
254 	ARM64_FTR_END,
255 };
256 
257 static const struct arm64_ftr_bits ftr_dczid[] = {
258 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),		/* DZP */
259 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* BS */
260 	ARM64_FTR_END,
261 };
262 
263 
264 static const struct arm64_ftr_bits ftr_id_isar5[] = {
265 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
266 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
267 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
268 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
269 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
270 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
271 	ARM64_FTR_END,
272 };
273 
274 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
275 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),	/* ac2 */
276 	ARM64_FTR_END,
277 };
278 
279 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
280 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),		/* State3 */
281 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),		/* State2 */
282 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),		/* State1 */
283 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),		/* State0 */
284 	ARM64_FTR_END,
285 };
286 
287 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
288 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
289 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),	/* PerfMon */
290 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
291 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
292 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
293 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
294 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
295 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
296 	ARM64_FTR_END,
297 };
298 
299 static const struct arm64_ftr_bits ftr_zcr[] = {
300 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
301 		ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),	/* LEN */
302 	ARM64_FTR_END,
303 };
304 
305 /*
306  * Common ftr bits for a 32bit register with all hidden, strict
307  * attributes, with 4bit feature fields and a default safe value of
308  * 0. Covers the following 32bit registers:
309  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
310  */
311 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
312 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
313 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
314 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
315 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
316 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
317 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
318 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
319 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
320 	ARM64_FTR_END,
321 };
322 
323 /* Table for a single 32bit feature value */
324 static const struct arm64_ftr_bits ftr_single32[] = {
325 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
326 	ARM64_FTR_END,
327 };
328 
329 static const struct arm64_ftr_bits ftr_raz[] = {
330 	ARM64_FTR_END,
331 };
332 
333 #define ARM64_FTR_REG(id, table) {		\
334 	.sys_id = id,				\
335 	.reg = 	&(struct arm64_ftr_reg){	\
336 		.name = #id,			\
337 		.ftr_bits = &((table)[0]),	\
338 	}}
339 
340 static const struct __ftr_reg_entry {
341 	u32			sys_id;
342 	struct arm64_ftr_reg 	*reg;
343 } arm64_ftr_regs[] = {
344 
345 	/* Op1 = 0, CRn = 0, CRm = 1 */
346 	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
347 	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
348 	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
349 	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
350 	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
351 	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
352 	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
353 
354 	/* Op1 = 0, CRn = 0, CRm = 2 */
355 	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
356 	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
357 	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
358 	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
359 	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
360 	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
361 	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
362 
363 	/* Op1 = 0, CRn = 0, CRm = 3 */
364 	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
365 	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
366 	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
367 
368 	/* Op1 = 0, CRn = 0, CRm = 4 */
369 	ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
370 	ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_raz),
371 	ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_raz),
372 
373 	/* Op1 = 0, CRn = 0, CRm = 5 */
374 	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
375 	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
376 
377 	/* Op1 = 0, CRn = 0, CRm = 6 */
378 	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
379 	ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
380 
381 	/* Op1 = 0, CRn = 0, CRm = 7 */
382 	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
383 	ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
384 	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
385 
386 	/* Op1 = 0, CRn = 1, CRm = 2 */
387 	ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
388 
389 	/* Op1 = 3, CRn = 0, CRm = 0 */
390 	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
391 	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
392 
393 	/* Op1 = 3, CRn = 14, CRm = 0 */
394 	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
395 };
396 
397 static int search_cmp_ftr_reg(const void *id, const void *regp)
398 {
399 	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
400 }
401 
402 /*
403  * get_arm64_ftr_reg - Lookup a feature register entry using its
404  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
405  * ascending order of sys_id , we use binary search to find a matching
406  * entry.
407  *
408  * returns - Upon success,  matching ftr_reg entry for id.
409  *         - NULL on failure. It is upto the caller to decide
410  *	     the impact of a failure.
411  */
412 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
413 {
414 	const struct __ftr_reg_entry *ret;
415 
416 	ret = bsearch((const void *)(unsigned long)sys_id,
417 			arm64_ftr_regs,
418 			ARRAY_SIZE(arm64_ftr_regs),
419 			sizeof(arm64_ftr_regs[0]),
420 			search_cmp_ftr_reg);
421 	if (ret)
422 		return ret->reg;
423 	return NULL;
424 }
425 
426 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
427 			       s64 ftr_val)
428 {
429 	u64 mask = arm64_ftr_mask(ftrp);
430 
431 	reg &= ~mask;
432 	reg |= (ftr_val << ftrp->shift) & mask;
433 	return reg;
434 }
435 
436 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
437 				s64 cur)
438 {
439 	s64 ret = 0;
440 
441 	switch (ftrp->type) {
442 	case FTR_EXACT:
443 		ret = ftrp->safe_val;
444 		break;
445 	case FTR_LOWER_SAFE:
446 		ret = new < cur ? new : cur;
447 		break;
448 	case FTR_HIGHER_SAFE:
449 		ret = new > cur ? new : cur;
450 		break;
451 	default:
452 		BUG();
453 	}
454 
455 	return ret;
456 }
457 
458 static void __init sort_ftr_regs(void)
459 {
460 	int i;
461 
462 	/* Check that the array is sorted so that we can do the binary search */
463 	for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
464 		BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
465 }
466 
467 /*
468  * Initialise the CPU feature register from Boot CPU values.
469  * Also initiliases the strict_mask for the register.
470  * Any bits that are not covered by an arm64_ftr_bits entry are considered
471  * RES0 for the system-wide value, and must strictly match.
472  */
473 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
474 {
475 	u64 val = 0;
476 	u64 strict_mask = ~0x0ULL;
477 	u64 user_mask = 0;
478 	u64 valid_mask = 0;
479 
480 	const struct arm64_ftr_bits *ftrp;
481 	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
482 
483 	BUG_ON(!reg);
484 
485 	for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
486 		u64 ftr_mask = arm64_ftr_mask(ftrp);
487 		s64 ftr_new = arm64_ftr_value(ftrp, new);
488 
489 		val = arm64_ftr_set_value(ftrp, val, ftr_new);
490 
491 		valid_mask |= ftr_mask;
492 		if (!ftrp->strict)
493 			strict_mask &= ~ftr_mask;
494 		if (ftrp->visible)
495 			user_mask |= ftr_mask;
496 		else
497 			reg->user_val = arm64_ftr_set_value(ftrp,
498 							    reg->user_val,
499 							    ftrp->safe_val);
500 	}
501 
502 	val &= valid_mask;
503 
504 	reg->sys_val = val;
505 	reg->strict_mask = strict_mask;
506 	reg->user_mask = user_mask;
507 }
508 
509 void __init init_cpu_features(struct cpuinfo_arm64 *info)
510 {
511 	/* Before we start using the tables, make sure it is sorted */
512 	sort_ftr_regs();
513 
514 	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
515 	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
516 	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
517 	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
518 	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
519 	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
520 	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
521 	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
522 	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
523 	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
524 	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
525 	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
526 	init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
527 
528 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
529 		init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
530 		init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
531 		init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
532 		init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
533 		init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
534 		init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
535 		init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
536 		init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
537 		init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
538 		init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
539 		init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
540 		init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
541 		init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
542 		init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
543 		init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
544 		init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
545 	}
546 
547 	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
548 		init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
549 		sve_init_vq_map();
550 	}
551 }
552 
553 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
554 {
555 	const struct arm64_ftr_bits *ftrp;
556 
557 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
558 		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
559 		s64 ftr_new = arm64_ftr_value(ftrp, new);
560 
561 		if (ftr_cur == ftr_new)
562 			continue;
563 		/* Find a safe value */
564 		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
565 		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
566 	}
567 
568 }
569 
570 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
571 {
572 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
573 
574 	BUG_ON(!regp);
575 	update_cpu_ftr_reg(regp, val);
576 	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
577 		return 0;
578 	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
579 			regp->name, boot, cpu, val);
580 	return 1;
581 }
582 
583 /*
584  * Update system wide CPU feature registers with the values from a
585  * non-boot CPU. Also performs SANITY checks to make sure that there
586  * aren't any insane variations from that of the boot CPU.
587  */
588 void update_cpu_features(int cpu,
589 			 struct cpuinfo_arm64 *info,
590 			 struct cpuinfo_arm64 *boot)
591 {
592 	int taint = 0;
593 
594 	/*
595 	 * The kernel can handle differing I-cache policies, but otherwise
596 	 * caches should look identical. Userspace JITs will make use of
597 	 * *minLine.
598 	 */
599 	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
600 				      info->reg_ctr, boot->reg_ctr);
601 
602 	/*
603 	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
604 	 * could result in too much or too little memory being zeroed if a
605 	 * process is preempted and migrated between CPUs.
606 	 */
607 	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
608 				      info->reg_dczid, boot->reg_dczid);
609 
610 	/* If different, timekeeping will be broken (especially with KVM) */
611 	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
612 				      info->reg_cntfrq, boot->reg_cntfrq);
613 
614 	/*
615 	 * The kernel uses self-hosted debug features and expects CPUs to
616 	 * support identical debug features. We presently need CTX_CMPs, WRPs,
617 	 * and BRPs to be identical.
618 	 * ID_AA64DFR1 is currently RES0.
619 	 */
620 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
621 				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
622 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
623 				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
624 	/*
625 	 * Even in big.LITTLE, processors should be identical instruction-set
626 	 * wise.
627 	 */
628 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
629 				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
630 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
631 				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
632 
633 	/*
634 	 * Differing PARange support is fine as long as all peripherals and
635 	 * memory are mapped within the minimum PARange of all CPUs.
636 	 * Linux should not care about secure memory.
637 	 */
638 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
639 				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
640 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
641 				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
642 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
643 				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
644 
645 	/*
646 	 * EL3 is not our concern.
647 	 * ID_AA64PFR1 is currently RES0.
648 	 */
649 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
650 				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
651 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
652 				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
653 
654 	taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
655 				      info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
656 
657 	/*
658 	 * If we have AArch32, we care about 32-bit features for compat.
659 	 * If the system doesn't support AArch32, don't update them.
660 	 */
661 	if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
662 		id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
663 
664 		taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
665 					info->reg_id_dfr0, boot->reg_id_dfr0);
666 		taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
667 					info->reg_id_isar0, boot->reg_id_isar0);
668 		taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
669 					info->reg_id_isar1, boot->reg_id_isar1);
670 		taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
671 					info->reg_id_isar2, boot->reg_id_isar2);
672 		taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
673 					info->reg_id_isar3, boot->reg_id_isar3);
674 		taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
675 					info->reg_id_isar4, boot->reg_id_isar4);
676 		taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
677 					info->reg_id_isar5, boot->reg_id_isar5);
678 
679 		/*
680 		 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
681 		 * ACTLR formats could differ across CPUs and therefore would have to
682 		 * be trapped for virtualization anyway.
683 		 */
684 		taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
685 					info->reg_id_mmfr0, boot->reg_id_mmfr0);
686 		taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
687 					info->reg_id_mmfr1, boot->reg_id_mmfr1);
688 		taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
689 					info->reg_id_mmfr2, boot->reg_id_mmfr2);
690 		taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
691 					info->reg_id_mmfr3, boot->reg_id_mmfr3);
692 		taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
693 					info->reg_id_pfr0, boot->reg_id_pfr0);
694 		taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
695 					info->reg_id_pfr1, boot->reg_id_pfr1);
696 		taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
697 					info->reg_mvfr0, boot->reg_mvfr0);
698 		taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
699 					info->reg_mvfr1, boot->reg_mvfr1);
700 		taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
701 					info->reg_mvfr2, boot->reg_mvfr2);
702 	}
703 
704 	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
705 		taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
706 					info->reg_zcr, boot->reg_zcr);
707 
708 		/* Probe vector lengths, unless we already gave up on SVE */
709 		if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
710 		    !sys_caps_initialised)
711 			sve_update_vq_map();
712 	}
713 
714 	/*
715 	 * Mismatched CPU features are a recipe for disaster. Don't even
716 	 * pretend to support them.
717 	 */
718 	if (taint) {
719 		pr_warn_once("Unsupported CPU feature variation detected.\n");
720 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
721 	}
722 }
723 
724 u64 read_sanitised_ftr_reg(u32 id)
725 {
726 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
727 
728 	/* We shouldn't get a request for an unsupported register */
729 	BUG_ON(!regp);
730 	return regp->sys_val;
731 }
732 
733 #define read_sysreg_case(r)	\
734 	case r:		return read_sysreg_s(r)
735 
736 /*
737  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
738  * Read the system register on the current CPU
739  */
740 static u64 __read_sysreg_by_encoding(u32 sys_id)
741 {
742 	switch (sys_id) {
743 	read_sysreg_case(SYS_ID_PFR0_EL1);
744 	read_sysreg_case(SYS_ID_PFR1_EL1);
745 	read_sysreg_case(SYS_ID_DFR0_EL1);
746 	read_sysreg_case(SYS_ID_MMFR0_EL1);
747 	read_sysreg_case(SYS_ID_MMFR1_EL1);
748 	read_sysreg_case(SYS_ID_MMFR2_EL1);
749 	read_sysreg_case(SYS_ID_MMFR3_EL1);
750 	read_sysreg_case(SYS_ID_ISAR0_EL1);
751 	read_sysreg_case(SYS_ID_ISAR1_EL1);
752 	read_sysreg_case(SYS_ID_ISAR2_EL1);
753 	read_sysreg_case(SYS_ID_ISAR3_EL1);
754 	read_sysreg_case(SYS_ID_ISAR4_EL1);
755 	read_sysreg_case(SYS_ID_ISAR5_EL1);
756 	read_sysreg_case(SYS_MVFR0_EL1);
757 	read_sysreg_case(SYS_MVFR1_EL1);
758 	read_sysreg_case(SYS_MVFR2_EL1);
759 
760 	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
761 	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
762 	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
763 	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
764 	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
765 	read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
766 	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
767 	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
768 	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
769 
770 	read_sysreg_case(SYS_CNTFRQ_EL0);
771 	read_sysreg_case(SYS_CTR_EL0);
772 	read_sysreg_case(SYS_DCZID_EL0);
773 
774 	default:
775 		BUG();
776 		return 0;
777 	}
778 }
779 
780 #include <linux/irqchip/arm-gic-v3.h>
781 
782 static bool
783 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
784 {
785 	int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
786 
787 	return val >= entry->min_field_value;
788 }
789 
790 static bool
791 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
792 {
793 	u64 val;
794 
795 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
796 	if (scope == SCOPE_SYSTEM)
797 		val = read_sanitised_ftr_reg(entry->sys_reg);
798 	else
799 		val = __read_sysreg_by_encoding(entry->sys_reg);
800 
801 	return feature_matches(val, entry);
802 }
803 
804 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
805 {
806 	bool has_sre;
807 
808 	if (!has_cpuid_feature(entry, scope))
809 		return false;
810 
811 	has_sre = gic_enable_sre();
812 	if (!has_sre)
813 		pr_warn_once("%s present but disabled by higher exception level\n",
814 			     entry->desc);
815 
816 	return has_sre;
817 }
818 
819 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
820 {
821 	u32 midr = read_cpuid_id();
822 
823 	/* Cavium ThunderX pass 1.x and 2.x */
824 	return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
825 		MIDR_CPU_VAR_REV(0, 0),
826 		MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
827 }
828 
829 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
830 {
831 	return is_kernel_in_hyp_mode();
832 }
833 
834 static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
835 			   int __unused)
836 {
837 	phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
838 
839 	/*
840 	 * Activate the lower HYP offset only if:
841 	 * - the idmap doesn't clash with it,
842 	 * - the kernel is not running at EL2.
843 	 */
844 	return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
845 }
846 
847 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
848 {
849 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
850 
851 	return cpuid_feature_extract_signed_field(pfr0,
852 					ID_AA64PFR0_FP_SHIFT) < 0;
853 }
854 
855 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
856 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
857 
858 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
859 				int __unused)
860 {
861 	char const *str = "command line option";
862 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
863 
864 	/*
865 	 * For reasons that aren't entirely clear, enabling KPTI on Cavium
866 	 * ThunderX leads to apparent I-cache corruption of kernel text, which
867 	 * ends as well as you might imagine. Don't even try.
868 	 */
869 	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
870 		str = "ARM64_WORKAROUND_CAVIUM_27456";
871 		__kpti_forced = -1;
872 	}
873 
874 	/* Forced? */
875 	if (__kpti_forced) {
876 		pr_info_once("kernel page table isolation forced %s by %s\n",
877 			     __kpti_forced > 0 ? "ON" : "OFF", str);
878 		return __kpti_forced > 0;
879 	}
880 
881 	/* Useful for KASLR robustness */
882 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
883 		return true;
884 
885 	/* Don't force KPTI for CPUs that are not vulnerable */
886 	switch (read_cpuid_id() & MIDR_CPU_MODEL_MASK) {
887 	case MIDR_CAVIUM_THUNDERX2:
888 	case MIDR_BRCM_VULCAN:
889 		return false;
890 	}
891 
892 	/* Defer to CPU feature registers */
893 	return !cpuid_feature_extract_unsigned_field(pfr0,
894 						     ID_AA64PFR0_CSV3_SHIFT);
895 }
896 
897 static int kpti_install_ng_mappings(void *__unused)
898 {
899 	typedef void (kpti_remap_fn)(int, int, phys_addr_t);
900 	extern kpti_remap_fn idmap_kpti_install_ng_mappings;
901 	kpti_remap_fn *remap_fn;
902 
903 	static bool kpti_applied = false;
904 	int cpu = smp_processor_id();
905 
906 	if (kpti_applied)
907 		return 0;
908 
909 	remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
910 
911 	cpu_install_idmap();
912 	remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
913 	cpu_uninstall_idmap();
914 
915 	if (!cpu)
916 		kpti_applied = true;
917 
918 	return 0;
919 }
920 
921 static int __init parse_kpti(char *str)
922 {
923 	bool enabled;
924 	int ret = strtobool(str, &enabled);
925 
926 	if (ret)
927 		return ret;
928 
929 	__kpti_forced = enabled ? 1 : -1;
930 	return 0;
931 }
932 __setup("kpti=", parse_kpti);
933 #endif	/* CONFIG_UNMAP_KERNEL_AT_EL0 */
934 
935 static int cpu_copy_el2regs(void *__unused)
936 {
937 	/*
938 	 * Copy register values that aren't redirected by hardware.
939 	 *
940 	 * Before code patching, we only set tpidr_el1, all CPUs need to copy
941 	 * this value to tpidr_el2 before we patch the code. Once we've done
942 	 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
943 	 * do anything here.
944 	 */
945 	if (!alternatives_applied)
946 		write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
947 
948 	return 0;
949 }
950 
951 static const struct arm64_cpu_capabilities arm64_features[] = {
952 	{
953 		.desc = "GIC system register CPU interface",
954 		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
955 		.def_scope = SCOPE_SYSTEM,
956 		.matches = has_useable_gicv3_cpuif,
957 		.sys_reg = SYS_ID_AA64PFR0_EL1,
958 		.field_pos = ID_AA64PFR0_GIC_SHIFT,
959 		.sign = FTR_UNSIGNED,
960 		.min_field_value = 1,
961 	},
962 #ifdef CONFIG_ARM64_PAN
963 	{
964 		.desc = "Privileged Access Never",
965 		.capability = ARM64_HAS_PAN,
966 		.def_scope = SCOPE_SYSTEM,
967 		.matches = has_cpuid_feature,
968 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
969 		.field_pos = ID_AA64MMFR1_PAN_SHIFT,
970 		.sign = FTR_UNSIGNED,
971 		.min_field_value = 1,
972 		.enable = cpu_enable_pan,
973 	},
974 #endif /* CONFIG_ARM64_PAN */
975 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
976 	{
977 		.desc = "LSE atomic instructions",
978 		.capability = ARM64_HAS_LSE_ATOMICS,
979 		.def_scope = SCOPE_SYSTEM,
980 		.matches = has_cpuid_feature,
981 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
982 		.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
983 		.sign = FTR_UNSIGNED,
984 		.min_field_value = 2,
985 	},
986 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
987 	{
988 		.desc = "Software prefetching using PRFM",
989 		.capability = ARM64_HAS_NO_HW_PREFETCH,
990 		.def_scope = SCOPE_SYSTEM,
991 		.matches = has_no_hw_prefetch,
992 	},
993 #ifdef CONFIG_ARM64_UAO
994 	{
995 		.desc = "User Access Override",
996 		.capability = ARM64_HAS_UAO,
997 		.def_scope = SCOPE_SYSTEM,
998 		.matches = has_cpuid_feature,
999 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
1000 		.field_pos = ID_AA64MMFR2_UAO_SHIFT,
1001 		.min_field_value = 1,
1002 		/*
1003 		 * We rely on stop_machine() calling uao_thread_switch() to set
1004 		 * UAO immediately after patching.
1005 		 */
1006 	},
1007 #endif /* CONFIG_ARM64_UAO */
1008 #ifdef CONFIG_ARM64_PAN
1009 	{
1010 		.capability = ARM64_ALT_PAN_NOT_UAO,
1011 		.def_scope = SCOPE_SYSTEM,
1012 		.matches = cpufeature_pan_not_uao,
1013 	},
1014 #endif /* CONFIG_ARM64_PAN */
1015 	{
1016 		.desc = "Virtualization Host Extensions",
1017 		.capability = ARM64_HAS_VIRT_HOST_EXTN,
1018 		.def_scope = SCOPE_SYSTEM,
1019 		.matches = runs_at_el2,
1020 		.enable = cpu_copy_el2regs,
1021 	},
1022 	{
1023 		.desc = "32-bit EL0 Support",
1024 		.capability = ARM64_HAS_32BIT_EL0,
1025 		.def_scope = SCOPE_SYSTEM,
1026 		.matches = has_cpuid_feature,
1027 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1028 		.sign = FTR_UNSIGNED,
1029 		.field_pos = ID_AA64PFR0_EL0_SHIFT,
1030 		.min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
1031 	},
1032 	{
1033 		.desc = "Reduced HYP mapping offset",
1034 		.capability = ARM64_HYP_OFFSET_LOW,
1035 		.def_scope = SCOPE_SYSTEM,
1036 		.matches = hyp_offset_low,
1037 	},
1038 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1039 	{
1040 		.desc = "Kernel page table isolation (KPTI)",
1041 		.capability = ARM64_UNMAP_KERNEL_AT_EL0,
1042 		.def_scope = SCOPE_SYSTEM,
1043 		.matches = unmap_kernel_at_el0,
1044 		.enable = kpti_install_ng_mappings,
1045 	},
1046 #endif
1047 	{
1048 		/* FP/SIMD is not implemented */
1049 		.capability = ARM64_HAS_NO_FPSIMD,
1050 		.def_scope = SCOPE_SYSTEM,
1051 		.min_field_value = 0,
1052 		.matches = has_no_fpsimd,
1053 	},
1054 #ifdef CONFIG_ARM64_PMEM
1055 	{
1056 		.desc = "Data cache clean to Point of Persistence",
1057 		.capability = ARM64_HAS_DCPOP,
1058 		.def_scope = SCOPE_SYSTEM,
1059 		.matches = has_cpuid_feature,
1060 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
1061 		.field_pos = ID_AA64ISAR1_DPB_SHIFT,
1062 		.min_field_value = 1,
1063 	},
1064 #endif
1065 #ifdef CONFIG_ARM64_SVE
1066 	{
1067 		.desc = "Scalable Vector Extension",
1068 		.capability = ARM64_SVE,
1069 		.def_scope = SCOPE_SYSTEM,
1070 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1071 		.sign = FTR_UNSIGNED,
1072 		.field_pos = ID_AA64PFR0_SVE_SHIFT,
1073 		.min_field_value = ID_AA64PFR0_SVE,
1074 		.matches = has_cpuid_feature,
1075 		.enable = sve_kernel_enable,
1076 	},
1077 #endif /* CONFIG_ARM64_SVE */
1078 #ifdef CONFIG_ARM64_RAS_EXTN
1079 	{
1080 		.desc = "RAS Extension Support",
1081 		.capability = ARM64_HAS_RAS_EXTN,
1082 		.def_scope = SCOPE_SYSTEM,
1083 		.matches = has_cpuid_feature,
1084 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1085 		.sign = FTR_UNSIGNED,
1086 		.field_pos = ID_AA64PFR0_RAS_SHIFT,
1087 		.min_field_value = ID_AA64PFR0_RAS_V1,
1088 		.enable = cpu_clear_disr,
1089 	},
1090 #endif /* CONFIG_ARM64_RAS_EXTN */
1091 	{},
1092 };
1093 
1094 #define HWCAP_CAP(reg, field, s, min_value, type, cap)	\
1095 	{							\
1096 		.desc = #cap,					\
1097 		.def_scope = SCOPE_SYSTEM,			\
1098 		.matches = has_cpuid_feature,			\
1099 		.sys_reg = reg,					\
1100 		.field_pos = field,				\
1101 		.sign = s,					\
1102 		.min_field_value = min_value,			\
1103 		.hwcap_type = type,				\
1104 		.hwcap = cap,					\
1105 	}
1106 
1107 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
1108 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
1109 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
1110 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
1111 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
1112 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_SHA512),
1113 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
1114 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
1115 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
1116 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA3),
1117 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM3),
1118 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM4),
1119 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDDP),
1120 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDFHM),
1121 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
1122 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
1123 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
1124 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
1125 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_DCPOP),
1126 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
1127 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
1128 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
1129 #ifdef CONFIG_ARM64_SVE
1130 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, HWCAP_SVE),
1131 #endif
1132 	{},
1133 };
1134 
1135 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
1136 #ifdef CONFIG_COMPAT
1137 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
1138 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
1139 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
1140 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
1141 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
1142 #endif
1143 	{},
1144 };
1145 
1146 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1147 {
1148 	switch (cap->hwcap_type) {
1149 	case CAP_HWCAP:
1150 		elf_hwcap |= cap->hwcap;
1151 		break;
1152 #ifdef CONFIG_COMPAT
1153 	case CAP_COMPAT_HWCAP:
1154 		compat_elf_hwcap |= (u32)cap->hwcap;
1155 		break;
1156 	case CAP_COMPAT_HWCAP2:
1157 		compat_elf_hwcap2 |= (u32)cap->hwcap;
1158 		break;
1159 #endif
1160 	default:
1161 		WARN_ON(1);
1162 		break;
1163 	}
1164 }
1165 
1166 /* Check if we have a particular HWCAP enabled */
1167 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1168 {
1169 	bool rc;
1170 
1171 	switch (cap->hwcap_type) {
1172 	case CAP_HWCAP:
1173 		rc = (elf_hwcap & cap->hwcap) != 0;
1174 		break;
1175 #ifdef CONFIG_COMPAT
1176 	case CAP_COMPAT_HWCAP:
1177 		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
1178 		break;
1179 	case CAP_COMPAT_HWCAP2:
1180 		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
1181 		break;
1182 #endif
1183 	default:
1184 		WARN_ON(1);
1185 		rc = false;
1186 	}
1187 
1188 	return rc;
1189 }
1190 
1191 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
1192 {
1193 	/* We support emulation of accesses to CPU ID feature registers */
1194 	elf_hwcap |= HWCAP_CPUID;
1195 	for (; hwcaps->matches; hwcaps++)
1196 		if (hwcaps->matches(hwcaps, hwcaps->def_scope))
1197 			cap_set_elf_hwcap(hwcaps);
1198 }
1199 
1200 /*
1201  * Check if the current CPU has a given feature capability.
1202  * Should be called from non-preemptible context.
1203  */
1204 static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
1205 			       unsigned int cap)
1206 {
1207 	const struct arm64_cpu_capabilities *caps;
1208 
1209 	if (WARN_ON(preemptible()))
1210 		return false;
1211 
1212 	for (caps = cap_array; caps->matches; caps++)
1213 		if (caps->capability == cap &&
1214 		    caps->matches(caps, SCOPE_LOCAL_CPU))
1215 			return true;
1216 	return false;
1217 }
1218 
1219 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
1220 			    const char *info)
1221 {
1222 	for (; caps->matches; caps++) {
1223 		if (!caps->matches(caps, caps->def_scope))
1224 			continue;
1225 
1226 		if (!cpus_have_cap(caps->capability) && caps->desc)
1227 			pr_info("%s %s\n", info, caps->desc);
1228 		cpus_set_cap(caps->capability);
1229 	}
1230 }
1231 
1232 /*
1233  * Run through the enabled capabilities and enable() it on all active
1234  * CPUs
1235  */
1236 void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
1237 {
1238 	for (; caps->matches; caps++) {
1239 		unsigned int num = caps->capability;
1240 
1241 		if (!cpus_have_cap(num))
1242 			continue;
1243 
1244 		/* Ensure cpus_have_const_cap(num) works */
1245 		static_branch_enable(&cpu_hwcap_keys[num]);
1246 
1247 		if (caps->enable) {
1248 			/*
1249 			 * Use stop_machine() as it schedules the work allowing
1250 			 * us to modify PSTATE, instead of on_each_cpu() which
1251 			 * uses an IPI, giving us a PSTATE that disappears when
1252 			 * we return.
1253 			 */
1254 			stop_machine(caps->enable, (void *)caps, cpu_online_mask);
1255 		}
1256 	}
1257 }
1258 
1259 /*
1260  * Check for CPU features that are used in early boot
1261  * based on the Boot CPU value.
1262  */
1263 static void check_early_cpu_features(void)
1264 {
1265 	verify_cpu_run_el();
1266 	verify_cpu_asid_bits();
1267 }
1268 
1269 static void
1270 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1271 {
1272 
1273 	for (; caps->matches; caps++)
1274 		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1275 			pr_crit("CPU%d: missing HWCAP: %s\n",
1276 					smp_processor_id(), caps->desc);
1277 			cpu_die_early();
1278 		}
1279 }
1280 
1281 static void
1282 verify_local_cpu_features(const struct arm64_cpu_capabilities *caps_list)
1283 {
1284 	const struct arm64_cpu_capabilities *caps = caps_list;
1285 	for (; caps->matches; caps++) {
1286 		if (!cpus_have_cap(caps->capability))
1287 			continue;
1288 		/*
1289 		 * If the new CPU misses an advertised feature, we cannot proceed
1290 		 * further, park the cpu.
1291 		 */
1292 		if (!__this_cpu_has_cap(caps_list, caps->capability)) {
1293 			pr_crit("CPU%d: missing feature: %s\n",
1294 					smp_processor_id(), caps->desc);
1295 			cpu_die_early();
1296 		}
1297 		if (caps->enable)
1298 			caps->enable((void *)caps);
1299 	}
1300 }
1301 
1302 static void verify_sve_features(void)
1303 {
1304 	u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1305 	u64 zcr = read_zcr_features();
1306 
1307 	unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
1308 	unsigned int len = zcr & ZCR_ELx_LEN_MASK;
1309 
1310 	if (len < safe_len || sve_verify_vq_map()) {
1311 		pr_crit("CPU%d: SVE: required vector length(s) missing\n",
1312 			smp_processor_id());
1313 		cpu_die_early();
1314 	}
1315 
1316 	/* Add checks on other ZCR bits here if necessary */
1317 }
1318 
1319 /*
1320  * Run through the enabled system capabilities and enable() it on this CPU.
1321  * The capabilities were decided based on the available CPUs at the boot time.
1322  * Any new CPU should match the system wide status of the capability. If the
1323  * new CPU doesn't have a capability which the system now has enabled, we
1324  * cannot do anything to fix it up and could cause unexpected failures. So
1325  * we park the CPU.
1326  */
1327 static void verify_local_cpu_capabilities(void)
1328 {
1329 	verify_local_cpu_errata_workarounds();
1330 	verify_local_cpu_features(arm64_features);
1331 	verify_local_elf_hwcaps(arm64_elf_hwcaps);
1332 
1333 	if (system_supports_32bit_el0())
1334 		verify_local_elf_hwcaps(compat_elf_hwcaps);
1335 
1336 	if (system_supports_sve())
1337 		verify_sve_features();
1338 
1339 	if (system_uses_ttbr0_pan())
1340 		pr_info("Emulating Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
1341 }
1342 
1343 void check_local_cpu_capabilities(void)
1344 {
1345 	/*
1346 	 * All secondary CPUs should conform to the early CPU features
1347 	 * in use by the kernel based on boot CPU.
1348 	 */
1349 	check_early_cpu_features();
1350 
1351 	/*
1352 	 * If we haven't finalised the system capabilities, this CPU gets
1353 	 * a chance to update the errata work arounds.
1354 	 * Otherwise, this CPU should verify that it has all the system
1355 	 * advertised capabilities.
1356 	 */
1357 	if (!sys_caps_initialised)
1358 		update_cpu_errata_workarounds();
1359 	else
1360 		verify_local_cpu_capabilities();
1361 }
1362 
1363 static void __init setup_feature_capabilities(void)
1364 {
1365 	update_cpu_capabilities(arm64_features, "detected feature:");
1366 	enable_cpu_capabilities(arm64_features);
1367 }
1368 
1369 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1370 EXPORT_SYMBOL(arm64_const_caps_ready);
1371 
1372 static void __init mark_const_caps_ready(void)
1373 {
1374 	static_branch_enable(&arm64_const_caps_ready);
1375 }
1376 
1377 extern const struct arm64_cpu_capabilities arm64_errata[];
1378 
1379 bool this_cpu_has_cap(unsigned int cap)
1380 {
1381 	return (__this_cpu_has_cap(arm64_features, cap) ||
1382 		__this_cpu_has_cap(arm64_errata, cap));
1383 }
1384 
1385 void __init setup_cpu_features(void)
1386 {
1387 	u32 cwg;
1388 	int cls;
1389 
1390 	/* Set the CPU feature capabilies */
1391 	setup_feature_capabilities();
1392 	enable_errata_workarounds();
1393 	mark_const_caps_ready();
1394 	setup_elf_hwcaps(arm64_elf_hwcaps);
1395 
1396 	if (system_supports_32bit_el0())
1397 		setup_elf_hwcaps(compat_elf_hwcaps);
1398 
1399 	sve_setup();
1400 
1401 	/* Advertise that we have computed the system capabilities */
1402 	set_sys_caps_initialised();
1403 
1404 	/*
1405 	 * Check for sane CTR_EL0.CWG value.
1406 	 */
1407 	cwg = cache_type_cwg();
1408 	cls = cache_line_size();
1409 	if (!cwg)
1410 		pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1411 			cls);
1412 	if (L1_CACHE_BYTES < cls)
1413 		pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1414 			L1_CACHE_BYTES, cls);
1415 }
1416 
1417 static bool __maybe_unused
1418 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1419 {
1420 	return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1421 }
1422 
1423 /*
1424  * We emulate only the following system register space.
1425  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1426  * See Table C5-6 System instruction encodings for System register accesses,
1427  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1428  */
1429 static inline bool __attribute_const__ is_emulated(u32 id)
1430 {
1431 	return (sys_reg_Op0(id) == 0x3 &&
1432 		sys_reg_CRn(id) == 0x0 &&
1433 		sys_reg_Op1(id) == 0x0 &&
1434 		(sys_reg_CRm(id) == 0 ||
1435 		 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
1436 }
1437 
1438 /*
1439  * With CRm == 0, reg should be one of :
1440  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1441  */
1442 static inline int emulate_id_reg(u32 id, u64 *valp)
1443 {
1444 	switch (id) {
1445 	case SYS_MIDR_EL1:
1446 		*valp = read_cpuid_id();
1447 		break;
1448 	case SYS_MPIDR_EL1:
1449 		*valp = SYS_MPIDR_SAFE_VAL;
1450 		break;
1451 	case SYS_REVIDR_EL1:
1452 		/* IMPLEMENTATION DEFINED values are emulated with 0 */
1453 		*valp = 0;
1454 		break;
1455 	default:
1456 		return -EINVAL;
1457 	}
1458 
1459 	return 0;
1460 }
1461 
1462 static int emulate_sys_reg(u32 id, u64 *valp)
1463 {
1464 	struct arm64_ftr_reg *regp;
1465 
1466 	if (!is_emulated(id))
1467 		return -EINVAL;
1468 
1469 	if (sys_reg_CRm(id) == 0)
1470 		return emulate_id_reg(id, valp);
1471 
1472 	regp = get_arm64_ftr_reg(id);
1473 	if (regp)
1474 		*valp = arm64_ftr_reg_user_value(regp);
1475 	else
1476 		/*
1477 		 * The untracked registers are either IMPLEMENTATION DEFINED
1478 		 * (e.g, ID_AFR0_EL1) or reserved RAZ.
1479 		 */
1480 		*valp = 0;
1481 	return 0;
1482 }
1483 
1484 static int emulate_mrs(struct pt_regs *regs, u32 insn)
1485 {
1486 	int rc;
1487 	u32 sys_reg, dst;
1488 	u64 val;
1489 
1490 	/*
1491 	 * sys_reg values are defined as used in mrs/msr instruction.
1492 	 * shift the imm value to get the encoding.
1493 	 */
1494 	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
1495 	rc = emulate_sys_reg(sys_reg, &val);
1496 	if (!rc) {
1497 		dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
1498 		pt_regs_write_reg(regs, dst, val);
1499 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1500 	}
1501 
1502 	return rc;
1503 }
1504 
1505 static struct undef_hook mrs_hook = {
1506 	.instr_mask = 0xfff00000,
1507 	.instr_val  = 0xd5300000,
1508 	.pstate_mask = COMPAT_PSR_MODE_MASK,
1509 	.pstate_val = PSR_MODE_EL0t,
1510 	.fn = emulate_mrs,
1511 };
1512 
1513 static int __init enable_mrs_emulation(void)
1514 {
1515 	register_undef_hook(&mrs_hook);
1516 	return 0;
1517 }
1518 
1519 core_initcall(enable_mrs_emulation);
1520 
1521 int cpu_clear_disr(void *__unused)
1522 {
1523 	/* Firmware may have left a deferred SError in this register. */
1524 	write_sysreg_s(0, SYS_DISR_EL1);
1525 
1526 	return 0;
1527 }
1528