1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Contains CPU feature definitions 4 * 5 * Copyright (C) 2015 ARM Ltd. 6 * 7 * A note for the weary kernel hacker: the code here is confusing and hard to 8 * follow! That's partly because it's solving a nasty problem, but also because 9 * there's a little bit of over-abstraction that tends to obscure what's going 10 * on behind a maze of helper functions and macros. 11 * 12 * The basic problem is that hardware folks have started gluing together CPUs 13 * with distinct architectural features; in some cases even creating SoCs where 14 * user-visible instructions are available only on a subset of the available 15 * cores. We try to address this by snapshotting the feature registers of the 16 * boot CPU and comparing these with the feature registers of each secondary 17 * CPU when bringing them up. If there is a mismatch, then we update the 18 * snapshot state to indicate the lowest-common denominator of the feature, 19 * known as the "safe" value. This snapshot state can be queried to view the 20 * "sanitised" value of a feature register. 21 * 22 * The sanitised register values are used to decide which capabilities we 23 * have in the system. These may be in the form of traditional "hwcaps" 24 * advertised to userspace or internal "cpucaps" which are used to configure 25 * things like alternative patching and static keys. While a feature mismatch 26 * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch 27 * may prevent a CPU from being onlined at all. 28 * 29 * Some implementation details worth remembering: 30 * 31 * - Mismatched features are *always* sanitised to a "safe" value, which 32 * usually indicates that the feature is not supported. 33 * 34 * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK" 35 * warning when onlining an offending CPU and the kernel will be tainted 36 * with TAINT_CPU_OUT_OF_SPEC. 37 * 38 * - Features marked as FTR_VISIBLE have their sanitised value visible to 39 * userspace. FTR_VISIBLE features in registers that are only visible 40 * to EL0 by trapping *must* have a corresponding HWCAP so that late 41 * onlining of CPUs cannot lead to features disappearing at runtime. 42 * 43 * - A "feature" is typically a 4-bit register field. A "capability" is the 44 * high-level description derived from the sanitised field value. 45 * 46 * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID 47 * scheme for fields in ID registers") to understand when feature fields 48 * may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly). 49 * 50 * - KVM exposes its own view of the feature registers to guest operating 51 * systems regardless of FTR_VISIBLE. This is typically driven from the 52 * sanitised register values to allow virtual CPUs to be migrated between 53 * arbitrary physical CPUs, but some features not present on the host are 54 * also advertised and emulated. Look at sys_reg_descs[] for the gory 55 * details. 56 * 57 * - If the arm64_ftr_bits[] for a register has a missing field, then this 58 * field is treated as STRICT RES0, including for read_sanitised_ftr_reg(). 59 * This is stronger than FTR_HIDDEN and can be used to hide features from 60 * KVM guests. 61 */ 62 63 #define pr_fmt(fmt) "CPU features: " fmt 64 65 #include <linux/bsearch.h> 66 #include <linux/cpumask.h> 67 #include <linux/crash_dump.h> 68 #include <linux/kstrtox.h> 69 #include <linux/sort.h> 70 #include <linux/stop_machine.h> 71 #include <linux/sysfs.h> 72 #include <linux/types.h> 73 #include <linux/minmax.h> 74 #include <linux/mm.h> 75 #include <linux/cpu.h> 76 #include <linux/kasan.h> 77 #include <linux/percpu.h> 78 79 #include <asm/cpu.h> 80 #include <asm/cpufeature.h> 81 #include <asm/cpu_ops.h> 82 #include <asm/fpsimd.h> 83 #include <asm/hwcap.h> 84 #include <asm/insn.h> 85 #include <asm/kvm_host.h> 86 #include <asm/mmu_context.h> 87 #include <asm/mte.h> 88 #include <asm/processor.h> 89 #include <asm/smp.h> 90 #include <asm/sysreg.h> 91 #include <asm/traps.h> 92 #include <asm/vectors.h> 93 #include <asm/virt.h> 94 95 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */ 96 static DECLARE_BITMAP(elf_hwcap, MAX_CPU_FEATURES) __read_mostly; 97 98 #ifdef CONFIG_COMPAT 99 #define COMPAT_ELF_HWCAP_DEFAULT \ 100 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\ 101 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\ 102 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\ 103 COMPAT_HWCAP_LPAE) 104 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT; 105 unsigned int compat_elf_hwcap2 __read_mostly; 106 #endif 107 108 DECLARE_BITMAP(system_cpucaps, ARM64_NCAPS); 109 EXPORT_SYMBOL(system_cpucaps); 110 static struct arm64_cpu_capabilities const __ro_after_init *cpucap_ptrs[ARM64_NCAPS]; 111 112 DECLARE_BITMAP(boot_cpucaps, ARM64_NCAPS); 113 114 bool arm64_use_ng_mappings = false; 115 EXPORT_SYMBOL(arm64_use_ng_mappings); 116 117 DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors; 118 119 /* 120 * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs 121 * support it? 122 */ 123 static bool __read_mostly allow_mismatched_32bit_el0; 124 125 /* 126 * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have 127 * seen at least one CPU capable of 32-bit EL0. 128 */ 129 DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0); 130 131 /* 132 * Mask of CPUs supporting 32-bit EL0. 133 * Only valid if arm64_mismatched_32bit_el0 is enabled. 134 */ 135 static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly; 136 137 void dump_cpu_features(void) 138 { 139 /* file-wide pr_fmt adds "CPU features: " prefix */ 140 pr_emerg("0x%*pb\n", ARM64_NCAPS, &system_cpucaps); 141 } 142 143 #define ARM64_CPUID_FIELDS(reg, field, min_value) \ 144 .sys_reg = SYS_##reg, \ 145 .field_pos = reg##_##field##_SHIFT, \ 146 .field_width = reg##_##field##_WIDTH, \ 147 .sign = reg##_##field##_SIGNED, \ 148 .min_field_value = reg##_##field##_##min_value, 149 150 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \ 151 { \ 152 .sign = SIGNED, \ 153 .visible = VISIBLE, \ 154 .strict = STRICT, \ 155 .type = TYPE, \ 156 .shift = SHIFT, \ 157 .width = WIDTH, \ 158 .safe_val = SAFE_VAL, \ 159 } 160 161 /* Define a feature with unsigned values */ 162 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \ 163 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) 164 165 /* Define a feature with a signed value */ 166 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \ 167 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) 168 169 #define ARM64_FTR_END \ 170 { \ 171 .width = 0, \ 172 } 173 174 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap); 175 176 static bool __system_matches_cap(unsigned int n); 177 178 /* 179 * NOTE: Any changes to the visibility of features should be kept in 180 * sync with the documentation of the CPU feature register ABI. 181 */ 182 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = { 183 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0), 184 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0), 185 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0), 186 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0), 187 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0), 188 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0), 189 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0), 190 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0), 191 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0), 192 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0), 193 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0), 194 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0), 195 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0), 196 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0), 197 ARM64_FTR_END, 198 }; 199 200 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = { 201 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, 0), 202 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, 0), 203 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, 0), 204 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SPECRES_SHIFT, 4, 0), 205 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SB_SHIFT, 4, 0), 206 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, 0), 207 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), 208 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPI_SHIFT, 4, 0), 209 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), 210 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPA_SHIFT, 4, 0), 211 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, 0), 212 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, 0), 213 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, 0), 214 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), 215 FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_API_SHIFT, 4, 0), 216 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), 217 FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_APA_SHIFT, 4, 0), 218 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, 0), 219 ARM64_FTR_END, 220 }; 221 222 static const struct arm64_ftr_bits ftr_id_aa64isar2[] = { 223 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CSSC_SHIFT, 4, 0), 224 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRFM_SHIFT, 4, 0), 225 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CLRBHB_SHIFT, 4, 0), 226 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_BC_SHIFT, 4, 0), 227 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_MOPS_SHIFT, 4, 0), 228 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), 229 FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_EL1_APA3_SHIFT, 4, 0), 230 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), 231 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_GPA3_SHIFT, 4, 0), 232 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, 0), 233 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, 0), 234 ARM64_FTR_END, 235 }; 236 237 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = { 238 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV3_SHIFT, 4, 0), 239 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV2_SHIFT, 4, 0), 240 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_DIT_SHIFT, 4, 0), 241 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AMU_SHIFT, 4, 0), 242 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_MPAM_SHIFT, 4, 0), 243 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SEL2_SHIFT, 4, 0), 244 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), 245 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SVE_SHIFT, 4, 0), 246 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_RAS_SHIFT, 4, 0), 247 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_GIC_SHIFT, 4, 0), 248 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, ID_AA64PFR0_EL1_AdvSIMD_NI), 249 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_FP_SHIFT, 4, ID_AA64PFR0_EL1_FP_NI), 250 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL3_SHIFT, 4, 0), 251 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL2_SHIFT, 4, 0), 252 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL1_SHIFT, 4, ID_AA64PFR0_EL1_ELx_64BIT_ONLY), 253 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL0_SHIFT, 4, ID_AA64PFR0_EL1_ELx_64BIT_ONLY), 254 ARM64_FTR_END, 255 }; 256 257 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = { 258 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), 259 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SME_SHIFT, 4, 0), 260 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MPAM_frac_SHIFT, 4, 0), 261 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_RAS_frac_SHIFT, 4, 0), 262 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE), 263 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_SHIFT, 4, ID_AA64PFR1_EL1_MTE_NI), 264 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, ID_AA64PFR1_EL1_SSBS_NI), 265 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI), 266 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_BT_SHIFT, 4, 0), 267 ARM64_FTR_END, 268 }; 269 270 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = { 271 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), 272 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, 0), 273 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), 274 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, 0), 275 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), 276 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, 0), 277 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), 278 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, 0), 279 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), 280 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, 0), 281 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), 282 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, 0), 283 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), 284 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, 0), 285 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), 286 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_AES_SHIFT, 4, 0), 287 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), 288 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, 0), 289 ARM64_FTR_END, 290 }; 291 292 static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = { 293 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), 294 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, 0), 295 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), 296 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMEver_SHIFT, 4, 0), 297 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), 298 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, 0), 299 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), 300 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, 0), 301 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), 302 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I32_SHIFT, 4, 0), 303 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), 304 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16B16_SHIFT, 1, 0), 305 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), 306 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F16_SHIFT, 1, 0), 307 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), 308 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, 0), 309 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), 310 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, 0), 311 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), 312 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, 0), 313 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), 314 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_BI32I32_SHIFT, 1, 0), 315 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME), 316 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, 0), 317 ARM64_FTR_END, 318 }; 319 320 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = { 321 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, 0), 322 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_FGT_SHIFT, 4, 0), 323 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_EXS_SHIFT, 4, 0), 324 /* 325 * Page size not being supported at Stage-2 is not fatal. You 326 * just give up KVM if PAGE_SIZE isn't supported there. Go fix 327 * your favourite nesting hypervisor. 328 * 329 * There is a small corner case where the hypervisor explicitly 330 * advertises a given granule size at Stage-2 (value 2) on some 331 * vCPUs, and uses the fallback to Stage-1 (value 0) for other 332 * vCPUs. Although this is not forbidden by the architecture, it 333 * indicates that the hypervisor is being silly (or buggy). 334 * 335 * We make no effort to cope with this and pretend that if these 336 * fields are inconsistent across vCPUs, then it isn't worth 337 * trying to bring KVM up. 338 */ 339 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN4_2_SHIFT, 4, 1), 340 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN64_2_SHIFT, 4, 1), 341 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN16_2_SHIFT, 4, 1), 342 /* 343 * We already refuse to boot CPUs that don't support our configured 344 * page size, so we can only detect mismatches for a page size other 345 * than the one we're currently using. Unfortunately, SoCs like this 346 * exist in the wild so, even though we don't like it, we'll have to go 347 * along with it and treat them as non-strict. 348 */ 349 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN4_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN4_NI), 350 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN64_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN64_NI), 351 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN16_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN16_NI), 352 353 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT, 4, 0), 354 /* Linux shouldn't care about secure memory */ 355 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_SNSMEM_SHIFT, 4, 0), 356 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGEND_SHIFT, 4, 0), 357 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ASIDBITS_SHIFT, 4, 0), 358 /* 359 * Differing PARange is fine as long as all peripherals and memory are mapped 360 * within the minimum PARange of all CPUs 361 */ 362 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_PARANGE_SHIFT, 4, 0), 363 ARM64_FTR_END, 364 }; 365 366 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = { 367 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TIDCP1_SHIFT, 4, 0), 368 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, 0), 369 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HCX_SHIFT, 4, 0), 370 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ETS_SHIFT, 4, 0), 371 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TWED_SHIFT, 4, 0), 372 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_XNX_SHIFT, 4, 0), 373 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1_SpecSEI_SHIFT, 4, 0), 374 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_PAN_SHIFT, 4, 0), 375 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_LO_SHIFT, 4, 0), 376 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HPDS_SHIFT, 4, 0), 377 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VH_SHIFT, 4, 0), 378 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VMIDBits_SHIFT, 4, 0), 379 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HAFDBS_SHIFT, 4, 0), 380 ARM64_FTR_END, 381 }; 382 383 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = { 384 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_E0PD_SHIFT, 4, 0), 385 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_EVT_SHIFT, 4, 0), 386 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_BBM_SHIFT, 4, 0), 387 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_TTL_SHIFT, 4, 0), 388 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_FWB_SHIFT, 4, 0), 389 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IDS_SHIFT, 4, 0), 390 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_AT_SHIFT, 4, 0), 391 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_ST_SHIFT, 4, 0), 392 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_NV_SHIFT, 4, 0), 393 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CCIDX_SHIFT, 4, 0), 394 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_VARange_SHIFT, 4, 0), 395 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IESB_SHIFT, 4, 0), 396 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_LSM_SHIFT, 4, 0), 397 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_UAO_SHIFT, 4, 0), 398 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CnP_SHIFT, 4, 0), 399 ARM64_FTR_END, 400 }; 401 402 static const struct arm64_ftr_bits ftr_id_aa64mmfr3[] = { 403 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1PIE_SHIFT, 4, 0), 404 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_TCRX_SHIFT, 4, 0), 405 ARM64_FTR_END, 406 }; 407 408 static const struct arm64_ftr_bits ftr_ctr[] = { 409 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */ 410 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DIC_SHIFT, 1, 1), 411 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IDC_SHIFT, 1, 1), 412 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_CWG_SHIFT, 4, 0), 413 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_ERG_SHIFT, 4, 0), 414 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DminLine_SHIFT, 4, 1), 415 /* 416 * Linux can handle differing I-cache policies. Userspace JITs will 417 * make use of *minLine. 418 * If we have differing I-cache policies, report it as the weakest - VIPT. 419 */ 420 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_EL0_L1Ip_SHIFT, 2, CTR_EL0_L1Ip_VIPT), /* L1Ip */ 421 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IminLine_SHIFT, 4, 0), 422 ARM64_FTR_END, 423 }; 424 425 static struct arm64_ftr_override __ro_after_init no_override = { }; 426 427 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = { 428 .name = "SYS_CTR_EL0", 429 .ftr_bits = ftr_ctr, 430 .override = &no_override, 431 }; 432 433 static const struct arm64_ftr_bits ftr_id_mmfr0[] = { 434 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_InnerShr_SHIFT, 4, 0xf), 435 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_FCSE_SHIFT, 4, 0), 436 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_AuxReg_SHIFT, 4, 0), 437 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_TCM_SHIFT, 4, 0), 438 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_ShareLvl_SHIFT, 4, 0), 439 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_OuterShr_SHIFT, 4, 0xf), 440 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_PMSA_SHIFT, 4, 0), 441 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_VMSA_SHIFT, 4, 0), 442 ARM64_FTR_END, 443 }; 444 445 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = { 446 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_DoubleLock_SHIFT, 4, 0), 447 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_PMSVer_SHIFT, 4, 0), 448 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_CTX_CMPs_SHIFT, 4, 0), 449 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_WRPs_SHIFT, 4, 0), 450 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_BRPs_SHIFT, 4, 0), 451 /* 452 * We can instantiate multiple PMU instances with different levels 453 * of support. 454 */ 455 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_EL1_PMUVer_SHIFT, 4, 0), 456 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_EL1_DebugVer_SHIFT, 4, 0x6), 457 ARM64_FTR_END, 458 }; 459 460 static const struct arm64_ftr_bits ftr_mvfr0[] = { 461 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPRound_SHIFT, 4, 0), 462 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPShVec_SHIFT, 4, 0), 463 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSqrt_SHIFT, 4, 0), 464 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDivide_SHIFT, 4, 0), 465 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPTrap_SHIFT, 4, 0), 466 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDP_SHIFT, 4, 0), 467 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSP_SHIFT, 4, 0), 468 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_SIMDReg_SHIFT, 4, 0), 469 ARM64_FTR_END, 470 }; 471 472 static const struct arm64_ftr_bits ftr_mvfr1[] = { 473 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDFMAC_SHIFT, 4, 0), 474 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPHP_SHIFT, 4, 0), 475 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDHP_SHIFT, 4, 0), 476 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDSP_SHIFT, 4, 0), 477 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDInt_SHIFT, 4, 0), 478 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDLS_SHIFT, 4, 0), 479 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPDNaN_SHIFT, 4, 0), 480 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPFtZ_SHIFT, 4, 0), 481 ARM64_FTR_END, 482 }; 483 484 static const struct arm64_ftr_bits ftr_mvfr2[] = { 485 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_FPMisc_SHIFT, 4, 0), 486 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_SIMDMisc_SHIFT, 4, 0), 487 ARM64_FTR_END, 488 }; 489 490 static const struct arm64_ftr_bits ftr_dczid[] = { 491 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_EL0_DZP_SHIFT, 1, 1), 492 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_EL0_BS_SHIFT, 4, 0), 493 ARM64_FTR_END, 494 }; 495 496 static const struct arm64_ftr_bits ftr_gmid[] = { 497 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, GMID_EL1_BS_SHIFT, 4, 0), 498 ARM64_FTR_END, 499 }; 500 501 static const struct arm64_ftr_bits ftr_id_isar0[] = { 502 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Divide_SHIFT, 4, 0), 503 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Debug_SHIFT, 4, 0), 504 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Coproc_SHIFT, 4, 0), 505 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_CmpBranch_SHIFT, 4, 0), 506 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitField_SHIFT, 4, 0), 507 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitCount_SHIFT, 4, 0), 508 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Swap_SHIFT, 4, 0), 509 ARM64_FTR_END, 510 }; 511 512 static const struct arm64_ftr_bits ftr_id_isar5[] = { 513 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_RDM_SHIFT, 4, 0), 514 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_CRC32_SHIFT, 4, 0), 515 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA2_SHIFT, 4, 0), 516 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA1_SHIFT, 4, 0), 517 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_AES_SHIFT, 4, 0), 518 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SEVL_SHIFT, 4, 0), 519 ARM64_FTR_END, 520 }; 521 522 static const struct arm64_ftr_bits ftr_id_mmfr4[] = { 523 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_EVT_SHIFT, 4, 0), 524 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CCIDX_SHIFT, 4, 0), 525 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_LSM_SHIFT, 4, 0), 526 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_HPDS_SHIFT, 4, 0), 527 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CnP_SHIFT, 4, 0), 528 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_XNX_SHIFT, 4, 0), 529 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_AC2_SHIFT, 4, 0), 530 531 /* 532 * SpecSEI = 1 indicates that the PE might generate an SError on an 533 * external abort on speculative read. It is safe to assume that an 534 * SError might be generated than it will not be. Hence it has been 535 * classified as FTR_HIGHER_SAFE. 536 */ 537 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_EL1_SpecSEI_SHIFT, 4, 0), 538 ARM64_FTR_END, 539 }; 540 541 static const struct arm64_ftr_bits ftr_id_isar4[] = { 542 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SWP_frac_SHIFT, 4, 0), 543 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_PSR_M_SHIFT, 4, 0), 544 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SynchPrim_frac_SHIFT, 4, 0), 545 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Barrier_SHIFT, 4, 0), 546 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SMC_SHIFT, 4, 0), 547 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Writeback_SHIFT, 4, 0), 548 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_WithShifts_SHIFT, 4, 0), 549 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Unpriv_SHIFT, 4, 0), 550 ARM64_FTR_END, 551 }; 552 553 static const struct arm64_ftr_bits ftr_id_mmfr5[] = { 554 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_EL1_ETS_SHIFT, 4, 0), 555 ARM64_FTR_END, 556 }; 557 558 static const struct arm64_ftr_bits ftr_id_isar6[] = { 559 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_I8MM_SHIFT, 4, 0), 560 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_BF16_SHIFT, 4, 0), 561 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SPECRES_SHIFT, 4, 0), 562 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SB_SHIFT, 4, 0), 563 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_FHM_SHIFT, 4, 0), 564 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_DP_SHIFT, 4, 0), 565 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_JSCVT_SHIFT, 4, 0), 566 ARM64_FTR_END, 567 }; 568 569 static const struct arm64_ftr_bits ftr_id_pfr0[] = { 570 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_DIT_SHIFT, 4, 0), 571 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_CSV2_SHIFT, 4, 0), 572 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State3_SHIFT, 4, 0), 573 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State2_SHIFT, 4, 0), 574 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State1_SHIFT, 4, 0), 575 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State0_SHIFT, 4, 0), 576 ARM64_FTR_END, 577 }; 578 579 static const struct arm64_ftr_bits ftr_id_pfr1[] = { 580 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GIC_SHIFT, 4, 0), 581 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virt_frac_SHIFT, 4, 0), 582 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Sec_frac_SHIFT, 4, 0), 583 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GenTimer_SHIFT, 4, 0), 584 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virtualization_SHIFT, 4, 0), 585 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_MProgMod_SHIFT, 4, 0), 586 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Security_SHIFT, 4, 0), 587 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_ProgMod_SHIFT, 4, 0), 588 ARM64_FTR_END, 589 }; 590 591 static const struct arm64_ftr_bits ftr_id_pfr2[] = { 592 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_SSBS_SHIFT, 4, 0), 593 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_CSV3_SHIFT, 4, 0), 594 ARM64_FTR_END, 595 }; 596 597 static const struct arm64_ftr_bits ftr_id_dfr0[] = { 598 /* [31:28] TraceFilt */ 599 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_DFR0_EL1_PerfMon_SHIFT, 4, 0), 600 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MProfDbg_SHIFT, 4, 0), 601 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapTrc_SHIFT, 4, 0), 602 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopTrc_SHIFT, 4, 0), 603 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapDbg_SHIFT, 4, 0), 604 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopSDbg_SHIFT, 4, 0), 605 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopDbg_SHIFT, 4, 0), 606 ARM64_FTR_END, 607 }; 608 609 static const struct arm64_ftr_bits ftr_id_dfr1[] = { 610 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_EL1_MTPMU_SHIFT, 4, 0), 611 ARM64_FTR_END, 612 }; 613 614 static const struct arm64_ftr_bits ftr_zcr[] = { 615 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 616 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_WIDTH, 0), /* LEN */ 617 ARM64_FTR_END, 618 }; 619 620 static const struct arm64_ftr_bits ftr_smcr[] = { 621 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 622 SMCR_ELx_LEN_SHIFT, SMCR_ELx_LEN_WIDTH, 0), /* LEN */ 623 ARM64_FTR_END, 624 }; 625 626 /* 627 * Common ftr bits for a 32bit register with all hidden, strict 628 * attributes, with 4bit feature fields and a default safe value of 629 * 0. Covers the following 32bit registers: 630 * id_isar[1-3], id_mmfr[1-3] 631 */ 632 static const struct arm64_ftr_bits ftr_generic_32bits[] = { 633 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0), 634 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0), 635 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), 636 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0), 637 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), 638 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0), 639 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), 640 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), 641 ARM64_FTR_END, 642 }; 643 644 /* Table for a single 32bit feature value */ 645 static const struct arm64_ftr_bits ftr_single32[] = { 646 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0), 647 ARM64_FTR_END, 648 }; 649 650 static const struct arm64_ftr_bits ftr_raz[] = { 651 ARM64_FTR_END, 652 }; 653 654 #define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) { \ 655 .sys_id = id, \ 656 .reg = &(struct arm64_ftr_reg){ \ 657 .name = id_str, \ 658 .override = (ovr), \ 659 .ftr_bits = &((table)[0]), \ 660 }} 661 662 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr) \ 663 __ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr) 664 665 #define ARM64_FTR_REG(id, table) \ 666 __ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override) 667 668 struct arm64_ftr_override __ro_after_init id_aa64mmfr1_override; 669 struct arm64_ftr_override __ro_after_init id_aa64pfr0_override; 670 struct arm64_ftr_override __ro_after_init id_aa64pfr1_override; 671 struct arm64_ftr_override __ro_after_init id_aa64zfr0_override; 672 struct arm64_ftr_override __ro_after_init id_aa64smfr0_override; 673 struct arm64_ftr_override __ro_after_init id_aa64isar1_override; 674 struct arm64_ftr_override __ro_after_init id_aa64isar2_override; 675 676 struct arm64_ftr_override arm64_sw_feature_override; 677 678 static const struct __ftr_reg_entry { 679 u32 sys_id; 680 struct arm64_ftr_reg *reg; 681 } arm64_ftr_regs[] = { 682 683 /* Op1 = 0, CRn = 0, CRm = 1 */ 684 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0), 685 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1), 686 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0), 687 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0), 688 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits), 689 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits), 690 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits), 691 692 /* Op1 = 0, CRn = 0, CRm = 2 */ 693 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0), 694 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits), 695 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits), 696 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits), 697 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4), 698 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5), 699 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4), 700 ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6), 701 702 /* Op1 = 0, CRn = 0, CRm = 3 */ 703 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_mvfr0), 704 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_mvfr1), 705 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2), 706 ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2), 707 ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1), 708 ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5), 709 710 /* Op1 = 0, CRn = 0, CRm = 4 */ 711 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0, 712 &id_aa64pfr0_override), 713 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1, 714 &id_aa64pfr1_override), 715 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0, 716 &id_aa64zfr0_override), 717 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0, 718 &id_aa64smfr0_override), 719 720 /* Op1 = 0, CRn = 0, CRm = 5 */ 721 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0), 722 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz), 723 724 /* Op1 = 0, CRn = 0, CRm = 6 */ 725 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0), 726 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1, 727 &id_aa64isar1_override), 728 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2, 729 &id_aa64isar2_override), 730 731 /* Op1 = 0, CRn = 0, CRm = 7 */ 732 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0), 733 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1, 734 &id_aa64mmfr1_override), 735 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2), 736 ARM64_FTR_REG(SYS_ID_AA64MMFR3_EL1, ftr_id_aa64mmfr3), 737 738 /* Op1 = 0, CRn = 1, CRm = 2 */ 739 ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr), 740 ARM64_FTR_REG(SYS_SMCR_EL1, ftr_smcr), 741 742 /* Op1 = 1, CRn = 0, CRm = 0 */ 743 ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid), 744 745 /* Op1 = 3, CRn = 0, CRm = 0 */ 746 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 }, 747 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid), 748 749 /* Op1 = 3, CRn = 14, CRm = 0 */ 750 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32), 751 }; 752 753 static int search_cmp_ftr_reg(const void *id, const void *regp) 754 { 755 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id; 756 } 757 758 /* 759 * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using 760 * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the 761 * ascending order of sys_id, we use binary search to find a matching 762 * entry. 763 * 764 * returns - Upon success, matching ftr_reg entry for id. 765 * - NULL on failure. It is upto the caller to decide 766 * the impact of a failure. 767 */ 768 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id) 769 { 770 const struct __ftr_reg_entry *ret; 771 772 ret = bsearch((const void *)(unsigned long)sys_id, 773 arm64_ftr_regs, 774 ARRAY_SIZE(arm64_ftr_regs), 775 sizeof(arm64_ftr_regs[0]), 776 search_cmp_ftr_reg); 777 if (ret) 778 return ret->reg; 779 return NULL; 780 } 781 782 /* 783 * get_arm64_ftr_reg - Looks up a feature register entry using 784 * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn(). 785 * 786 * returns - Upon success, matching ftr_reg entry for id. 787 * - NULL on failure but with an WARN_ON(). 788 */ 789 struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id) 790 { 791 struct arm64_ftr_reg *reg; 792 793 reg = get_arm64_ftr_reg_nowarn(sys_id); 794 795 /* 796 * Requesting a non-existent register search is an error. Warn 797 * and let the caller handle it. 798 */ 799 WARN_ON(!reg); 800 return reg; 801 } 802 803 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg, 804 s64 ftr_val) 805 { 806 u64 mask = arm64_ftr_mask(ftrp); 807 808 reg &= ~mask; 809 reg |= (ftr_val << ftrp->shift) & mask; 810 return reg; 811 } 812 813 s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new, 814 s64 cur) 815 { 816 s64 ret = 0; 817 818 switch (ftrp->type) { 819 case FTR_EXACT: 820 ret = ftrp->safe_val; 821 break; 822 case FTR_LOWER_SAFE: 823 ret = min(new, cur); 824 break; 825 case FTR_HIGHER_OR_ZERO_SAFE: 826 if (!cur || !new) 827 break; 828 fallthrough; 829 case FTR_HIGHER_SAFE: 830 ret = max(new, cur); 831 break; 832 default: 833 BUG(); 834 } 835 836 return ret; 837 } 838 839 static void __init sort_ftr_regs(void) 840 { 841 unsigned int i; 842 843 for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) { 844 const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg; 845 const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits; 846 unsigned int j = 0; 847 848 /* 849 * Features here must be sorted in descending order with respect 850 * to their shift values and should not overlap with each other. 851 */ 852 for (; ftr_bits->width != 0; ftr_bits++, j++) { 853 unsigned int width = ftr_reg->ftr_bits[j].width; 854 unsigned int shift = ftr_reg->ftr_bits[j].shift; 855 unsigned int prev_shift; 856 857 WARN((shift + width) > 64, 858 "%s has invalid feature at shift %d\n", 859 ftr_reg->name, shift); 860 861 /* 862 * Skip the first feature. There is nothing to 863 * compare against for now. 864 */ 865 if (j == 0) 866 continue; 867 868 prev_shift = ftr_reg->ftr_bits[j - 1].shift; 869 WARN((shift + width) > prev_shift, 870 "%s has feature overlap at shift %d\n", 871 ftr_reg->name, shift); 872 } 873 874 /* 875 * Skip the first register. There is nothing to 876 * compare against for now. 877 */ 878 if (i == 0) 879 continue; 880 /* 881 * Registers here must be sorted in ascending order with respect 882 * to sys_id for subsequent binary search in get_arm64_ftr_reg() 883 * to work correctly. 884 */ 885 BUG_ON(arm64_ftr_regs[i].sys_id <= arm64_ftr_regs[i - 1].sys_id); 886 } 887 } 888 889 /* 890 * Initialise the CPU feature register from Boot CPU values. 891 * Also initiliases the strict_mask for the register. 892 * Any bits that are not covered by an arm64_ftr_bits entry are considered 893 * RES0 for the system-wide value, and must strictly match. 894 */ 895 static void init_cpu_ftr_reg(u32 sys_reg, u64 new) 896 { 897 u64 val = 0; 898 u64 strict_mask = ~0x0ULL; 899 u64 user_mask = 0; 900 u64 valid_mask = 0; 901 902 const struct arm64_ftr_bits *ftrp; 903 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg); 904 905 if (!reg) 906 return; 907 908 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) { 909 u64 ftr_mask = arm64_ftr_mask(ftrp); 910 s64 ftr_new = arm64_ftr_value(ftrp, new); 911 s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val); 912 913 if ((ftr_mask & reg->override->mask) == ftr_mask) { 914 s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new); 915 char *str = NULL; 916 917 if (ftr_ovr != tmp) { 918 /* Unsafe, remove the override */ 919 reg->override->mask &= ~ftr_mask; 920 reg->override->val &= ~ftr_mask; 921 tmp = ftr_ovr; 922 str = "ignoring override"; 923 } else if (ftr_new != tmp) { 924 /* Override was valid */ 925 ftr_new = tmp; 926 str = "forced"; 927 } else if (ftr_ovr == tmp) { 928 /* Override was the safe value */ 929 str = "already set"; 930 } 931 932 if (str) 933 pr_warn("%s[%d:%d]: %s to %llx\n", 934 reg->name, 935 ftrp->shift + ftrp->width - 1, 936 ftrp->shift, str, tmp); 937 } else if ((ftr_mask & reg->override->val) == ftr_mask) { 938 reg->override->val &= ~ftr_mask; 939 pr_warn("%s[%d:%d]: impossible override, ignored\n", 940 reg->name, 941 ftrp->shift + ftrp->width - 1, 942 ftrp->shift); 943 } 944 945 val = arm64_ftr_set_value(ftrp, val, ftr_new); 946 947 valid_mask |= ftr_mask; 948 if (!ftrp->strict) 949 strict_mask &= ~ftr_mask; 950 if (ftrp->visible) 951 user_mask |= ftr_mask; 952 else 953 reg->user_val = arm64_ftr_set_value(ftrp, 954 reg->user_val, 955 ftrp->safe_val); 956 } 957 958 val &= valid_mask; 959 960 reg->sys_val = val; 961 reg->strict_mask = strict_mask; 962 reg->user_mask = user_mask; 963 } 964 965 extern const struct arm64_cpu_capabilities arm64_errata[]; 966 static const struct arm64_cpu_capabilities arm64_features[]; 967 968 static void __init 969 init_cpucap_indirect_list_from_array(const struct arm64_cpu_capabilities *caps) 970 { 971 for (; caps->matches; caps++) { 972 if (WARN(caps->capability >= ARM64_NCAPS, 973 "Invalid capability %d\n", caps->capability)) 974 continue; 975 if (WARN(cpucap_ptrs[caps->capability], 976 "Duplicate entry for capability %d\n", 977 caps->capability)) 978 continue; 979 cpucap_ptrs[caps->capability] = caps; 980 } 981 } 982 983 static void __init init_cpucap_indirect_list(void) 984 { 985 init_cpucap_indirect_list_from_array(arm64_features); 986 init_cpucap_indirect_list_from_array(arm64_errata); 987 } 988 989 static void __init setup_boot_cpu_capabilities(void); 990 991 static void init_32bit_cpu_features(struct cpuinfo_32bit *info) 992 { 993 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0); 994 init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1); 995 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0); 996 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1); 997 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2); 998 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3); 999 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4); 1000 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5); 1001 init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6); 1002 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0); 1003 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1); 1004 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2); 1005 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3); 1006 init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4); 1007 init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5); 1008 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0); 1009 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1); 1010 init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2); 1011 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0); 1012 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1); 1013 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2); 1014 } 1015 1016 void __init init_cpu_features(struct cpuinfo_arm64 *info) 1017 { 1018 /* Before we start using the tables, make sure it is sorted */ 1019 sort_ftr_regs(); 1020 1021 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr); 1022 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid); 1023 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq); 1024 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0); 1025 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1); 1026 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0); 1027 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1); 1028 init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2); 1029 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0); 1030 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1); 1031 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2); 1032 init_cpu_ftr_reg(SYS_ID_AA64MMFR3_EL1, info->reg_id_aa64mmfr3); 1033 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0); 1034 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1); 1035 init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0); 1036 init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0); 1037 1038 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) 1039 init_32bit_cpu_features(&info->aarch32); 1040 1041 if (IS_ENABLED(CONFIG_ARM64_SVE) && 1042 id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) { 1043 info->reg_zcr = read_zcr_features(); 1044 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr); 1045 vec_init_vq_map(ARM64_VEC_SVE); 1046 } 1047 1048 if (IS_ENABLED(CONFIG_ARM64_SME) && 1049 id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) { 1050 info->reg_smcr = read_smcr_features(); 1051 /* 1052 * We mask out SMPS since even if the hardware 1053 * supports priorities the kernel does not at present 1054 * and we block access to them. 1055 */ 1056 info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS; 1057 init_cpu_ftr_reg(SYS_SMCR_EL1, info->reg_smcr); 1058 vec_init_vq_map(ARM64_VEC_SME); 1059 } 1060 1061 if (id_aa64pfr1_mte(info->reg_id_aa64pfr1)) 1062 init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid); 1063 1064 /* 1065 * Initialize the indirect array of CPU capabilities pointers before we 1066 * handle the boot CPU below. 1067 */ 1068 init_cpucap_indirect_list(); 1069 1070 /* 1071 * Detect and enable early CPU capabilities based on the boot CPU, 1072 * after we have initialised the CPU feature infrastructure. 1073 */ 1074 setup_boot_cpu_capabilities(); 1075 } 1076 1077 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new) 1078 { 1079 const struct arm64_ftr_bits *ftrp; 1080 1081 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) { 1082 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val); 1083 s64 ftr_new = arm64_ftr_value(ftrp, new); 1084 1085 if (ftr_cur == ftr_new) 1086 continue; 1087 /* Find a safe value */ 1088 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur); 1089 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new); 1090 } 1091 1092 } 1093 1094 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot) 1095 { 1096 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id); 1097 1098 if (!regp) 1099 return 0; 1100 1101 update_cpu_ftr_reg(regp, val); 1102 if ((boot & regp->strict_mask) == (val & regp->strict_mask)) 1103 return 0; 1104 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n", 1105 regp->name, boot, cpu, val); 1106 return 1; 1107 } 1108 1109 static void relax_cpu_ftr_reg(u32 sys_id, int field) 1110 { 1111 const struct arm64_ftr_bits *ftrp; 1112 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id); 1113 1114 if (!regp) 1115 return; 1116 1117 for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) { 1118 if (ftrp->shift == field) { 1119 regp->strict_mask &= ~arm64_ftr_mask(ftrp); 1120 break; 1121 } 1122 } 1123 1124 /* Bogus field? */ 1125 WARN_ON(!ftrp->width); 1126 } 1127 1128 static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info, 1129 struct cpuinfo_arm64 *boot) 1130 { 1131 static bool boot_cpu_32bit_regs_overridden = false; 1132 1133 if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden) 1134 return; 1135 1136 if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0)) 1137 return; 1138 1139 boot->aarch32 = info->aarch32; 1140 init_32bit_cpu_features(&boot->aarch32); 1141 boot_cpu_32bit_regs_overridden = true; 1142 } 1143 1144 static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info, 1145 struct cpuinfo_32bit *boot) 1146 { 1147 int taint = 0; 1148 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); 1149 1150 /* 1151 * If we don't have AArch32 at EL1, then relax the strictness of 1152 * EL1-dependent register fields to avoid spurious sanity check fails. 1153 */ 1154 if (!id_aa64pfr0_32bit_el1(pfr0)) { 1155 relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_EL1_SMC_SHIFT); 1156 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virt_frac_SHIFT); 1157 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Sec_frac_SHIFT); 1158 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virtualization_SHIFT); 1159 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Security_SHIFT); 1160 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_ProgMod_SHIFT); 1161 } 1162 1163 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu, 1164 info->reg_id_dfr0, boot->reg_id_dfr0); 1165 taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu, 1166 info->reg_id_dfr1, boot->reg_id_dfr1); 1167 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu, 1168 info->reg_id_isar0, boot->reg_id_isar0); 1169 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu, 1170 info->reg_id_isar1, boot->reg_id_isar1); 1171 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu, 1172 info->reg_id_isar2, boot->reg_id_isar2); 1173 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu, 1174 info->reg_id_isar3, boot->reg_id_isar3); 1175 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu, 1176 info->reg_id_isar4, boot->reg_id_isar4); 1177 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu, 1178 info->reg_id_isar5, boot->reg_id_isar5); 1179 taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu, 1180 info->reg_id_isar6, boot->reg_id_isar6); 1181 1182 /* 1183 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and 1184 * ACTLR formats could differ across CPUs and therefore would have to 1185 * be trapped for virtualization anyway. 1186 */ 1187 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu, 1188 info->reg_id_mmfr0, boot->reg_id_mmfr0); 1189 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu, 1190 info->reg_id_mmfr1, boot->reg_id_mmfr1); 1191 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu, 1192 info->reg_id_mmfr2, boot->reg_id_mmfr2); 1193 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu, 1194 info->reg_id_mmfr3, boot->reg_id_mmfr3); 1195 taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu, 1196 info->reg_id_mmfr4, boot->reg_id_mmfr4); 1197 taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu, 1198 info->reg_id_mmfr5, boot->reg_id_mmfr5); 1199 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu, 1200 info->reg_id_pfr0, boot->reg_id_pfr0); 1201 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu, 1202 info->reg_id_pfr1, boot->reg_id_pfr1); 1203 taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu, 1204 info->reg_id_pfr2, boot->reg_id_pfr2); 1205 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu, 1206 info->reg_mvfr0, boot->reg_mvfr0); 1207 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu, 1208 info->reg_mvfr1, boot->reg_mvfr1); 1209 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu, 1210 info->reg_mvfr2, boot->reg_mvfr2); 1211 1212 return taint; 1213 } 1214 1215 /* 1216 * Update system wide CPU feature registers with the values from a 1217 * non-boot CPU. Also performs SANITY checks to make sure that there 1218 * aren't any insane variations from that of the boot CPU. 1219 */ 1220 void update_cpu_features(int cpu, 1221 struct cpuinfo_arm64 *info, 1222 struct cpuinfo_arm64 *boot) 1223 { 1224 int taint = 0; 1225 1226 /* 1227 * The kernel can handle differing I-cache policies, but otherwise 1228 * caches should look identical. Userspace JITs will make use of 1229 * *minLine. 1230 */ 1231 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu, 1232 info->reg_ctr, boot->reg_ctr); 1233 1234 /* 1235 * Userspace may perform DC ZVA instructions. Mismatched block sizes 1236 * could result in too much or too little memory being zeroed if a 1237 * process is preempted and migrated between CPUs. 1238 */ 1239 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu, 1240 info->reg_dczid, boot->reg_dczid); 1241 1242 /* If different, timekeeping will be broken (especially with KVM) */ 1243 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu, 1244 info->reg_cntfrq, boot->reg_cntfrq); 1245 1246 /* 1247 * The kernel uses self-hosted debug features and expects CPUs to 1248 * support identical debug features. We presently need CTX_CMPs, WRPs, 1249 * and BRPs to be identical. 1250 * ID_AA64DFR1 is currently RES0. 1251 */ 1252 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu, 1253 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0); 1254 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu, 1255 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1); 1256 /* 1257 * Even in big.LITTLE, processors should be identical instruction-set 1258 * wise. 1259 */ 1260 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu, 1261 info->reg_id_aa64isar0, boot->reg_id_aa64isar0); 1262 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu, 1263 info->reg_id_aa64isar1, boot->reg_id_aa64isar1); 1264 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu, 1265 info->reg_id_aa64isar2, boot->reg_id_aa64isar2); 1266 1267 /* 1268 * Differing PARange support is fine as long as all peripherals and 1269 * memory are mapped within the minimum PARange of all CPUs. 1270 * Linux should not care about secure memory. 1271 */ 1272 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu, 1273 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0); 1274 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu, 1275 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1); 1276 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu, 1277 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2); 1278 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR3_EL1, cpu, 1279 info->reg_id_aa64mmfr3, boot->reg_id_aa64mmfr3); 1280 1281 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu, 1282 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0); 1283 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu, 1284 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1); 1285 1286 taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu, 1287 info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0); 1288 1289 taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu, 1290 info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0); 1291 1292 if (IS_ENABLED(CONFIG_ARM64_SVE) && 1293 id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) { 1294 info->reg_zcr = read_zcr_features(); 1295 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu, 1296 info->reg_zcr, boot->reg_zcr); 1297 1298 /* Probe vector lengths */ 1299 if (!system_capabilities_finalized()) 1300 vec_update_vq_map(ARM64_VEC_SVE); 1301 } 1302 1303 if (IS_ENABLED(CONFIG_ARM64_SME) && 1304 id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) { 1305 info->reg_smcr = read_smcr_features(); 1306 /* 1307 * We mask out SMPS since even if the hardware 1308 * supports priorities the kernel does not at present 1309 * and we block access to them. 1310 */ 1311 info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS; 1312 taint |= check_update_ftr_reg(SYS_SMCR_EL1, cpu, 1313 info->reg_smcr, boot->reg_smcr); 1314 1315 /* Probe vector lengths */ 1316 if (!system_capabilities_finalized()) 1317 vec_update_vq_map(ARM64_VEC_SME); 1318 } 1319 1320 /* 1321 * The kernel uses the LDGM/STGM instructions and the number of tags 1322 * they read/write depends on the GMID_EL1.BS field. Check that the 1323 * value is the same on all CPUs. 1324 */ 1325 if (IS_ENABLED(CONFIG_ARM64_MTE) && 1326 id_aa64pfr1_mte(info->reg_id_aa64pfr1)) { 1327 taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu, 1328 info->reg_gmid, boot->reg_gmid); 1329 } 1330 1331 /* 1332 * If we don't have AArch32 at all then skip the checks entirely 1333 * as the register values may be UNKNOWN and we're not going to be 1334 * using them for anything. 1335 * 1336 * This relies on a sanitised view of the AArch64 ID registers 1337 * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last. 1338 */ 1339 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) { 1340 lazy_init_32bit_cpu_features(info, boot); 1341 taint |= update_32bit_cpu_features(cpu, &info->aarch32, 1342 &boot->aarch32); 1343 } 1344 1345 /* 1346 * Mismatched CPU features are a recipe for disaster. Don't even 1347 * pretend to support them. 1348 */ 1349 if (taint) { 1350 pr_warn_once("Unsupported CPU feature variation detected.\n"); 1351 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); 1352 } 1353 } 1354 1355 u64 read_sanitised_ftr_reg(u32 id) 1356 { 1357 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id); 1358 1359 if (!regp) 1360 return 0; 1361 return regp->sys_val; 1362 } 1363 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg); 1364 1365 #define read_sysreg_case(r) \ 1366 case r: val = read_sysreg_s(r); break; 1367 1368 /* 1369 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated. 1370 * Read the system register on the current CPU 1371 */ 1372 u64 __read_sysreg_by_encoding(u32 sys_id) 1373 { 1374 struct arm64_ftr_reg *regp; 1375 u64 val; 1376 1377 switch (sys_id) { 1378 read_sysreg_case(SYS_ID_PFR0_EL1); 1379 read_sysreg_case(SYS_ID_PFR1_EL1); 1380 read_sysreg_case(SYS_ID_PFR2_EL1); 1381 read_sysreg_case(SYS_ID_DFR0_EL1); 1382 read_sysreg_case(SYS_ID_DFR1_EL1); 1383 read_sysreg_case(SYS_ID_MMFR0_EL1); 1384 read_sysreg_case(SYS_ID_MMFR1_EL1); 1385 read_sysreg_case(SYS_ID_MMFR2_EL1); 1386 read_sysreg_case(SYS_ID_MMFR3_EL1); 1387 read_sysreg_case(SYS_ID_MMFR4_EL1); 1388 read_sysreg_case(SYS_ID_MMFR5_EL1); 1389 read_sysreg_case(SYS_ID_ISAR0_EL1); 1390 read_sysreg_case(SYS_ID_ISAR1_EL1); 1391 read_sysreg_case(SYS_ID_ISAR2_EL1); 1392 read_sysreg_case(SYS_ID_ISAR3_EL1); 1393 read_sysreg_case(SYS_ID_ISAR4_EL1); 1394 read_sysreg_case(SYS_ID_ISAR5_EL1); 1395 read_sysreg_case(SYS_ID_ISAR6_EL1); 1396 read_sysreg_case(SYS_MVFR0_EL1); 1397 read_sysreg_case(SYS_MVFR1_EL1); 1398 read_sysreg_case(SYS_MVFR2_EL1); 1399 1400 read_sysreg_case(SYS_ID_AA64PFR0_EL1); 1401 read_sysreg_case(SYS_ID_AA64PFR1_EL1); 1402 read_sysreg_case(SYS_ID_AA64ZFR0_EL1); 1403 read_sysreg_case(SYS_ID_AA64SMFR0_EL1); 1404 read_sysreg_case(SYS_ID_AA64DFR0_EL1); 1405 read_sysreg_case(SYS_ID_AA64DFR1_EL1); 1406 read_sysreg_case(SYS_ID_AA64MMFR0_EL1); 1407 read_sysreg_case(SYS_ID_AA64MMFR1_EL1); 1408 read_sysreg_case(SYS_ID_AA64MMFR2_EL1); 1409 read_sysreg_case(SYS_ID_AA64MMFR3_EL1); 1410 read_sysreg_case(SYS_ID_AA64ISAR0_EL1); 1411 read_sysreg_case(SYS_ID_AA64ISAR1_EL1); 1412 read_sysreg_case(SYS_ID_AA64ISAR2_EL1); 1413 1414 read_sysreg_case(SYS_CNTFRQ_EL0); 1415 read_sysreg_case(SYS_CTR_EL0); 1416 read_sysreg_case(SYS_DCZID_EL0); 1417 1418 default: 1419 BUG(); 1420 return 0; 1421 } 1422 1423 regp = get_arm64_ftr_reg(sys_id); 1424 if (regp) { 1425 val &= ~regp->override->mask; 1426 val |= (regp->override->val & regp->override->mask); 1427 } 1428 1429 return val; 1430 } 1431 1432 #include <linux/irqchip/arm-gic-v3.h> 1433 1434 static bool 1435 has_always(const struct arm64_cpu_capabilities *entry, int scope) 1436 { 1437 return true; 1438 } 1439 1440 static bool 1441 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry) 1442 { 1443 int val = cpuid_feature_extract_field_width(reg, entry->field_pos, 1444 entry->field_width, 1445 entry->sign); 1446 1447 return val >= entry->min_field_value; 1448 } 1449 1450 static u64 1451 read_scoped_sysreg(const struct arm64_cpu_capabilities *entry, int scope) 1452 { 1453 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible()); 1454 if (scope == SCOPE_SYSTEM) 1455 return read_sanitised_ftr_reg(entry->sys_reg); 1456 else 1457 return __read_sysreg_by_encoding(entry->sys_reg); 1458 } 1459 1460 static bool 1461 has_user_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope) 1462 { 1463 int mask; 1464 struct arm64_ftr_reg *regp; 1465 u64 val = read_scoped_sysreg(entry, scope); 1466 1467 regp = get_arm64_ftr_reg(entry->sys_reg); 1468 if (!regp) 1469 return false; 1470 1471 mask = cpuid_feature_extract_unsigned_field_width(regp->user_mask, 1472 entry->field_pos, 1473 entry->field_width); 1474 if (!mask) 1475 return false; 1476 1477 return feature_matches(val, entry); 1478 } 1479 1480 static bool 1481 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope) 1482 { 1483 u64 val = read_scoped_sysreg(entry, scope); 1484 return feature_matches(val, entry); 1485 } 1486 1487 const struct cpumask *system_32bit_el0_cpumask(void) 1488 { 1489 if (!system_supports_32bit_el0()) 1490 return cpu_none_mask; 1491 1492 if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) 1493 return cpu_32bit_el0_mask; 1494 1495 return cpu_possible_mask; 1496 } 1497 1498 static int __init parse_32bit_el0_param(char *str) 1499 { 1500 allow_mismatched_32bit_el0 = true; 1501 return 0; 1502 } 1503 early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param); 1504 1505 static ssize_t aarch32_el0_show(struct device *dev, 1506 struct device_attribute *attr, char *buf) 1507 { 1508 const struct cpumask *mask = system_32bit_el0_cpumask(); 1509 1510 return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask)); 1511 } 1512 static const DEVICE_ATTR_RO(aarch32_el0); 1513 1514 static int __init aarch32_el0_sysfs_init(void) 1515 { 1516 struct device *dev_root; 1517 int ret = 0; 1518 1519 if (!allow_mismatched_32bit_el0) 1520 return 0; 1521 1522 dev_root = bus_get_dev_root(&cpu_subsys); 1523 if (dev_root) { 1524 ret = device_create_file(dev_root, &dev_attr_aarch32_el0); 1525 put_device(dev_root); 1526 } 1527 return ret; 1528 } 1529 device_initcall(aarch32_el0_sysfs_init); 1530 1531 static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope) 1532 { 1533 if (!has_cpuid_feature(entry, scope)) 1534 return allow_mismatched_32bit_el0; 1535 1536 if (scope == SCOPE_SYSTEM) 1537 pr_info("detected: 32-bit EL0 Support\n"); 1538 1539 return true; 1540 } 1541 1542 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope) 1543 { 1544 bool has_sre; 1545 1546 if (!has_cpuid_feature(entry, scope)) 1547 return false; 1548 1549 has_sre = gic_enable_sre(); 1550 if (!has_sre) 1551 pr_warn_once("%s present but disabled by higher exception level\n", 1552 entry->desc); 1553 1554 return has_sre; 1555 } 1556 1557 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused) 1558 { 1559 u32 midr = read_cpuid_id(); 1560 1561 /* Cavium ThunderX pass 1.x and 2.x */ 1562 return midr_is_cpu_model_range(midr, MIDR_THUNDERX, 1563 MIDR_CPU_VAR_REV(0, 0), 1564 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK)); 1565 } 1566 1567 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused) 1568 { 1569 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); 1570 1571 return cpuid_feature_extract_signed_field(pfr0, 1572 ID_AA64PFR0_EL1_FP_SHIFT) < 0; 1573 } 1574 1575 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry, 1576 int scope) 1577 { 1578 u64 ctr; 1579 1580 if (scope == SCOPE_SYSTEM) 1581 ctr = arm64_ftr_reg_ctrel0.sys_val; 1582 else 1583 ctr = read_cpuid_effective_cachetype(); 1584 1585 return ctr & BIT(CTR_EL0_IDC_SHIFT); 1586 } 1587 1588 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused) 1589 { 1590 /* 1591 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively 1592 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses 1593 * to the CTR_EL0 on this CPU and emulate it with the real/safe 1594 * value. 1595 */ 1596 if (!(read_cpuid_cachetype() & BIT(CTR_EL0_IDC_SHIFT))) 1597 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0); 1598 } 1599 1600 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry, 1601 int scope) 1602 { 1603 u64 ctr; 1604 1605 if (scope == SCOPE_SYSTEM) 1606 ctr = arm64_ftr_reg_ctrel0.sys_val; 1607 else 1608 ctr = read_cpuid_cachetype(); 1609 1610 return ctr & BIT(CTR_EL0_DIC_SHIFT); 1611 } 1612 1613 static bool __maybe_unused 1614 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope) 1615 { 1616 /* 1617 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP 1618 * may share TLB entries with a CPU stuck in the crashed 1619 * kernel. 1620 */ 1621 if (is_kdump_kernel()) 1622 return false; 1623 1624 if (cpus_have_const_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP)) 1625 return false; 1626 1627 return has_cpuid_feature(entry, scope); 1628 } 1629 1630 /* 1631 * This check is triggered during the early boot before the cpufeature 1632 * is initialised. Checking the status on the local CPU allows the boot 1633 * CPU to detect the need for non-global mappings and thus avoiding a 1634 * pagetable re-write after all the CPUs are booted. This check will be 1635 * anyway run on individual CPUs, allowing us to get the consistent 1636 * state once the SMP CPUs are up and thus make the switch to non-global 1637 * mappings if required. 1638 */ 1639 bool kaslr_requires_kpti(void) 1640 { 1641 if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE)) 1642 return false; 1643 1644 /* 1645 * E0PD does a similar job to KPTI so can be used instead 1646 * where available. 1647 */ 1648 if (IS_ENABLED(CONFIG_ARM64_E0PD)) { 1649 u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1); 1650 if (cpuid_feature_extract_unsigned_field(mmfr2, 1651 ID_AA64MMFR2_EL1_E0PD_SHIFT)) 1652 return false; 1653 } 1654 1655 /* 1656 * Systems affected by Cavium erratum 24756 are incompatible 1657 * with KPTI. 1658 */ 1659 if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) { 1660 extern const struct midr_range cavium_erratum_27456_cpus[]; 1661 1662 if (is_midr_in_range_list(read_cpuid_id(), 1663 cavium_erratum_27456_cpus)) 1664 return false; 1665 } 1666 1667 return kaslr_enabled(); 1668 } 1669 1670 static bool __meltdown_safe = true; 1671 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */ 1672 1673 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry, 1674 int scope) 1675 { 1676 /* List of CPUs that are not vulnerable and don't need KPTI */ 1677 static const struct midr_range kpti_safe_list[] = { 1678 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2), 1679 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN), 1680 MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53), 1681 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35), 1682 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53), 1683 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55), 1684 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57), 1685 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72), 1686 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73), 1687 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110), 1688 MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL), 1689 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD), 1690 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER), 1691 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER), 1692 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER), 1693 { /* sentinel */ } 1694 }; 1695 char const *str = "kpti command line option"; 1696 bool meltdown_safe; 1697 1698 meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list); 1699 1700 /* Defer to CPU feature registers */ 1701 if (has_cpuid_feature(entry, scope)) 1702 meltdown_safe = true; 1703 1704 if (!meltdown_safe) 1705 __meltdown_safe = false; 1706 1707 /* 1708 * For reasons that aren't entirely clear, enabling KPTI on Cavium 1709 * ThunderX leads to apparent I-cache corruption of kernel text, which 1710 * ends as well as you might imagine. Don't even try. We cannot rely 1711 * on the cpus_have_*cap() helpers here to detect the CPU erratum 1712 * because cpucap detection order may change. However, since we know 1713 * affected CPUs are always in a homogeneous configuration, it is 1714 * safe to rely on this_cpu_has_cap() here. 1715 */ 1716 if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) { 1717 str = "ARM64_WORKAROUND_CAVIUM_27456"; 1718 __kpti_forced = -1; 1719 } 1720 1721 /* Useful for KASLR robustness */ 1722 if (kaslr_requires_kpti()) { 1723 if (!__kpti_forced) { 1724 str = "KASLR"; 1725 __kpti_forced = 1; 1726 } 1727 } 1728 1729 if (cpu_mitigations_off() && !__kpti_forced) { 1730 str = "mitigations=off"; 1731 __kpti_forced = -1; 1732 } 1733 1734 if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) { 1735 pr_info_once("kernel page table isolation disabled by kernel configuration\n"); 1736 return false; 1737 } 1738 1739 /* Forced? */ 1740 if (__kpti_forced) { 1741 pr_info_once("kernel page table isolation forced %s by %s\n", 1742 __kpti_forced > 0 ? "ON" : "OFF", str); 1743 return __kpti_forced > 0; 1744 } 1745 1746 return !meltdown_safe; 1747 } 1748 1749 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0 1750 #define KPTI_NG_TEMP_VA (-(1UL << PMD_SHIFT)) 1751 1752 extern 1753 void create_kpti_ng_temp_pgd(pgd_t *pgdir, phys_addr_t phys, unsigned long virt, 1754 phys_addr_t size, pgprot_t prot, 1755 phys_addr_t (*pgtable_alloc)(int), int flags); 1756 1757 static phys_addr_t kpti_ng_temp_alloc; 1758 1759 static phys_addr_t kpti_ng_pgd_alloc(int shift) 1760 { 1761 kpti_ng_temp_alloc -= PAGE_SIZE; 1762 return kpti_ng_temp_alloc; 1763 } 1764 1765 static void 1766 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused) 1767 { 1768 typedef void (kpti_remap_fn)(int, int, phys_addr_t, unsigned long); 1769 extern kpti_remap_fn idmap_kpti_install_ng_mappings; 1770 kpti_remap_fn *remap_fn; 1771 1772 int cpu = smp_processor_id(); 1773 int levels = CONFIG_PGTABLE_LEVELS; 1774 int order = order_base_2(levels); 1775 u64 kpti_ng_temp_pgd_pa = 0; 1776 pgd_t *kpti_ng_temp_pgd; 1777 u64 alloc = 0; 1778 1779 if (__this_cpu_read(this_cpu_vector) == vectors) { 1780 const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI); 1781 1782 __this_cpu_write(this_cpu_vector, v); 1783 } 1784 1785 /* 1786 * We don't need to rewrite the page-tables if either we've done 1787 * it already or we have KASLR enabled and therefore have not 1788 * created any global mappings at all. 1789 */ 1790 if (arm64_use_ng_mappings) 1791 return; 1792 1793 remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings); 1794 1795 if (!cpu) { 1796 alloc = __get_free_pages(GFP_ATOMIC | __GFP_ZERO, order); 1797 kpti_ng_temp_pgd = (pgd_t *)(alloc + (levels - 1) * PAGE_SIZE); 1798 kpti_ng_temp_alloc = kpti_ng_temp_pgd_pa = __pa(kpti_ng_temp_pgd); 1799 1800 // 1801 // Create a minimal page table hierarchy that permits us to map 1802 // the swapper page tables temporarily as we traverse them. 1803 // 1804 // The physical pages are laid out as follows: 1805 // 1806 // +--------+-/-------+-/------ +-\\--------+ 1807 // : PTE[] : | PMD[] : | PUD[] : || PGD[] : 1808 // +--------+-\-------+-\------ +-//--------+ 1809 // ^ 1810 // The first page is mapped into this hierarchy at a PMD_SHIFT 1811 // aligned virtual address, so that we can manipulate the PTE 1812 // level entries while the mapping is active. The first entry 1813 // covers the PTE[] page itself, the remaining entries are free 1814 // to be used as a ad-hoc fixmap. 1815 // 1816 create_kpti_ng_temp_pgd(kpti_ng_temp_pgd, __pa(alloc), 1817 KPTI_NG_TEMP_VA, PAGE_SIZE, PAGE_KERNEL, 1818 kpti_ng_pgd_alloc, 0); 1819 } 1820 1821 cpu_install_idmap(); 1822 remap_fn(cpu, num_online_cpus(), kpti_ng_temp_pgd_pa, KPTI_NG_TEMP_VA); 1823 cpu_uninstall_idmap(); 1824 1825 if (!cpu) { 1826 free_pages(alloc, order); 1827 arm64_use_ng_mappings = true; 1828 } 1829 } 1830 #else 1831 static void 1832 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused) 1833 { 1834 } 1835 #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */ 1836 1837 static int __init parse_kpti(char *str) 1838 { 1839 bool enabled; 1840 int ret = kstrtobool(str, &enabled); 1841 1842 if (ret) 1843 return ret; 1844 1845 __kpti_forced = enabled ? 1 : -1; 1846 return 0; 1847 } 1848 early_param("kpti", parse_kpti); 1849 1850 #ifdef CONFIG_ARM64_HW_AFDBM 1851 static inline void __cpu_enable_hw_dbm(void) 1852 { 1853 u64 tcr = read_sysreg(tcr_el1) | TCR_HD; 1854 1855 write_sysreg(tcr, tcr_el1); 1856 isb(); 1857 local_flush_tlb_all(); 1858 } 1859 1860 static bool cpu_has_broken_dbm(void) 1861 { 1862 /* List of CPUs which have broken DBM support. */ 1863 static const struct midr_range cpus[] = { 1864 #ifdef CONFIG_ARM64_ERRATUM_1024718 1865 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55), 1866 /* Kryo4xx Silver (rdpe => r1p0) */ 1867 MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe), 1868 #endif 1869 #ifdef CONFIG_ARM64_ERRATUM_2051678 1870 MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2), 1871 #endif 1872 {}, 1873 }; 1874 1875 return is_midr_in_range_list(read_cpuid_id(), cpus); 1876 } 1877 1878 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap) 1879 { 1880 return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) && 1881 !cpu_has_broken_dbm(); 1882 } 1883 1884 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap) 1885 { 1886 if (cpu_can_use_dbm(cap)) 1887 __cpu_enable_hw_dbm(); 1888 } 1889 1890 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap, 1891 int __unused) 1892 { 1893 static bool detected = false; 1894 /* 1895 * DBM is a non-conflicting feature. i.e, the kernel can safely 1896 * run a mix of CPUs with and without the feature. So, we 1897 * unconditionally enable the capability to allow any late CPU 1898 * to use the feature. We only enable the control bits on the 1899 * CPU, if it actually supports. 1900 * 1901 * We have to make sure we print the "feature" detection only 1902 * when at least one CPU actually uses it. So check if this CPU 1903 * can actually use it and print the message exactly once. 1904 * 1905 * This is safe as all CPUs (including secondary CPUs - due to the 1906 * LOCAL_CPU scope - and the hotplugged CPUs - via verification) 1907 * goes through the "matches" check exactly once. Also if a CPU 1908 * matches the criteria, it is guaranteed that the CPU will turn 1909 * the DBM on, as the capability is unconditionally enabled. 1910 */ 1911 if (!detected && cpu_can_use_dbm(cap)) { 1912 detected = true; 1913 pr_info("detected: Hardware dirty bit management\n"); 1914 } 1915 1916 return true; 1917 } 1918 1919 #endif 1920 1921 #ifdef CONFIG_ARM64_AMU_EXTN 1922 1923 /* 1924 * The "amu_cpus" cpumask only signals that the CPU implementation for the 1925 * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide 1926 * information regarding all the events that it supports. When a CPU bit is 1927 * set in the cpumask, the user of this feature can only rely on the presence 1928 * of the 4 fixed counters for that CPU. But this does not guarantee that the 1929 * counters are enabled or access to these counters is enabled by code 1930 * executed at higher exception levels (firmware). 1931 */ 1932 static struct cpumask amu_cpus __read_mostly; 1933 1934 bool cpu_has_amu_feat(int cpu) 1935 { 1936 return cpumask_test_cpu(cpu, &amu_cpus); 1937 } 1938 1939 int get_cpu_with_amu_feat(void) 1940 { 1941 return cpumask_any(&amu_cpus); 1942 } 1943 1944 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap) 1945 { 1946 if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) { 1947 pr_info("detected CPU%d: Activity Monitors Unit (AMU)\n", 1948 smp_processor_id()); 1949 cpumask_set_cpu(smp_processor_id(), &amu_cpus); 1950 1951 /* 0 reference values signal broken/disabled counters */ 1952 if (!this_cpu_has_cap(ARM64_WORKAROUND_2457168)) 1953 update_freq_counters_refs(); 1954 } 1955 } 1956 1957 static bool has_amu(const struct arm64_cpu_capabilities *cap, 1958 int __unused) 1959 { 1960 /* 1961 * The AMU extension is a non-conflicting feature: the kernel can 1962 * safely run a mix of CPUs with and without support for the 1963 * activity monitors extension. Therefore, unconditionally enable 1964 * the capability to allow any late CPU to use the feature. 1965 * 1966 * With this feature unconditionally enabled, the cpu_enable 1967 * function will be called for all CPUs that match the criteria, 1968 * including secondary and hotplugged, marking this feature as 1969 * present on that respective CPU. The enable function will also 1970 * print a detection message. 1971 */ 1972 1973 return true; 1974 } 1975 #else 1976 int get_cpu_with_amu_feat(void) 1977 { 1978 return nr_cpu_ids; 1979 } 1980 #endif 1981 1982 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused) 1983 { 1984 return is_kernel_in_hyp_mode(); 1985 } 1986 1987 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused) 1988 { 1989 /* 1990 * Copy register values that aren't redirected by hardware. 1991 * 1992 * Before code patching, we only set tpidr_el1, all CPUs need to copy 1993 * this value to tpidr_el2 before we patch the code. Once we've done 1994 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to 1995 * do anything here. 1996 */ 1997 if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN)) 1998 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2); 1999 } 2000 2001 static bool has_nested_virt_support(const struct arm64_cpu_capabilities *cap, 2002 int scope) 2003 { 2004 if (kvm_get_mode() != KVM_MODE_NV) 2005 return false; 2006 2007 if (!has_cpuid_feature(cap, scope)) { 2008 pr_warn("unavailable: %s\n", cap->desc); 2009 return false; 2010 } 2011 2012 return true; 2013 } 2014 2015 static bool hvhe_possible(const struct arm64_cpu_capabilities *entry, 2016 int __unused) 2017 { 2018 u64 val; 2019 2020 val = read_sysreg(id_aa64mmfr1_el1); 2021 if (!cpuid_feature_extract_unsigned_field(val, ID_AA64MMFR1_EL1_VH_SHIFT)) 2022 return false; 2023 2024 val = arm64_sw_feature_override.val & arm64_sw_feature_override.mask; 2025 return cpuid_feature_extract_unsigned_field(val, ARM64_SW_FEATURE_OVERRIDE_HVHE); 2026 } 2027 2028 #ifdef CONFIG_ARM64_PAN 2029 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused) 2030 { 2031 /* 2032 * We modify PSTATE. This won't work from irq context as the PSTATE 2033 * is discarded once we return from the exception. 2034 */ 2035 WARN_ON_ONCE(in_interrupt()); 2036 2037 sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0); 2038 set_pstate_pan(1); 2039 } 2040 #endif /* CONFIG_ARM64_PAN */ 2041 2042 #ifdef CONFIG_ARM64_RAS_EXTN 2043 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused) 2044 { 2045 /* Firmware may have left a deferred SError in this register. */ 2046 write_sysreg_s(0, SYS_DISR_EL1); 2047 } 2048 #endif /* CONFIG_ARM64_RAS_EXTN */ 2049 2050 #ifdef CONFIG_ARM64_PTR_AUTH 2051 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope) 2052 { 2053 int boot_val, sec_val; 2054 2055 /* We don't expect to be called with SCOPE_SYSTEM */ 2056 WARN_ON(scope == SCOPE_SYSTEM); 2057 /* 2058 * The ptr-auth feature levels are not intercompatible with lower 2059 * levels. Hence we must match ptr-auth feature level of the secondary 2060 * CPUs with that of the boot CPU. The level of boot cpu is fetched 2061 * from the sanitised register whereas direct register read is done for 2062 * the secondary CPUs. 2063 * The sanitised feature state is guaranteed to match that of the 2064 * boot CPU as a mismatched secondary CPU is parked before it gets 2065 * a chance to update the state, with the capability. 2066 */ 2067 boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg), 2068 entry->field_pos, entry->sign); 2069 if (scope & SCOPE_BOOT_CPU) 2070 return boot_val >= entry->min_field_value; 2071 /* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */ 2072 sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg), 2073 entry->field_pos, entry->sign); 2074 return (sec_val >= entry->min_field_value) && (sec_val == boot_val); 2075 } 2076 2077 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry, 2078 int scope) 2079 { 2080 bool api = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope); 2081 bool apa = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope); 2082 bool apa3 = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope); 2083 2084 return apa || apa3 || api; 2085 } 2086 2087 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry, 2088 int __unused) 2089 { 2090 bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF); 2091 bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5); 2092 bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3); 2093 2094 return gpa || gpa3 || gpi; 2095 } 2096 #endif /* CONFIG_ARM64_PTR_AUTH */ 2097 2098 #ifdef CONFIG_ARM64_E0PD 2099 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap) 2100 { 2101 if (this_cpu_has_cap(ARM64_HAS_E0PD)) 2102 sysreg_clear_set(tcr_el1, 0, TCR_E0PD1); 2103 } 2104 #endif /* CONFIG_ARM64_E0PD */ 2105 2106 #ifdef CONFIG_ARM64_PSEUDO_NMI 2107 static bool enable_pseudo_nmi; 2108 2109 static int __init early_enable_pseudo_nmi(char *p) 2110 { 2111 return kstrtobool(p, &enable_pseudo_nmi); 2112 } 2113 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi); 2114 2115 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry, 2116 int scope) 2117 { 2118 /* 2119 * ARM64_HAS_GIC_CPUIF_SYSREGS has a lower index, and is a boot CPU 2120 * feature, so will be detected earlier. 2121 */ 2122 BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_MASKING <= ARM64_HAS_GIC_CPUIF_SYSREGS); 2123 if (!cpus_have_cap(ARM64_HAS_GIC_CPUIF_SYSREGS)) 2124 return false; 2125 2126 return enable_pseudo_nmi; 2127 } 2128 2129 static bool has_gic_prio_relaxed_sync(const struct arm64_cpu_capabilities *entry, 2130 int scope) 2131 { 2132 /* 2133 * If we're not using priority masking then we won't be poking PMR_EL1, 2134 * and there's no need to relax synchronization of writes to it, and 2135 * ICC_CTLR_EL1 might not be accessible and we must avoid reads from 2136 * that. 2137 * 2138 * ARM64_HAS_GIC_PRIO_MASKING has a lower index, and is a boot CPU 2139 * feature, so will be detected earlier. 2140 */ 2141 BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_RELAXED_SYNC <= ARM64_HAS_GIC_PRIO_MASKING); 2142 if (!cpus_have_cap(ARM64_HAS_GIC_PRIO_MASKING)) 2143 return false; 2144 2145 /* 2146 * When Priority Mask Hint Enable (PMHE) == 0b0, PMR is not used as a 2147 * hint for interrupt distribution, a DSB is not necessary when 2148 * unmasking IRQs via PMR, and we can relax the barrier to a NOP. 2149 * 2150 * Linux itself doesn't use 1:N distribution, so has no need to 2151 * set PMHE. The only reason to have it set is if EL3 requires it 2152 * (and we can't change it). 2153 */ 2154 return (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK) == 0; 2155 } 2156 #endif 2157 2158 #ifdef CONFIG_ARM64_BTI 2159 static void bti_enable(const struct arm64_cpu_capabilities *__unused) 2160 { 2161 /* 2162 * Use of X16/X17 for tail-calls and trampolines that jump to 2163 * function entry points using BR is a requirement for 2164 * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI. 2165 * So, be strict and forbid other BRs using other registers to 2166 * jump onto a PACIxSP instruction: 2167 */ 2168 sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1); 2169 isb(); 2170 } 2171 #endif /* CONFIG_ARM64_BTI */ 2172 2173 #ifdef CONFIG_ARM64_MTE 2174 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap) 2175 { 2176 sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0); 2177 2178 mte_cpu_setup(); 2179 2180 /* 2181 * Clear the tags in the zero page. This needs to be done via the 2182 * linear map which has the Tagged attribute. 2183 */ 2184 if (try_page_mte_tagging(ZERO_PAGE(0))) { 2185 mte_clear_page_tags(lm_alias(empty_zero_page)); 2186 set_page_mte_tagged(ZERO_PAGE(0)); 2187 } 2188 2189 kasan_init_hw_tags_cpu(); 2190 } 2191 #endif /* CONFIG_ARM64_MTE */ 2192 2193 static void user_feature_fixup(void) 2194 { 2195 if (cpus_have_cap(ARM64_WORKAROUND_SPECULATIVE_SSBS)) { 2196 struct arm64_ftr_reg *regp; 2197 2198 regp = get_arm64_ftr_reg(SYS_ID_AA64PFR1_EL1); 2199 if (regp) 2200 regp->user_mask &= ~ID_AA64PFR1_EL1_SSBS_MASK; 2201 } 2202 } 2203 2204 static void elf_hwcap_fixup(void) 2205 { 2206 #ifdef CONFIG_ARM64_ERRATUM_1742098 2207 if (cpus_have_const_cap(ARM64_WORKAROUND_1742098)) 2208 compat_elf_hwcap2 &= ~COMPAT_HWCAP2_AES; 2209 #endif /* ARM64_ERRATUM_1742098 */ 2210 } 2211 2212 #ifdef CONFIG_KVM 2213 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused) 2214 { 2215 return kvm_get_mode() == KVM_MODE_PROTECTED; 2216 } 2217 #endif /* CONFIG_KVM */ 2218 2219 static void cpu_trap_el0_impdef(const struct arm64_cpu_capabilities *__unused) 2220 { 2221 sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_TIDCP); 2222 } 2223 2224 static void cpu_enable_dit(const struct arm64_cpu_capabilities *__unused) 2225 { 2226 set_pstate_dit(1); 2227 } 2228 2229 static void cpu_enable_mops(const struct arm64_cpu_capabilities *__unused) 2230 { 2231 sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_MSCEn); 2232 } 2233 2234 /* Internal helper functions to match cpu capability type */ 2235 static bool 2236 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap) 2237 { 2238 return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU); 2239 } 2240 2241 static bool 2242 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap) 2243 { 2244 return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU); 2245 } 2246 2247 static bool 2248 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap) 2249 { 2250 return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT); 2251 } 2252 2253 static const struct arm64_cpu_capabilities arm64_features[] = { 2254 { 2255 .capability = ARM64_ALWAYS_BOOT, 2256 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE, 2257 .matches = has_always, 2258 }, 2259 { 2260 .capability = ARM64_ALWAYS_SYSTEM, 2261 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2262 .matches = has_always, 2263 }, 2264 { 2265 .desc = "GIC system register CPU interface", 2266 .capability = ARM64_HAS_GIC_CPUIF_SYSREGS, 2267 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, 2268 .matches = has_useable_gicv3_cpuif, 2269 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, GIC, IMP) 2270 }, 2271 { 2272 .desc = "Enhanced Counter Virtualization", 2273 .capability = ARM64_HAS_ECV, 2274 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2275 .matches = has_cpuid_feature, 2276 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, IMP) 2277 }, 2278 { 2279 .desc = "Enhanced Counter Virtualization (CNTPOFF)", 2280 .capability = ARM64_HAS_ECV_CNTPOFF, 2281 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2282 .matches = has_cpuid_feature, 2283 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, CNTPOFF) 2284 }, 2285 #ifdef CONFIG_ARM64_PAN 2286 { 2287 .desc = "Privileged Access Never", 2288 .capability = ARM64_HAS_PAN, 2289 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2290 .matches = has_cpuid_feature, 2291 .cpu_enable = cpu_enable_pan, 2292 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, IMP) 2293 }, 2294 #endif /* CONFIG_ARM64_PAN */ 2295 #ifdef CONFIG_ARM64_EPAN 2296 { 2297 .desc = "Enhanced Privileged Access Never", 2298 .capability = ARM64_HAS_EPAN, 2299 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2300 .matches = has_cpuid_feature, 2301 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, PAN3) 2302 }, 2303 #endif /* CONFIG_ARM64_EPAN */ 2304 #ifdef CONFIG_ARM64_LSE_ATOMICS 2305 { 2306 .desc = "LSE atomic instructions", 2307 .capability = ARM64_HAS_LSE_ATOMICS, 2308 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2309 .matches = has_cpuid_feature, 2310 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, ATOMIC, IMP) 2311 }, 2312 #endif /* CONFIG_ARM64_LSE_ATOMICS */ 2313 { 2314 .desc = "Software prefetching using PRFM", 2315 .capability = ARM64_HAS_NO_HW_PREFETCH, 2316 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE, 2317 .matches = has_no_hw_prefetch, 2318 }, 2319 { 2320 .desc = "Virtualization Host Extensions", 2321 .capability = ARM64_HAS_VIRT_HOST_EXTN, 2322 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, 2323 .matches = runs_at_el2, 2324 .cpu_enable = cpu_copy_el2regs, 2325 }, 2326 { 2327 .desc = "Nested Virtualization Support", 2328 .capability = ARM64_HAS_NESTED_VIRT, 2329 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2330 .matches = has_nested_virt_support, 2331 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, NV, IMP) 2332 }, 2333 { 2334 .capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE, 2335 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2336 .matches = has_32bit_el0, 2337 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL0, AARCH32) 2338 }, 2339 #ifdef CONFIG_KVM 2340 { 2341 .desc = "32-bit EL1 Support", 2342 .capability = ARM64_HAS_32BIT_EL1, 2343 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2344 .matches = has_cpuid_feature, 2345 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL1, AARCH32) 2346 }, 2347 { 2348 .desc = "Protected KVM", 2349 .capability = ARM64_KVM_PROTECTED_MODE, 2350 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2351 .matches = is_kvm_protected_mode, 2352 }, 2353 { 2354 .desc = "HCRX_EL2 register", 2355 .capability = ARM64_HAS_HCX, 2356 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, 2357 .matches = has_cpuid_feature, 2358 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HCX, IMP) 2359 }, 2360 #endif 2361 { 2362 .desc = "Kernel page table isolation (KPTI)", 2363 .capability = ARM64_UNMAP_KERNEL_AT_EL0, 2364 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE, 2365 .cpu_enable = kpti_install_ng_mappings, 2366 .matches = unmap_kernel_at_el0, 2367 /* 2368 * The ID feature fields below are used to indicate that 2369 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for 2370 * more details. 2371 */ 2372 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, CSV3, IMP) 2373 }, 2374 { 2375 /* FP/SIMD is not implemented */ 2376 .capability = ARM64_HAS_NO_FPSIMD, 2377 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE, 2378 .min_field_value = 0, 2379 .matches = has_no_fpsimd, 2380 }, 2381 #ifdef CONFIG_ARM64_PMEM 2382 { 2383 .desc = "Data cache clean to Point of Persistence", 2384 .capability = ARM64_HAS_DCPOP, 2385 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2386 .matches = has_cpuid_feature, 2387 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, IMP) 2388 }, 2389 { 2390 .desc = "Data cache clean to Point of Deep Persistence", 2391 .capability = ARM64_HAS_DCPODP, 2392 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2393 .matches = has_cpuid_feature, 2394 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, DPB2) 2395 }, 2396 #endif 2397 #ifdef CONFIG_ARM64_SVE 2398 { 2399 .desc = "Scalable Vector Extension", 2400 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2401 .capability = ARM64_SVE, 2402 .cpu_enable = sve_kernel_enable, 2403 .matches = has_cpuid_feature, 2404 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, SVE, IMP) 2405 }, 2406 #endif /* CONFIG_ARM64_SVE */ 2407 #ifdef CONFIG_ARM64_RAS_EXTN 2408 { 2409 .desc = "RAS Extension Support", 2410 .capability = ARM64_HAS_RAS_EXTN, 2411 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2412 .matches = has_cpuid_feature, 2413 .cpu_enable = cpu_clear_disr, 2414 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, IMP) 2415 }, 2416 #endif /* CONFIG_ARM64_RAS_EXTN */ 2417 #ifdef CONFIG_ARM64_AMU_EXTN 2418 { 2419 /* 2420 * The feature is enabled by default if CONFIG_ARM64_AMU_EXTN=y. 2421 * Therefore, don't provide .desc as we don't want the detection 2422 * message to be shown until at least one CPU is detected to 2423 * support the feature. 2424 */ 2425 .capability = ARM64_HAS_AMU_EXTN, 2426 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE, 2427 .matches = has_amu, 2428 .cpu_enable = cpu_amu_enable, 2429 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, AMU, IMP) 2430 }, 2431 #endif /* CONFIG_ARM64_AMU_EXTN */ 2432 { 2433 .desc = "Data cache clean to the PoU not required for I/D coherence", 2434 .capability = ARM64_HAS_CACHE_IDC, 2435 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2436 .matches = has_cache_idc, 2437 .cpu_enable = cpu_emulate_effective_ctr, 2438 }, 2439 { 2440 .desc = "Instruction cache invalidation not required for I/D coherence", 2441 .capability = ARM64_HAS_CACHE_DIC, 2442 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2443 .matches = has_cache_dic, 2444 }, 2445 { 2446 .desc = "Stage-2 Force Write-Back", 2447 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2448 .capability = ARM64_HAS_STAGE2_FWB, 2449 .matches = has_cpuid_feature, 2450 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, FWB, IMP) 2451 }, 2452 { 2453 .desc = "ARMv8.4 Translation Table Level", 2454 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2455 .capability = ARM64_HAS_ARMv8_4_TTL, 2456 .matches = has_cpuid_feature, 2457 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, TTL, IMP) 2458 }, 2459 { 2460 .desc = "TLB range maintenance instructions", 2461 .capability = ARM64_HAS_TLB_RANGE, 2462 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2463 .matches = has_cpuid_feature, 2464 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, TLB, RANGE) 2465 }, 2466 #ifdef CONFIG_ARM64_HW_AFDBM 2467 { 2468 /* 2469 * Since we turn this on always, we don't want the user to 2470 * think that the feature is available when it may not be. 2471 * So hide the description. 2472 * 2473 * .desc = "Hardware pagetable Dirty Bit Management", 2474 * 2475 */ 2476 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE, 2477 .capability = ARM64_HW_DBM, 2478 .matches = has_hw_dbm, 2479 .cpu_enable = cpu_enable_hw_dbm, 2480 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, DBM) 2481 }, 2482 #endif 2483 { 2484 .desc = "CRC32 instructions", 2485 .capability = ARM64_HAS_CRC32, 2486 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2487 .matches = has_cpuid_feature, 2488 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, CRC32, IMP) 2489 }, 2490 { 2491 .desc = "Speculative Store Bypassing Safe (SSBS)", 2492 .capability = ARM64_SSBS, 2493 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2494 .matches = has_cpuid_feature, 2495 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SSBS, IMP) 2496 }, 2497 #ifdef CONFIG_ARM64_CNP 2498 { 2499 .desc = "Common not Private translations", 2500 .capability = ARM64_HAS_CNP, 2501 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2502 .matches = has_useable_cnp, 2503 .cpu_enable = cpu_enable_cnp, 2504 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, CnP, IMP) 2505 }, 2506 #endif 2507 { 2508 .desc = "Speculation barrier (SB)", 2509 .capability = ARM64_HAS_SB, 2510 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2511 .matches = has_cpuid_feature, 2512 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, SB, IMP) 2513 }, 2514 #ifdef CONFIG_ARM64_PTR_AUTH 2515 { 2516 .desc = "Address authentication (architected QARMA5 algorithm)", 2517 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5, 2518 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE, 2519 .matches = has_address_auth_cpucap, 2520 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, APA, PAuth) 2521 }, 2522 { 2523 .desc = "Address authentication (architected QARMA3 algorithm)", 2524 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3, 2525 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE, 2526 .matches = has_address_auth_cpucap, 2527 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, APA3, PAuth) 2528 }, 2529 { 2530 .desc = "Address authentication (IMP DEF algorithm)", 2531 .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF, 2532 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE, 2533 .matches = has_address_auth_cpucap, 2534 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, API, PAuth) 2535 }, 2536 { 2537 .capability = ARM64_HAS_ADDRESS_AUTH, 2538 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE, 2539 .matches = has_address_auth_metacap, 2540 }, 2541 { 2542 .desc = "Generic authentication (architected QARMA5 algorithm)", 2543 .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5, 2544 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2545 .matches = has_cpuid_feature, 2546 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPA, IMP) 2547 }, 2548 { 2549 .desc = "Generic authentication (architected QARMA3 algorithm)", 2550 .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3, 2551 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2552 .matches = has_cpuid_feature, 2553 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, GPA3, IMP) 2554 }, 2555 { 2556 .desc = "Generic authentication (IMP DEF algorithm)", 2557 .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF, 2558 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2559 .matches = has_cpuid_feature, 2560 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPI, IMP) 2561 }, 2562 { 2563 .capability = ARM64_HAS_GENERIC_AUTH, 2564 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2565 .matches = has_generic_auth, 2566 }, 2567 #endif /* CONFIG_ARM64_PTR_AUTH */ 2568 #ifdef CONFIG_ARM64_PSEUDO_NMI 2569 { 2570 /* 2571 * Depends on having GICv3 2572 */ 2573 .desc = "IRQ priority masking", 2574 .capability = ARM64_HAS_GIC_PRIO_MASKING, 2575 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, 2576 .matches = can_use_gic_priorities, 2577 }, 2578 { 2579 /* 2580 * Depends on ARM64_HAS_GIC_PRIO_MASKING 2581 */ 2582 .capability = ARM64_HAS_GIC_PRIO_RELAXED_SYNC, 2583 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, 2584 .matches = has_gic_prio_relaxed_sync, 2585 }, 2586 #endif 2587 #ifdef CONFIG_ARM64_E0PD 2588 { 2589 .desc = "E0PD", 2590 .capability = ARM64_HAS_E0PD, 2591 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2592 .cpu_enable = cpu_enable_e0pd, 2593 .matches = has_cpuid_feature, 2594 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, E0PD, IMP) 2595 }, 2596 #endif 2597 { 2598 .desc = "Random Number Generator", 2599 .capability = ARM64_HAS_RNG, 2600 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2601 .matches = has_cpuid_feature, 2602 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, RNDR, IMP) 2603 }, 2604 #ifdef CONFIG_ARM64_BTI 2605 { 2606 .desc = "Branch Target Identification", 2607 .capability = ARM64_BTI, 2608 #ifdef CONFIG_ARM64_BTI_KERNEL 2609 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, 2610 #else 2611 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2612 #endif 2613 .matches = has_cpuid_feature, 2614 .cpu_enable = bti_enable, 2615 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, BT, IMP) 2616 }, 2617 #endif 2618 #ifdef CONFIG_ARM64_MTE 2619 { 2620 .desc = "Memory Tagging Extension", 2621 .capability = ARM64_MTE, 2622 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, 2623 .matches = has_cpuid_feature, 2624 .cpu_enable = cpu_enable_mte, 2625 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE2) 2626 }, 2627 { 2628 .desc = "Asymmetric MTE Tag Check Fault", 2629 .capability = ARM64_MTE_ASYMM, 2630 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE, 2631 .matches = has_cpuid_feature, 2632 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE3) 2633 }, 2634 #endif /* CONFIG_ARM64_MTE */ 2635 { 2636 .desc = "RCpc load-acquire (LDAPR)", 2637 .capability = ARM64_HAS_LDAPR, 2638 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2639 .matches = has_cpuid_feature, 2640 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, LRCPC, IMP) 2641 }, 2642 { 2643 .desc = "Fine Grained Traps", 2644 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2645 .capability = ARM64_HAS_FGT, 2646 .matches = has_cpuid_feature, 2647 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, FGT, IMP) 2648 }, 2649 #ifdef CONFIG_ARM64_SME 2650 { 2651 .desc = "Scalable Matrix Extension", 2652 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2653 .capability = ARM64_SME, 2654 .matches = has_cpuid_feature, 2655 .cpu_enable = sme_kernel_enable, 2656 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, IMP) 2657 }, 2658 /* FA64 should be sorted after the base SME capability */ 2659 { 2660 .desc = "FA64", 2661 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2662 .capability = ARM64_SME_FA64, 2663 .matches = has_cpuid_feature, 2664 .cpu_enable = fa64_kernel_enable, 2665 ARM64_CPUID_FIELDS(ID_AA64SMFR0_EL1, FA64, IMP) 2666 }, 2667 { 2668 .desc = "SME2", 2669 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2670 .capability = ARM64_SME2, 2671 .matches = has_cpuid_feature, 2672 .cpu_enable = sme2_kernel_enable, 2673 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, SME2) 2674 }, 2675 #endif /* CONFIG_ARM64_SME */ 2676 { 2677 .desc = "WFx with timeout", 2678 .capability = ARM64_HAS_WFXT, 2679 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2680 .matches = has_cpuid_feature, 2681 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, WFxT, IMP) 2682 }, 2683 { 2684 .desc = "Trap EL0 IMPLEMENTATION DEFINED functionality", 2685 .capability = ARM64_HAS_TIDCP1, 2686 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2687 .matches = has_cpuid_feature, 2688 .cpu_enable = cpu_trap_el0_impdef, 2689 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, TIDCP1, IMP) 2690 }, 2691 { 2692 .desc = "Data independent timing control (DIT)", 2693 .capability = ARM64_HAS_DIT, 2694 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2695 .matches = has_cpuid_feature, 2696 .cpu_enable = cpu_enable_dit, 2697 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, DIT, IMP) 2698 }, 2699 { 2700 .desc = "Memory Copy and Memory Set instructions", 2701 .capability = ARM64_HAS_MOPS, 2702 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2703 .matches = has_cpuid_feature, 2704 .cpu_enable = cpu_enable_mops, 2705 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, MOPS, IMP) 2706 }, 2707 { 2708 .capability = ARM64_HAS_TCR2, 2709 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2710 .matches = has_cpuid_feature, 2711 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, TCRX, IMP) 2712 }, 2713 { 2714 .desc = "Stage-1 Permission Indirection Extension (S1PIE)", 2715 .capability = ARM64_HAS_S1PIE, 2716 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE, 2717 .matches = has_cpuid_feature, 2718 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1PIE, IMP) 2719 }, 2720 { 2721 .desc = "VHE for hypervisor only", 2722 .capability = ARM64_KVM_HVHE, 2723 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2724 .matches = hvhe_possible, 2725 }, 2726 { 2727 .desc = "Enhanced Virtualization Traps", 2728 .capability = ARM64_HAS_EVT, 2729 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2730 .matches = has_cpuid_feature, 2731 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, EVT, IMP) 2732 }, 2733 {}, 2734 }; 2735 2736 #define HWCAP_CPUID_MATCH(reg, field, min_value) \ 2737 .matches = has_user_cpuid_feature, \ 2738 ARM64_CPUID_FIELDS(reg, field, min_value) 2739 2740 #define __HWCAP_CAP(name, cap_type, cap) \ 2741 .desc = name, \ 2742 .type = ARM64_CPUCAP_SYSTEM_FEATURE, \ 2743 .hwcap_type = cap_type, \ 2744 .hwcap = cap, \ 2745 2746 #define HWCAP_CAP(reg, field, min_value, cap_type, cap) \ 2747 { \ 2748 __HWCAP_CAP(#cap, cap_type, cap) \ 2749 HWCAP_CPUID_MATCH(reg, field, min_value) \ 2750 } 2751 2752 #define HWCAP_MULTI_CAP(list, cap_type, cap) \ 2753 { \ 2754 __HWCAP_CAP(#cap, cap_type, cap) \ 2755 .matches = cpucap_multi_entry_cap_matches, \ 2756 .match_list = list, \ 2757 } 2758 2759 #define HWCAP_CAP_MATCH(match, cap_type, cap) \ 2760 { \ 2761 __HWCAP_CAP(#cap, cap_type, cap) \ 2762 .matches = match, \ 2763 } 2764 2765 #ifdef CONFIG_ARM64_PTR_AUTH 2766 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = { 2767 { 2768 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, APA, PAuth) 2769 }, 2770 { 2771 HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, APA3, PAuth) 2772 }, 2773 { 2774 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, API, PAuth) 2775 }, 2776 {}, 2777 }; 2778 2779 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = { 2780 { 2781 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPA, IMP) 2782 }, 2783 { 2784 HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, GPA3, IMP) 2785 }, 2786 { 2787 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPI, IMP) 2788 }, 2789 {}, 2790 }; 2791 #endif 2792 2793 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = { 2794 HWCAP_CAP(ID_AA64ISAR0_EL1, AES, PMULL, CAP_HWCAP, KERNEL_HWCAP_PMULL), 2795 HWCAP_CAP(ID_AA64ISAR0_EL1, AES, AES, CAP_HWCAP, KERNEL_HWCAP_AES), 2796 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA1, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA1), 2797 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA256, CAP_HWCAP, KERNEL_HWCAP_SHA2), 2798 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA512, CAP_HWCAP, KERNEL_HWCAP_SHA512), 2799 HWCAP_CAP(ID_AA64ISAR0_EL1, CRC32, IMP, CAP_HWCAP, KERNEL_HWCAP_CRC32), 2800 HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, IMP, CAP_HWCAP, KERNEL_HWCAP_ATOMICS), 2801 HWCAP_CAP(ID_AA64ISAR0_EL1, RDM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM), 2802 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA3), 2803 HWCAP_CAP(ID_AA64ISAR0_EL1, SM3, IMP, CAP_HWCAP, KERNEL_HWCAP_SM3), 2804 HWCAP_CAP(ID_AA64ISAR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SM4), 2805 HWCAP_CAP(ID_AA64ISAR0_EL1, DP, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP), 2806 HWCAP_CAP(ID_AA64ISAR0_EL1, FHM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM), 2807 HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM, CAP_HWCAP, KERNEL_HWCAP_FLAGM), 2808 HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2), 2809 HWCAP_CAP(ID_AA64ISAR0_EL1, RNDR, IMP, CAP_HWCAP, KERNEL_HWCAP_RNG), 2810 HWCAP_CAP(ID_AA64PFR0_EL1, FP, IMP, CAP_HWCAP, KERNEL_HWCAP_FP), 2811 HWCAP_CAP(ID_AA64PFR0_EL1, FP, FP16, CAP_HWCAP, KERNEL_HWCAP_FPHP), 2812 HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMD), 2813 HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, FP16, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP), 2814 HWCAP_CAP(ID_AA64PFR0_EL1, DIT, IMP, CAP_HWCAP, KERNEL_HWCAP_DIT), 2815 HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, IMP, CAP_HWCAP, KERNEL_HWCAP_DCPOP), 2816 HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, DPB2, CAP_HWCAP, KERNEL_HWCAP_DCPODP), 2817 HWCAP_CAP(ID_AA64ISAR1_EL1, JSCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_JSCVT), 2818 HWCAP_CAP(ID_AA64ISAR1_EL1, FCMA, IMP, CAP_HWCAP, KERNEL_HWCAP_FCMA), 2819 HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, IMP, CAP_HWCAP, KERNEL_HWCAP_LRCPC), 2820 HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC), 2821 HWCAP_CAP(ID_AA64ISAR1_EL1, FRINTTS, IMP, CAP_HWCAP, KERNEL_HWCAP_FRINT), 2822 HWCAP_CAP(ID_AA64ISAR1_EL1, SB, IMP, CAP_HWCAP, KERNEL_HWCAP_SB), 2823 HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_BF16), 2824 HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_EBF16), 2825 HWCAP_CAP(ID_AA64ISAR1_EL1, DGH, IMP, CAP_HWCAP, KERNEL_HWCAP_DGH), 2826 HWCAP_CAP(ID_AA64ISAR1_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_I8MM), 2827 HWCAP_CAP(ID_AA64MMFR2_EL1, AT, IMP, CAP_HWCAP, KERNEL_HWCAP_USCAT), 2828 #ifdef CONFIG_ARM64_SVE 2829 HWCAP_CAP(ID_AA64PFR0_EL1, SVE, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE), 2830 HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SVE2p1, CAP_HWCAP, KERNEL_HWCAP_SVE2P1), 2831 HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2), 2832 HWCAP_CAP(ID_AA64ZFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEAES), 2833 HWCAP_CAP(ID_AA64ZFR0_EL1, AES, PMULL128, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL), 2834 HWCAP_CAP(ID_AA64ZFR0_EL1, BitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM), 2835 HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBF16), 2836 HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_SVE_EBF16), 2837 HWCAP_CAP(ID_AA64ZFR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESHA3), 2838 HWCAP_CAP(ID_AA64ZFR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESM4), 2839 HWCAP_CAP(ID_AA64ZFR0_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM), 2840 HWCAP_CAP(ID_AA64ZFR0_EL1, F32MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM), 2841 HWCAP_CAP(ID_AA64ZFR0_EL1, F64MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM), 2842 #endif 2843 HWCAP_CAP(ID_AA64PFR1_EL1, SSBS, SSBS2, CAP_HWCAP, KERNEL_HWCAP_SSBS), 2844 #ifdef CONFIG_ARM64_BTI 2845 HWCAP_CAP(ID_AA64PFR1_EL1, BT, IMP, CAP_HWCAP, KERNEL_HWCAP_BTI), 2846 #endif 2847 #ifdef CONFIG_ARM64_PTR_AUTH 2848 HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA), 2849 HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG), 2850 #endif 2851 #ifdef CONFIG_ARM64_MTE 2852 HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE2, CAP_HWCAP, KERNEL_HWCAP_MTE), 2853 HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE3, CAP_HWCAP, KERNEL_HWCAP_MTE3), 2854 #endif /* CONFIG_ARM64_MTE */ 2855 HWCAP_CAP(ID_AA64MMFR0_EL1, ECV, IMP, CAP_HWCAP, KERNEL_HWCAP_ECV), 2856 HWCAP_CAP(ID_AA64MMFR1_EL1, AFP, IMP, CAP_HWCAP, KERNEL_HWCAP_AFP), 2857 HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, IMP, CAP_HWCAP, KERNEL_HWCAP_CSSC), 2858 HWCAP_CAP(ID_AA64ISAR2_EL1, RPRFM, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRFM), 2859 HWCAP_CAP(ID_AA64ISAR2_EL1, RPRES, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRES), 2860 HWCAP_CAP(ID_AA64ISAR2_EL1, WFxT, IMP, CAP_HWCAP, KERNEL_HWCAP_WFXT), 2861 HWCAP_CAP(ID_AA64ISAR2_EL1, MOPS, IMP, CAP_HWCAP, KERNEL_HWCAP_MOPS), 2862 HWCAP_CAP(ID_AA64ISAR2_EL1, BC, IMP, CAP_HWCAP, KERNEL_HWCAP_HBC), 2863 #ifdef CONFIG_ARM64_SME 2864 HWCAP_CAP(ID_AA64PFR1_EL1, SME, IMP, CAP_HWCAP, KERNEL_HWCAP_SME), 2865 HWCAP_CAP(ID_AA64SMFR0_EL1, FA64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_FA64), 2866 HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2p1, CAP_HWCAP, KERNEL_HWCAP_SME2P1), 2867 HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2, CAP_HWCAP, KERNEL_HWCAP_SME2), 2868 HWCAP_CAP(ID_AA64SMFR0_EL1, I16I64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64), 2869 HWCAP_CAP(ID_AA64SMFR0_EL1, F64F64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64), 2870 HWCAP_CAP(ID_AA64SMFR0_EL1, I16I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I32), 2871 HWCAP_CAP(ID_AA64SMFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16B16), 2872 HWCAP_CAP(ID_AA64SMFR0_EL1, F16F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F16), 2873 HWCAP_CAP(ID_AA64SMFR0_EL1, I8I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32), 2874 HWCAP_CAP(ID_AA64SMFR0_EL1, F16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32), 2875 HWCAP_CAP(ID_AA64SMFR0_EL1, B16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32), 2876 HWCAP_CAP(ID_AA64SMFR0_EL1, BI32I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_BI32I32), 2877 HWCAP_CAP(ID_AA64SMFR0_EL1, F32F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32), 2878 #endif /* CONFIG_ARM64_SME */ 2879 {}, 2880 }; 2881 2882 #ifdef CONFIG_COMPAT 2883 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope) 2884 { 2885 /* 2886 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available, 2887 * in line with that of arm32 as in vfp_init(). We make sure that the 2888 * check is future proof, by making sure value is non-zero. 2889 */ 2890 u32 mvfr1; 2891 2892 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible()); 2893 if (scope == SCOPE_SYSTEM) 2894 mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1); 2895 else 2896 mvfr1 = read_sysreg_s(SYS_MVFR1_EL1); 2897 2898 return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDSP_SHIFT) && 2899 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDInt_SHIFT) && 2900 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDLS_SHIFT); 2901 } 2902 #endif 2903 2904 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = { 2905 #ifdef CONFIG_COMPAT 2906 HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON), 2907 HWCAP_CAP(MVFR1_EL1, SIMDFMAC, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4), 2908 /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */ 2909 HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP), 2910 HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3), 2911 HWCAP_CAP(MVFR1_EL1, FPHP, FP16, CAP_COMPAT_HWCAP, COMPAT_HWCAP_FPHP), 2912 HWCAP_CAP(MVFR1_EL1, SIMDHP, SIMDHP_FLOAT, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDHP), 2913 HWCAP_CAP(ID_ISAR5_EL1, AES, VMULL, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL), 2914 HWCAP_CAP(ID_ISAR5_EL1, AES, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES), 2915 HWCAP_CAP(ID_ISAR5_EL1, SHA1, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1), 2916 HWCAP_CAP(ID_ISAR5_EL1, SHA2, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2), 2917 HWCAP_CAP(ID_ISAR5_EL1, CRC32, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32), 2918 HWCAP_CAP(ID_ISAR6_EL1, DP, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDDP), 2919 HWCAP_CAP(ID_ISAR6_EL1, FHM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDFHM), 2920 HWCAP_CAP(ID_ISAR6_EL1, SB, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SB), 2921 HWCAP_CAP(ID_ISAR6_EL1, BF16, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDBF16), 2922 HWCAP_CAP(ID_ISAR6_EL1, I8MM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_I8MM), 2923 HWCAP_CAP(ID_PFR2_EL1, SSBS, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SSBS), 2924 #endif 2925 {}, 2926 }; 2927 2928 static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap) 2929 { 2930 switch (cap->hwcap_type) { 2931 case CAP_HWCAP: 2932 cpu_set_feature(cap->hwcap); 2933 break; 2934 #ifdef CONFIG_COMPAT 2935 case CAP_COMPAT_HWCAP: 2936 compat_elf_hwcap |= (u32)cap->hwcap; 2937 break; 2938 case CAP_COMPAT_HWCAP2: 2939 compat_elf_hwcap2 |= (u32)cap->hwcap; 2940 break; 2941 #endif 2942 default: 2943 WARN_ON(1); 2944 break; 2945 } 2946 } 2947 2948 /* Check if we have a particular HWCAP enabled */ 2949 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap) 2950 { 2951 bool rc; 2952 2953 switch (cap->hwcap_type) { 2954 case CAP_HWCAP: 2955 rc = cpu_have_feature(cap->hwcap); 2956 break; 2957 #ifdef CONFIG_COMPAT 2958 case CAP_COMPAT_HWCAP: 2959 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0; 2960 break; 2961 case CAP_COMPAT_HWCAP2: 2962 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0; 2963 break; 2964 #endif 2965 default: 2966 WARN_ON(1); 2967 rc = false; 2968 } 2969 2970 return rc; 2971 } 2972 2973 static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps) 2974 { 2975 /* We support emulation of accesses to CPU ID feature registers */ 2976 cpu_set_named_feature(CPUID); 2977 for (; hwcaps->matches; hwcaps++) 2978 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps))) 2979 cap_set_elf_hwcap(hwcaps); 2980 } 2981 2982 static void update_cpu_capabilities(u16 scope_mask) 2983 { 2984 int i; 2985 const struct arm64_cpu_capabilities *caps; 2986 2987 scope_mask &= ARM64_CPUCAP_SCOPE_MASK; 2988 for (i = 0; i < ARM64_NCAPS; i++) { 2989 caps = cpucap_ptrs[i]; 2990 if (!caps || !(caps->type & scope_mask) || 2991 cpus_have_cap(caps->capability) || 2992 !caps->matches(caps, cpucap_default_scope(caps))) 2993 continue; 2994 2995 if (caps->desc) 2996 pr_info("detected: %s\n", caps->desc); 2997 2998 __set_bit(caps->capability, system_cpucaps); 2999 3000 if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU)) 3001 set_bit(caps->capability, boot_cpucaps); 3002 } 3003 } 3004 3005 /* 3006 * Enable all the available capabilities on this CPU. The capabilities 3007 * with BOOT_CPU scope are handled separately and hence skipped here. 3008 */ 3009 static int cpu_enable_non_boot_scope_capabilities(void *__unused) 3010 { 3011 int i; 3012 u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU; 3013 3014 for_each_available_cap(i) { 3015 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[i]; 3016 3017 if (WARN_ON(!cap)) 3018 continue; 3019 3020 if (!(cap->type & non_boot_scope)) 3021 continue; 3022 3023 if (cap->cpu_enable) 3024 cap->cpu_enable(cap); 3025 } 3026 return 0; 3027 } 3028 3029 /* 3030 * Run through the enabled capabilities and enable() it on all active 3031 * CPUs 3032 */ 3033 static void __init enable_cpu_capabilities(u16 scope_mask) 3034 { 3035 int i; 3036 const struct arm64_cpu_capabilities *caps; 3037 bool boot_scope; 3038 3039 scope_mask &= ARM64_CPUCAP_SCOPE_MASK; 3040 boot_scope = !!(scope_mask & SCOPE_BOOT_CPU); 3041 3042 for (i = 0; i < ARM64_NCAPS; i++) { 3043 unsigned int num; 3044 3045 caps = cpucap_ptrs[i]; 3046 if (!caps || !(caps->type & scope_mask)) 3047 continue; 3048 num = caps->capability; 3049 if (!cpus_have_cap(num)) 3050 continue; 3051 3052 if (boot_scope && caps->cpu_enable) 3053 /* 3054 * Capabilities with SCOPE_BOOT_CPU scope are finalised 3055 * before any secondary CPU boots. Thus, each secondary 3056 * will enable the capability as appropriate via 3057 * check_local_cpu_capabilities(). The only exception is 3058 * the boot CPU, for which the capability must be 3059 * enabled here. This approach avoids costly 3060 * stop_machine() calls for this case. 3061 */ 3062 caps->cpu_enable(caps); 3063 } 3064 3065 /* 3066 * For all non-boot scope capabilities, use stop_machine() 3067 * as it schedules the work allowing us to modify PSTATE, 3068 * instead of on_each_cpu() which uses an IPI, giving us a 3069 * PSTATE that disappears when we return. 3070 */ 3071 if (!boot_scope) 3072 stop_machine(cpu_enable_non_boot_scope_capabilities, 3073 NULL, cpu_online_mask); 3074 } 3075 3076 /* 3077 * Run through the list of capabilities to check for conflicts. 3078 * If the system has already detected a capability, take necessary 3079 * action on this CPU. 3080 */ 3081 static void verify_local_cpu_caps(u16 scope_mask) 3082 { 3083 int i; 3084 bool cpu_has_cap, system_has_cap; 3085 const struct arm64_cpu_capabilities *caps; 3086 3087 scope_mask &= ARM64_CPUCAP_SCOPE_MASK; 3088 3089 for (i = 0; i < ARM64_NCAPS; i++) { 3090 caps = cpucap_ptrs[i]; 3091 if (!caps || !(caps->type & scope_mask)) 3092 continue; 3093 3094 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU); 3095 system_has_cap = cpus_have_cap(caps->capability); 3096 3097 if (system_has_cap) { 3098 /* 3099 * Check if the new CPU misses an advertised feature, 3100 * which is not safe to miss. 3101 */ 3102 if (!cpu_has_cap && !cpucap_late_cpu_optional(caps)) 3103 break; 3104 /* 3105 * We have to issue cpu_enable() irrespective of 3106 * whether the CPU has it or not, as it is enabeld 3107 * system wide. It is upto the call back to take 3108 * appropriate action on this CPU. 3109 */ 3110 if (caps->cpu_enable) 3111 caps->cpu_enable(caps); 3112 } else { 3113 /* 3114 * Check if the CPU has this capability if it isn't 3115 * safe to have when the system doesn't. 3116 */ 3117 if (cpu_has_cap && !cpucap_late_cpu_permitted(caps)) 3118 break; 3119 } 3120 } 3121 3122 if (i < ARM64_NCAPS) { 3123 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n", 3124 smp_processor_id(), caps->capability, 3125 caps->desc, system_has_cap, cpu_has_cap); 3126 3127 if (cpucap_panic_on_conflict(caps)) 3128 cpu_panic_kernel(); 3129 else 3130 cpu_die_early(); 3131 } 3132 } 3133 3134 /* 3135 * Check for CPU features that are used in early boot 3136 * based on the Boot CPU value. 3137 */ 3138 static void check_early_cpu_features(void) 3139 { 3140 verify_cpu_asid_bits(); 3141 3142 verify_local_cpu_caps(SCOPE_BOOT_CPU); 3143 } 3144 3145 static void 3146 __verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps) 3147 { 3148 3149 for (; caps->matches; caps++) 3150 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) { 3151 pr_crit("CPU%d: missing HWCAP: %s\n", 3152 smp_processor_id(), caps->desc); 3153 cpu_die_early(); 3154 } 3155 } 3156 3157 static void verify_local_elf_hwcaps(void) 3158 { 3159 __verify_local_elf_hwcaps(arm64_elf_hwcaps); 3160 3161 if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1))) 3162 __verify_local_elf_hwcaps(compat_elf_hwcaps); 3163 } 3164 3165 static void verify_sve_features(void) 3166 { 3167 u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1); 3168 u64 zcr = read_zcr_features(); 3169 3170 unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK; 3171 unsigned int len = zcr & ZCR_ELx_LEN_MASK; 3172 3173 if (len < safe_len || vec_verify_vq_map(ARM64_VEC_SVE)) { 3174 pr_crit("CPU%d: SVE: vector length support mismatch\n", 3175 smp_processor_id()); 3176 cpu_die_early(); 3177 } 3178 3179 /* Add checks on other ZCR bits here if necessary */ 3180 } 3181 3182 static void verify_sme_features(void) 3183 { 3184 u64 safe_smcr = read_sanitised_ftr_reg(SYS_SMCR_EL1); 3185 u64 smcr = read_smcr_features(); 3186 3187 unsigned int safe_len = safe_smcr & SMCR_ELx_LEN_MASK; 3188 unsigned int len = smcr & SMCR_ELx_LEN_MASK; 3189 3190 if (len < safe_len || vec_verify_vq_map(ARM64_VEC_SME)) { 3191 pr_crit("CPU%d: SME: vector length support mismatch\n", 3192 smp_processor_id()); 3193 cpu_die_early(); 3194 } 3195 3196 /* Add checks on other SMCR bits here if necessary */ 3197 } 3198 3199 static void verify_hyp_capabilities(void) 3200 { 3201 u64 safe_mmfr1, mmfr0, mmfr1; 3202 int parange, ipa_max; 3203 unsigned int safe_vmid_bits, vmid_bits; 3204 3205 if (!IS_ENABLED(CONFIG_KVM)) 3206 return; 3207 3208 safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 3209 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1); 3210 mmfr1 = read_cpuid(ID_AA64MMFR1_EL1); 3211 3212 /* Verify VMID bits */ 3213 safe_vmid_bits = get_vmid_bits(safe_mmfr1); 3214 vmid_bits = get_vmid_bits(mmfr1); 3215 if (vmid_bits < safe_vmid_bits) { 3216 pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id()); 3217 cpu_die_early(); 3218 } 3219 3220 /* Verify IPA range */ 3221 parange = cpuid_feature_extract_unsigned_field(mmfr0, 3222 ID_AA64MMFR0_EL1_PARANGE_SHIFT); 3223 ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange); 3224 if (ipa_max < get_kvm_ipa_limit()) { 3225 pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id()); 3226 cpu_die_early(); 3227 } 3228 } 3229 3230 /* 3231 * Run through the enabled system capabilities and enable() it on this CPU. 3232 * The capabilities were decided based on the available CPUs at the boot time. 3233 * Any new CPU should match the system wide status of the capability. If the 3234 * new CPU doesn't have a capability which the system now has enabled, we 3235 * cannot do anything to fix it up and could cause unexpected failures. So 3236 * we park the CPU. 3237 */ 3238 static void verify_local_cpu_capabilities(void) 3239 { 3240 /* 3241 * The capabilities with SCOPE_BOOT_CPU are checked from 3242 * check_early_cpu_features(), as they need to be verified 3243 * on all secondary CPUs. 3244 */ 3245 verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU); 3246 verify_local_elf_hwcaps(); 3247 3248 if (system_supports_sve()) 3249 verify_sve_features(); 3250 3251 if (system_supports_sme()) 3252 verify_sme_features(); 3253 3254 if (is_hyp_mode_available()) 3255 verify_hyp_capabilities(); 3256 } 3257 3258 void check_local_cpu_capabilities(void) 3259 { 3260 /* 3261 * All secondary CPUs should conform to the early CPU features 3262 * in use by the kernel based on boot CPU. 3263 */ 3264 check_early_cpu_features(); 3265 3266 /* 3267 * If we haven't finalised the system capabilities, this CPU gets 3268 * a chance to update the errata work arounds and local features. 3269 * Otherwise, this CPU should verify that it has all the system 3270 * advertised capabilities. 3271 */ 3272 if (!system_capabilities_finalized()) 3273 update_cpu_capabilities(SCOPE_LOCAL_CPU); 3274 else 3275 verify_local_cpu_capabilities(); 3276 } 3277 3278 static void __init setup_boot_cpu_capabilities(void) 3279 { 3280 /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */ 3281 update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU); 3282 /* Enable the SCOPE_BOOT_CPU capabilities alone right away */ 3283 enable_cpu_capabilities(SCOPE_BOOT_CPU); 3284 } 3285 3286 bool this_cpu_has_cap(unsigned int n) 3287 { 3288 if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) { 3289 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n]; 3290 3291 if (cap) 3292 return cap->matches(cap, SCOPE_LOCAL_CPU); 3293 } 3294 3295 return false; 3296 } 3297 EXPORT_SYMBOL_GPL(this_cpu_has_cap); 3298 3299 /* 3300 * This helper function is used in a narrow window when, 3301 * - The system wide safe registers are set with all the SMP CPUs and, 3302 * - The SYSTEM_FEATURE system_cpucaps may not have been set. 3303 * In all other cases cpus_have_{const_}cap() should be used. 3304 */ 3305 static bool __maybe_unused __system_matches_cap(unsigned int n) 3306 { 3307 if (n < ARM64_NCAPS) { 3308 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n]; 3309 3310 if (cap) 3311 return cap->matches(cap, SCOPE_SYSTEM); 3312 } 3313 return false; 3314 } 3315 3316 void cpu_set_feature(unsigned int num) 3317 { 3318 set_bit(num, elf_hwcap); 3319 } 3320 3321 bool cpu_have_feature(unsigned int num) 3322 { 3323 return test_bit(num, elf_hwcap); 3324 } 3325 EXPORT_SYMBOL_GPL(cpu_have_feature); 3326 3327 unsigned long cpu_get_elf_hwcap(void) 3328 { 3329 /* 3330 * We currently only populate the first 32 bits of AT_HWCAP. Please 3331 * note that for userspace compatibility we guarantee that bits 62 3332 * and 63 will always be returned as 0. 3333 */ 3334 return elf_hwcap[0]; 3335 } 3336 3337 unsigned long cpu_get_elf_hwcap2(void) 3338 { 3339 return elf_hwcap[1]; 3340 } 3341 3342 static void __init setup_system_capabilities(void) 3343 { 3344 /* 3345 * We have finalised the system-wide safe feature 3346 * registers, finalise the capabilities that depend 3347 * on it. Also enable all the available capabilities, 3348 * that are not enabled already. 3349 */ 3350 update_cpu_capabilities(SCOPE_SYSTEM); 3351 enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU); 3352 } 3353 3354 void __init setup_cpu_features(void) 3355 { 3356 u32 cwg; 3357 3358 setup_system_capabilities(); 3359 user_feature_fixup(); 3360 setup_elf_hwcaps(arm64_elf_hwcaps); 3361 3362 if (system_supports_32bit_el0()) { 3363 setup_elf_hwcaps(compat_elf_hwcaps); 3364 elf_hwcap_fixup(); 3365 } 3366 3367 if (system_uses_ttbr0_pan()) 3368 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n"); 3369 3370 sve_setup(); 3371 sme_setup(); 3372 minsigstksz_setup(); 3373 3374 /* 3375 * Check for sane CTR_EL0.CWG value. 3376 */ 3377 cwg = cache_type_cwg(); 3378 if (!cwg) 3379 pr_warn("No Cache Writeback Granule information, assuming %d\n", 3380 ARCH_DMA_MINALIGN); 3381 } 3382 3383 static int enable_mismatched_32bit_el0(unsigned int cpu) 3384 { 3385 /* 3386 * The first 32-bit-capable CPU we detected and so can no longer 3387 * be offlined by userspace. -1 indicates we haven't yet onlined 3388 * a 32-bit-capable CPU. 3389 */ 3390 static int lucky_winner = -1; 3391 3392 struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu); 3393 bool cpu_32bit = id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0); 3394 3395 if (cpu_32bit) { 3396 cpumask_set_cpu(cpu, cpu_32bit_el0_mask); 3397 static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0); 3398 } 3399 3400 if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit) 3401 return 0; 3402 3403 if (lucky_winner >= 0) 3404 return 0; 3405 3406 /* 3407 * We've detected a mismatch. We need to keep one of our CPUs with 3408 * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting 3409 * every CPU in the system for a 32-bit task. 3410 */ 3411 lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask, 3412 cpu_active_mask); 3413 get_cpu_device(lucky_winner)->offline_disabled = true; 3414 setup_elf_hwcaps(compat_elf_hwcaps); 3415 elf_hwcap_fixup(); 3416 pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n", 3417 cpu, lucky_winner); 3418 return 0; 3419 } 3420 3421 static int __init init_32bit_el0_mask(void) 3422 { 3423 if (!allow_mismatched_32bit_el0) 3424 return 0; 3425 3426 if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL)) 3427 return -ENOMEM; 3428 3429 return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, 3430 "arm64/mismatched_32bit_el0:online", 3431 enable_mismatched_32bit_el0, NULL); 3432 } 3433 subsys_initcall_sync(init_32bit_el0_mask); 3434 3435 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap) 3436 { 3437 cpu_replace_ttbr1(lm_alias(swapper_pg_dir), idmap_pg_dir); 3438 } 3439 3440 /* 3441 * We emulate only the following system register space. 3442 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 2 - 7] 3443 * See Table C5-6 System instruction encodings for System register accesses, 3444 * ARMv8 ARM(ARM DDI 0487A.f) for more details. 3445 */ 3446 static inline bool __attribute_const__ is_emulated(u32 id) 3447 { 3448 return (sys_reg_Op0(id) == 0x3 && 3449 sys_reg_CRn(id) == 0x0 && 3450 sys_reg_Op1(id) == 0x0 && 3451 (sys_reg_CRm(id) == 0 || 3452 ((sys_reg_CRm(id) >= 2) && (sys_reg_CRm(id) <= 7)))); 3453 } 3454 3455 /* 3456 * With CRm == 0, reg should be one of : 3457 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1. 3458 */ 3459 static inline int emulate_id_reg(u32 id, u64 *valp) 3460 { 3461 switch (id) { 3462 case SYS_MIDR_EL1: 3463 *valp = read_cpuid_id(); 3464 break; 3465 case SYS_MPIDR_EL1: 3466 *valp = SYS_MPIDR_SAFE_VAL; 3467 break; 3468 case SYS_REVIDR_EL1: 3469 /* IMPLEMENTATION DEFINED values are emulated with 0 */ 3470 *valp = 0; 3471 break; 3472 default: 3473 return -EINVAL; 3474 } 3475 3476 return 0; 3477 } 3478 3479 static int emulate_sys_reg(u32 id, u64 *valp) 3480 { 3481 struct arm64_ftr_reg *regp; 3482 3483 if (!is_emulated(id)) 3484 return -EINVAL; 3485 3486 if (sys_reg_CRm(id) == 0) 3487 return emulate_id_reg(id, valp); 3488 3489 regp = get_arm64_ftr_reg_nowarn(id); 3490 if (regp) 3491 *valp = arm64_ftr_reg_user_value(regp); 3492 else 3493 /* 3494 * The untracked registers are either IMPLEMENTATION DEFINED 3495 * (e.g, ID_AFR0_EL1) or reserved RAZ. 3496 */ 3497 *valp = 0; 3498 return 0; 3499 } 3500 3501 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt) 3502 { 3503 int rc; 3504 u64 val; 3505 3506 rc = emulate_sys_reg(sys_reg, &val); 3507 if (!rc) { 3508 pt_regs_write_reg(regs, rt, val); 3509 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); 3510 } 3511 return rc; 3512 } 3513 3514 bool try_emulate_mrs(struct pt_regs *regs, u32 insn) 3515 { 3516 u32 sys_reg, rt; 3517 3518 if (compat_user_mode(regs) || !aarch64_insn_is_mrs(insn)) 3519 return false; 3520 3521 /* 3522 * sys_reg values are defined as used in mrs/msr instruction. 3523 * shift the imm value to get the encoding. 3524 */ 3525 sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5; 3526 rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn); 3527 return do_emulate_mrs(regs, sys_reg, rt) == 0; 3528 } 3529 3530 enum mitigation_state arm64_get_meltdown_state(void) 3531 { 3532 if (__meltdown_safe) 3533 return SPECTRE_UNAFFECTED; 3534 3535 if (arm64_kernel_unmapped_at_el0()) 3536 return SPECTRE_MITIGATED; 3537 3538 return SPECTRE_VULNERABLE; 3539 } 3540 3541 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, 3542 char *buf) 3543 { 3544 switch (arm64_get_meltdown_state()) { 3545 case SPECTRE_UNAFFECTED: 3546 return sprintf(buf, "Not affected\n"); 3547 3548 case SPECTRE_MITIGATED: 3549 return sprintf(buf, "Mitigation: PTI\n"); 3550 3551 default: 3552 return sprintf(buf, "Vulnerable\n"); 3553 } 3554 } 3555