xref: /openbmc/linux/arch/arm64/kernel/cpufeature.c (revision 68198dca)
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #define pr_fmt(fmt) "CPU features: " fmt
20 
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <asm/cpu.h>
28 #include <asm/cpufeature.h>
29 #include <asm/cpu_ops.h>
30 #include <asm/fpsimd.h>
31 #include <asm/mmu_context.h>
32 #include <asm/processor.h>
33 #include <asm/sysreg.h>
34 #include <asm/traps.h>
35 #include <asm/virt.h>
36 
37 unsigned long elf_hwcap __read_mostly;
38 EXPORT_SYMBOL_GPL(elf_hwcap);
39 
40 #ifdef CONFIG_COMPAT
41 #define COMPAT_ELF_HWCAP_DEFAULT	\
42 				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
43 				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
44 				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
45 				 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
46 				 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
47 				 COMPAT_HWCAP_LPAE)
48 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
49 unsigned int compat_elf_hwcap2 __read_mostly;
50 #endif
51 
52 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
53 EXPORT_SYMBOL(cpu_hwcaps);
54 
55 /*
56  * Flag to indicate if we have computed the system wide
57  * capabilities based on the boot time active CPUs. This
58  * will be used to determine if a new booting CPU should
59  * go through the verification process to make sure that it
60  * supports the system capabilities, without using a hotplug
61  * notifier.
62  */
63 static bool sys_caps_initialised;
64 
65 static inline void set_sys_caps_initialised(void)
66 {
67 	sys_caps_initialised = true;
68 }
69 
70 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
71 {
72 	/* file-wide pr_fmt adds "CPU features: " prefix */
73 	pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
74 	return 0;
75 }
76 
77 static struct notifier_block cpu_hwcaps_notifier = {
78 	.notifier_call = dump_cpu_hwcaps
79 };
80 
81 static int __init register_cpu_hwcaps_dumper(void)
82 {
83 	atomic_notifier_chain_register(&panic_notifier_list,
84 				       &cpu_hwcaps_notifier);
85 	return 0;
86 }
87 __initcall(register_cpu_hwcaps_dumper);
88 
89 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
90 EXPORT_SYMBOL(cpu_hwcap_keys);
91 
92 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
93 	{						\
94 		.sign = SIGNED,				\
95 		.visible = VISIBLE,			\
96 		.strict = STRICT,			\
97 		.type = TYPE,				\
98 		.shift = SHIFT,				\
99 		.width = WIDTH,				\
100 		.safe_val = SAFE_VAL,			\
101 	}
102 
103 /* Define a feature with unsigned values */
104 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
105 	__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
106 
107 /* Define a feature with a signed value */
108 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
109 	__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
110 
111 #define ARM64_FTR_END					\
112 	{						\
113 		.width = 0,				\
114 	}
115 
116 /* meta feature for alternatives */
117 static bool __maybe_unused
118 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
119 
120 
121 /*
122  * NOTE: Any changes to the visibility of features should be kept in
123  * sync with the documentation of the CPU feature register ABI.
124  */
125 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
126 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
127 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
128 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
129 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
130 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
131 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
132 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
133 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
134 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
135 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
136 	ARM64_FTR_END,
137 };
138 
139 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
140 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
141 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
142 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
143 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
144 	ARM64_FTR_END,
145 };
146 
147 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
148 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
149 				   FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
150 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
151 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
152 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
153 	/* Linux doesn't care about the EL3 */
154 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
155 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
156 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
157 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
158 	ARM64_FTR_END,
159 };
160 
161 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
162 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
163 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
164 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
165 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
166 	/* Linux shouldn't care about secure memory */
167 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
168 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
169 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
170 	/*
171 	 * Differing PARange is fine as long as all peripherals and memory are mapped
172 	 * within the minimum PARange of all CPUs
173 	 */
174 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
175 	ARM64_FTR_END,
176 };
177 
178 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
179 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
180 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
181 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
182 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
183 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
184 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
185 	ARM64_FTR_END,
186 };
187 
188 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
189 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
190 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
191 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
192 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
193 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
194 	ARM64_FTR_END,
195 };
196 
197 static const struct arm64_ftr_bits ftr_ctr[] = {
198 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1),	/* RAO */
199 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),	/* CWG */
200 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* ERG */
201 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1),	/* DminLine */
202 	/*
203 	 * Linux can handle differing I-cache policies. Userspace JITs will
204 	 * make use of *minLine.
205 	 * If we have differing I-cache policies, report it as the weakest - VIPT.
206 	 */
207 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),	/* L1Ip */
208 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* IminLine */
209 	ARM64_FTR_END,
210 };
211 
212 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
213 	.name		= "SYS_CTR_EL0",
214 	.ftr_bits	= ftr_ctr
215 };
216 
217 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
218 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf),	/* InnerShr */
219 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),	/* FCSE */
220 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* AuxReg */
221 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),	/* TCM */
222 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),	/* ShareLvl */
223 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf),	/* OuterShr */
224 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),	/* PMSA */
225 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* VMSA */
226 	ARM64_FTR_END,
227 };
228 
229 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
230 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
231 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
232 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
233 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
234 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
235 	/*
236 	 * We can instantiate multiple PMU instances with different levels
237 	 * of support.
238 	 */
239 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
240 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
241 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
242 	ARM64_FTR_END,
243 };
244 
245 static const struct arm64_ftr_bits ftr_mvfr2[] = {
246 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),		/* FPMisc */
247 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),		/* SIMDMisc */
248 	ARM64_FTR_END,
249 };
250 
251 static const struct arm64_ftr_bits ftr_dczid[] = {
252 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),		/* DZP */
253 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* BS */
254 	ARM64_FTR_END,
255 };
256 
257 
258 static const struct arm64_ftr_bits ftr_id_isar5[] = {
259 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
260 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
261 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
262 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
263 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
264 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
265 	ARM64_FTR_END,
266 };
267 
268 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
269 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),	/* ac2 */
270 	ARM64_FTR_END,
271 };
272 
273 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
274 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),		/* State3 */
275 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),		/* State2 */
276 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),		/* State1 */
277 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),		/* State0 */
278 	ARM64_FTR_END,
279 };
280 
281 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
282 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
283 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),	/* PerfMon */
284 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
285 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
286 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
287 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
288 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
289 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
290 	ARM64_FTR_END,
291 };
292 
293 static const struct arm64_ftr_bits ftr_zcr[] = {
294 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
295 		ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),	/* LEN */
296 	ARM64_FTR_END,
297 };
298 
299 /*
300  * Common ftr bits for a 32bit register with all hidden, strict
301  * attributes, with 4bit feature fields and a default safe value of
302  * 0. Covers the following 32bit registers:
303  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
304  */
305 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
306 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
307 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
308 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
309 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
310 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
311 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
312 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
313 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
314 	ARM64_FTR_END,
315 };
316 
317 /* Table for a single 32bit feature value */
318 static const struct arm64_ftr_bits ftr_single32[] = {
319 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
320 	ARM64_FTR_END,
321 };
322 
323 static const struct arm64_ftr_bits ftr_raz[] = {
324 	ARM64_FTR_END,
325 };
326 
327 #define ARM64_FTR_REG(id, table) {		\
328 	.sys_id = id,				\
329 	.reg = 	&(struct arm64_ftr_reg){	\
330 		.name = #id,			\
331 		.ftr_bits = &((table)[0]),	\
332 	}}
333 
334 static const struct __ftr_reg_entry {
335 	u32			sys_id;
336 	struct arm64_ftr_reg 	*reg;
337 } arm64_ftr_regs[] = {
338 
339 	/* Op1 = 0, CRn = 0, CRm = 1 */
340 	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
341 	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
342 	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
343 	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
344 	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
345 	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
346 	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
347 
348 	/* Op1 = 0, CRn = 0, CRm = 2 */
349 	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
350 	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
351 	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
352 	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
353 	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
354 	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
355 	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
356 
357 	/* Op1 = 0, CRn = 0, CRm = 3 */
358 	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
359 	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
360 	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
361 
362 	/* Op1 = 0, CRn = 0, CRm = 4 */
363 	ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
364 	ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_raz),
365 	ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_raz),
366 
367 	/* Op1 = 0, CRn = 0, CRm = 5 */
368 	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
369 	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
370 
371 	/* Op1 = 0, CRn = 0, CRm = 6 */
372 	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
373 	ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
374 
375 	/* Op1 = 0, CRn = 0, CRm = 7 */
376 	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
377 	ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
378 	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
379 
380 	/* Op1 = 0, CRn = 1, CRm = 2 */
381 	ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
382 
383 	/* Op1 = 3, CRn = 0, CRm = 0 */
384 	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
385 	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
386 
387 	/* Op1 = 3, CRn = 14, CRm = 0 */
388 	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
389 };
390 
391 static int search_cmp_ftr_reg(const void *id, const void *regp)
392 {
393 	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
394 }
395 
396 /*
397  * get_arm64_ftr_reg - Lookup a feature register entry using its
398  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
399  * ascending order of sys_id , we use binary search to find a matching
400  * entry.
401  *
402  * returns - Upon success,  matching ftr_reg entry for id.
403  *         - NULL on failure. It is upto the caller to decide
404  *	     the impact of a failure.
405  */
406 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
407 {
408 	const struct __ftr_reg_entry *ret;
409 
410 	ret = bsearch((const void *)(unsigned long)sys_id,
411 			arm64_ftr_regs,
412 			ARRAY_SIZE(arm64_ftr_regs),
413 			sizeof(arm64_ftr_regs[0]),
414 			search_cmp_ftr_reg);
415 	if (ret)
416 		return ret->reg;
417 	return NULL;
418 }
419 
420 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
421 			       s64 ftr_val)
422 {
423 	u64 mask = arm64_ftr_mask(ftrp);
424 
425 	reg &= ~mask;
426 	reg |= (ftr_val << ftrp->shift) & mask;
427 	return reg;
428 }
429 
430 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
431 				s64 cur)
432 {
433 	s64 ret = 0;
434 
435 	switch (ftrp->type) {
436 	case FTR_EXACT:
437 		ret = ftrp->safe_val;
438 		break;
439 	case FTR_LOWER_SAFE:
440 		ret = new < cur ? new : cur;
441 		break;
442 	case FTR_HIGHER_SAFE:
443 		ret = new > cur ? new : cur;
444 		break;
445 	default:
446 		BUG();
447 	}
448 
449 	return ret;
450 }
451 
452 static void __init sort_ftr_regs(void)
453 {
454 	int i;
455 
456 	/* Check that the array is sorted so that we can do the binary search */
457 	for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
458 		BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
459 }
460 
461 /*
462  * Initialise the CPU feature register from Boot CPU values.
463  * Also initiliases the strict_mask for the register.
464  * Any bits that are not covered by an arm64_ftr_bits entry are considered
465  * RES0 for the system-wide value, and must strictly match.
466  */
467 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
468 {
469 	u64 val = 0;
470 	u64 strict_mask = ~0x0ULL;
471 	u64 user_mask = 0;
472 	u64 valid_mask = 0;
473 
474 	const struct arm64_ftr_bits *ftrp;
475 	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
476 
477 	BUG_ON(!reg);
478 
479 	for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
480 		u64 ftr_mask = arm64_ftr_mask(ftrp);
481 		s64 ftr_new = arm64_ftr_value(ftrp, new);
482 
483 		val = arm64_ftr_set_value(ftrp, val, ftr_new);
484 
485 		valid_mask |= ftr_mask;
486 		if (!ftrp->strict)
487 			strict_mask &= ~ftr_mask;
488 		if (ftrp->visible)
489 			user_mask |= ftr_mask;
490 		else
491 			reg->user_val = arm64_ftr_set_value(ftrp,
492 							    reg->user_val,
493 							    ftrp->safe_val);
494 	}
495 
496 	val &= valid_mask;
497 
498 	reg->sys_val = val;
499 	reg->strict_mask = strict_mask;
500 	reg->user_mask = user_mask;
501 }
502 
503 void __init init_cpu_features(struct cpuinfo_arm64 *info)
504 {
505 	/* Before we start using the tables, make sure it is sorted */
506 	sort_ftr_regs();
507 
508 	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
509 	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
510 	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
511 	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
512 	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
513 	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
514 	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
515 	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
516 	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
517 	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
518 	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
519 	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
520 	init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
521 
522 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
523 		init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
524 		init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
525 		init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
526 		init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
527 		init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
528 		init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
529 		init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
530 		init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
531 		init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
532 		init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
533 		init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
534 		init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
535 		init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
536 		init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
537 		init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
538 		init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
539 	}
540 
541 	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
542 		init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
543 		sve_init_vq_map();
544 	}
545 }
546 
547 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
548 {
549 	const struct arm64_ftr_bits *ftrp;
550 
551 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
552 		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
553 		s64 ftr_new = arm64_ftr_value(ftrp, new);
554 
555 		if (ftr_cur == ftr_new)
556 			continue;
557 		/* Find a safe value */
558 		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
559 		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
560 	}
561 
562 }
563 
564 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
565 {
566 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
567 
568 	BUG_ON(!regp);
569 	update_cpu_ftr_reg(regp, val);
570 	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
571 		return 0;
572 	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
573 			regp->name, boot, cpu, val);
574 	return 1;
575 }
576 
577 /*
578  * Update system wide CPU feature registers with the values from a
579  * non-boot CPU. Also performs SANITY checks to make sure that there
580  * aren't any insane variations from that of the boot CPU.
581  */
582 void update_cpu_features(int cpu,
583 			 struct cpuinfo_arm64 *info,
584 			 struct cpuinfo_arm64 *boot)
585 {
586 	int taint = 0;
587 
588 	/*
589 	 * The kernel can handle differing I-cache policies, but otherwise
590 	 * caches should look identical. Userspace JITs will make use of
591 	 * *minLine.
592 	 */
593 	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
594 				      info->reg_ctr, boot->reg_ctr);
595 
596 	/*
597 	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
598 	 * could result in too much or too little memory being zeroed if a
599 	 * process is preempted and migrated between CPUs.
600 	 */
601 	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
602 				      info->reg_dczid, boot->reg_dczid);
603 
604 	/* If different, timekeeping will be broken (especially with KVM) */
605 	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
606 				      info->reg_cntfrq, boot->reg_cntfrq);
607 
608 	/*
609 	 * The kernel uses self-hosted debug features and expects CPUs to
610 	 * support identical debug features. We presently need CTX_CMPs, WRPs,
611 	 * and BRPs to be identical.
612 	 * ID_AA64DFR1 is currently RES0.
613 	 */
614 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
615 				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
616 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
617 				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
618 	/*
619 	 * Even in big.LITTLE, processors should be identical instruction-set
620 	 * wise.
621 	 */
622 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
623 				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
624 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
625 				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
626 
627 	/*
628 	 * Differing PARange support is fine as long as all peripherals and
629 	 * memory are mapped within the minimum PARange of all CPUs.
630 	 * Linux should not care about secure memory.
631 	 */
632 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
633 				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
634 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
635 				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
636 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
637 				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
638 
639 	/*
640 	 * EL3 is not our concern.
641 	 * ID_AA64PFR1 is currently RES0.
642 	 */
643 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
644 				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
645 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
646 				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
647 
648 	taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
649 				      info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
650 
651 	/*
652 	 * If we have AArch32, we care about 32-bit features for compat.
653 	 * If the system doesn't support AArch32, don't update them.
654 	 */
655 	if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
656 		id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
657 
658 		taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
659 					info->reg_id_dfr0, boot->reg_id_dfr0);
660 		taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
661 					info->reg_id_isar0, boot->reg_id_isar0);
662 		taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
663 					info->reg_id_isar1, boot->reg_id_isar1);
664 		taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
665 					info->reg_id_isar2, boot->reg_id_isar2);
666 		taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
667 					info->reg_id_isar3, boot->reg_id_isar3);
668 		taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
669 					info->reg_id_isar4, boot->reg_id_isar4);
670 		taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
671 					info->reg_id_isar5, boot->reg_id_isar5);
672 
673 		/*
674 		 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
675 		 * ACTLR formats could differ across CPUs and therefore would have to
676 		 * be trapped for virtualization anyway.
677 		 */
678 		taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
679 					info->reg_id_mmfr0, boot->reg_id_mmfr0);
680 		taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
681 					info->reg_id_mmfr1, boot->reg_id_mmfr1);
682 		taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
683 					info->reg_id_mmfr2, boot->reg_id_mmfr2);
684 		taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
685 					info->reg_id_mmfr3, boot->reg_id_mmfr3);
686 		taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
687 					info->reg_id_pfr0, boot->reg_id_pfr0);
688 		taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
689 					info->reg_id_pfr1, boot->reg_id_pfr1);
690 		taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
691 					info->reg_mvfr0, boot->reg_mvfr0);
692 		taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
693 					info->reg_mvfr1, boot->reg_mvfr1);
694 		taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
695 					info->reg_mvfr2, boot->reg_mvfr2);
696 	}
697 
698 	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
699 		taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
700 					info->reg_zcr, boot->reg_zcr);
701 
702 		/* Probe vector lengths, unless we already gave up on SVE */
703 		if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
704 		    !sys_caps_initialised)
705 			sve_update_vq_map();
706 	}
707 
708 	/*
709 	 * Mismatched CPU features are a recipe for disaster. Don't even
710 	 * pretend to support them.
711 	 */
712 	if (taint) {
713 		pr_warn_once("Unsupported CPU feature variation detected.\n");
714 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
715 	}
716 }
717 
718 u64 read_sanitised_ftr_reg(u32 id)
719 {
720 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
721 
722 	/* We shouldn't get a request for an unsupported register */
723 	BUG_ON(!regp);
724 	return regp->sys_val;
725 }
726 
727 #define read_sysreg_case(r)	\
728 	case r:		return read_sysreg_s(r)
729 
730 /*
731  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
732  * Read the system register on the current CPU
733  */
734 static u64 __read_sysreg_by_encoding(u32 sys_id)
735 {
736 	switch (sys_id) {
737 	read_sysreg_case(SYS_ID_PFR0_EL1);
738 	read_sysreg_case(SYS_ID_PFR1_EL1);
739 	read_sysreg_case(SYS_ID_DFR0_EL1);
740 	read_sysreg_case(SYS_ID_MMFR0_EL1);
741 	read_sysreg_case(SYS_ID_MMFR1_EL1);
742 	read_sysreg_case(SYS_ID_MMFR2_EL1);
743 	read_sysreg_case(SYS_ID_MMFR3_EL1);
744 	read_sysreg_case(SYS_ID_ISAR0_EL1);
745 	read_sysreg_case(SYS_ID_ISAR1_EL1);
746 	read_sysreg_case(SYS_ID_ISAR2_EL1);
747 	read_sysreg_case(SYS_ID_ISAR3_EL1);
748 	read_sysreg_case(SYS_ID_ISAR4_EL1);
749 	read_sysreg_case(SYS_ID_ISAR5_EL1);
750 	read_sysreg_case(SYS_MVFR0_EL1);
751 	read_sysreg_case(SYS_MVFR1_EL1);
752 	read_sysreg_case(SYS_MVFR2_EL1);
753 
754 	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
755 	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
756 	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
757 	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
758 	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
759 	read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
760 	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
761 	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
762 	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
763 
764 	read_sysreg_case(SYS_CNTFRQ_EL0);
765 	read_sysreg_case(SYS_CTR_EL0);
766 	read_sysreg_case(SYS_DCZID_EL0);
767 
768 	default:
769 		BUG();
770 		return 0;
771 	}
772 }
773 
774 #include <linux/irqchip/arm-gic-v3.h>
775 
776 static bool
777 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
778 {
779 	int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
780 
781 	return val >= entry->min_field_value;
782 }
783 
784 static bool
785 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
786 {
787 	u64 val;
788 
789 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
790 	if (scope == SCOPE_SYSTEM)
791 		val = read_sanitised_ftr_reg(entry->sys_reg);
792 	else
793 		val = __read_sysreg_by_encoding(entry->sys_reg);
794 
795 	return feature_matches(val, entry);
796 }
797 
798 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
799 {
800 	bool has_sre;
801 
802 	if (!has_cpuid_feature(entry, scope))
803 		return false;
804 
805 	has_sre = gic_enable_sre();
806 	if (!has_sre)
807 		pr_warn_once("%s present but disabled by higher exception level\n",
808 			     entry->desc);
809 
810 	return has_sre;
811 }
812 
813 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
814 {
815 	u32 midr = read_cpuid_id();
816 
817 	/* Cavium ThunderX pass 1.x and 2.x */
818 	return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
819 		MIDR_CPU_VAR_REV(0, 0),
820 		MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
821 }
822 
823 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
824 {
825 	return is_kernel_in_hyp_mode();
826 }
827 
828 static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
829 			   int __unused)
830 {
831 	phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
832 
833 	/*
834 	 * Activate the lower HYP offset only if:
835 	 * - the idmap doesn't clash with it,
836 	 * - the kernel is not running at EL2.
837 	 */
838 	return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
839 }
840 
841 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
842 {
843 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
844 
845 	return cpuid_feature_extract_signed_field(pfr0,
846 					ID_AA64PFR0_FP_SHIFT) < 0;
847 }
848 
849 static const struct arm64_cpu_capabilities arm64_features[] = {
850 	{
851 		.desc = "GIC system register CPU interface",
852 		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
853 		.def_scope = SCOPE_SYSTEM,
854 		.matches = has_useable_gicv3_cpuif,
855 		.sys_reg = SYS_ID_AA64PFR0_EL1,
856 		.field_pos = ID_AA64PFR0_GIC_SHIFT,
857 		.sign = FTR_UNSIGNED,
858 		.min_field_value = 1,
859 	},
860 #ifdef CONFIG_ARM64_PAN
861 	{
862 		.desc = "Privileged Access Never",
863 		.capability = ARM64_HAS_PAN,
864 		.def_scope = SCOPE_SYSTEM,
865 		.matches = has_cpuid_feature,
866 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
867 		.field_pos = ID_AA64MMFR1_PAN_SHIFT,
868 		.sign = FTR_UNSIGNED,
869 		.min_field_value = 1,
870 		.enable = cpu_enable_pan,
871 	},
872 #endif /* CONFIG_ARM64_PAN */
873 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
874 	{
875 		.desc = "LSE atomic instructions",
876 		.capability = ARM64_HAS_LSE_ATOMICS,
877 		.def_scope = SCOPE_SYSTEM,
878 		.matches = has_cpuid_feature,
879 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
880 		.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
881 		.sign = FTR_UNSIGNED,
882 		.min_field_value = 2,
883 	},
884 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
885 	{
886 		.desc = "Software prefetching using PRFM",
887 		.capability = ARM64_HAS_NO_HW_PREFETCH,
888 		.def_scope = SCOPE_SYSTEM,
889 		.matches = has_no_hw_prefetch,
890 	},
891 #ifdef CONFIG_ARM64_UAO
892 	{
893 		.desc = "User Access Override",
894 		.capability = ARM64_HAS_UAO,
895 		.def_scope = SCOPE_SYSTEM,
896 		.matches = has_cpuid_feature,
897 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
898 		.field_pos = ID_AA64MMFR2_UAO_SHIFT,
899 		.min_field_value = 1,
900 		/*
901 		 * We rely on stop_machine() calling uao_thread_switch() to set
902 		 * UAO immediately after patching.
903 		 */
904 	},
905 #endif /* CONFIG_ARM64_UAO */
906 #ifdef CONFIG_ARM64_PAN
907 	{
908 		.capability = ARM64_ALT_PAN_NOT_UAO,
909 		.def_scope = SCOPE_SYSTEM,
910 		.matches = cpufeature_pan_not_uao,
911 	},
912 #endif /* CONFIG_ARM64_PAN */
913 	{
914 		.desc = "Virtualization Host Extensions",
915 		.capability = ARM64_HAS_VIRT_HOST_EXTN,
916 		.def_scope = SCOPE_SYSTEM,
917 		.matches = runs_at_el2,
918 	},
919 	{
920 		.desc = "32-bit EL0 Support",
921 		.capability = ARM64_HAS_32BIT_EL0,
922 		.def_scope = SCOPE_SYSTEM,
923 		.matches = has_cpuid_feature,
924 		.sys_reg = SYS_ID_AA64PFR0_EL1,
925 		.sign = FTR_UNSIGNED,
926 		.field_pos = ID_AA64PFR0_EL0_SHIFT,
927 		.min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
928 	},
929 	{
930 		.desc = "Reduced HYP mapping offset",
931 		.capability = ARM64_HYP_OFFSET_LOW,
932 		.def_scope = SCOPE_SYSTEM,
933 		.matches = hyp_offset_low,
934 	},
935 	{
936 		/* FP/SIMD is not implemented */
937 		.capability = ARM64_HAS_NO_FPSIMD,
938 		.def_scope = SCOPE_SYSTEM,
939 		.min_field_value = 0,
940 		.matches = has_no_fpsimd,
941 	},
942 #ifdef CONFIG_ARM64_PMEM
943 	{
944 		.desc = "Data cache clean to Point of Persistence",
945 		.capability = ARM64_HAS_DCPOP,
946 		.def_scope = SCOPE_SYSTEM,
947 		.matches = has_cpuid_feature,
948 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
949 		.field_pos = ID_AA64ISAR1_DPB_SHIFT,
950 		.min_field_value = 1,
951 	},
952 #endif
953 #ifdef CONFIG_ARM64_SVE
954 	{
955 		.desc = "Scalable Vector Extension",
956 		.capability = ARM64_SVE,
957 		.def_scope = SCOPE_SYSTEM,
958 		.sys_reg = SYS_ID_AA64PFR0_EL1,
959 		.sign = FTR_UNSIGNED,
960 		.field_pos = ID_AA64PFR0_SVE_SHIFT,
961 		.min_field_value = ID_AA64PFR0_SVE,
962 		.matches = has_cpuid_feature,
963 		.enable = sve_kernel_enable,
964 	},
965 #endif /* CONFIG_ARM64_SVE */
966 	{},
967 };
968 
969 #define HWCAP_CAP(reg, field, s, min_value, type, cap)	\
970 	{							\
971 		.desc = #cap,					\
972 		.def_scope = SCOPE_SYSTEM,			\
973 		.matches = has_cpuid_feature,			\
974 		.sys_reg = reg,					\
975 		.field_pos = field,				\
976 		.sign = s,					\
977 		.min_field_value = min_value,			\
978 		.hwcap_type = type,				\
979 		.hwcap = cap,					\
980 	}
981 
982 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
983 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
984 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
985 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
986 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
987 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_SHA512),
988 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
989 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
990 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
991 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA3),
992 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM3),
993 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM4),
994 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDDP),
995 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
996 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
997 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
998 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
999 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_DCPOP),
1000 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
1001 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
1002 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
1003 #ifdef CONFIG_ARM64_SVE
1004 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, HWCAP_SVE),
1005 #endif
1006 	{},
1007 };
1008 
1009 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
1010 #ifdef CONFIG_COMPAT
1011 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
1012 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
1013 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
1014 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
1015 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
1016 #endif
1017 	{},
1018 };
1019 
1020 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1021 {
1022 	switch (cap->hwcap_type) {
1023 	case CAP_HWCAP:
1024 		elf_hwcap |= cap->hwcap;
1025 		break;
1026 #ifdef CONFIG_COMPAT
1027 	case CAP_COMPAT_HWCAP:
1028 		compat_elf_hwcap |= (u32)cap->hwcap;
1029 		break;
1030 	case CAP_COMPAT_HWCAP2:
1031 		compat_elf_hwcap2 |= (u32)cap->hwcap;
1032 		break;
1033 #endif
1034 	default:
1035 		WARN_ON(1);
1036 		break;
1037 	}
1038 }
1039 
1040 /* Check if we have a particular HWCAP enabled */
1041 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1042 {
1043 	bool rc;
1044 
1045 	switch (cap->hwcap_type) {
1046 	case CAP_HWCAP:
1047 		rc = (elf_hwcap & cap->hwcap) != 0;
1048 		break;
1049 #ifdef CONFIG_COMPAT
1050 	case CAP_COMPAT_HWCAP:
1051 		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
1052 		break;
1053 	case CAP_COMPAT_HWCAP2:
1054 		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
1055 		break;
1056 #endif
1057 	default:
1058 		WARN_ON(1);
1059 		rc = false;
1060 	}
1061 
1062 	return rc;
1063 }
1064 
1065 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
1066 {
1067 	/* We support emulation of accesses to CPU ID feature registers */
1068 	elf_hwcap |= HWCAP_CPUID;
1069 	for (; hwcaps->matches; hwcaps++)
1070 		if (hwcaps->matches(hwcaps, hwcaps->def_scope))
1071 			cap_set_elf_hwcap(hwcaps);
1072 }
1073 
1074 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
1075 			    const char *info)
1076 {
1077 	for (; caps->matches; caps++) {
1078 		if (!caps->matches(caps, caps->def_scope))
1079 			continue;
1080 
1081 		if (!cpus_have_cap(caps->capability) && caps->desc)
1082 			pr_info("%s %s\n", info, caps->desc);
1083 		cpus_set_cap(caps->capability);
1084 	}
1085 }
1086 
1087 /*
1088  * Run through the enabled capabilities and enable() it on all active
1089  * CPUs
1090  */
1091 void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
1092 {
1093 	for (; caps->matches; caps++) {
1094 		unsigned int num = caps->capability;
1095 
1096 		if (!cpus_have_cap(num))
1097 			continue;
1098 
1099 		/* Ensure cpus_have_const_cap(num) works */
1100 		static_branch_enable(&cpu_hwcap_keys[num]);
1101 
1102 		if (caps->enable) {
1103 			/*
1104 			 * Use stop_machine() as it schedules the work allowing
1105 			 * us to modify PSTATE, instead of on_each_cpu() which
1106 			 * uses an IPI, giving us a PSTATE that disappears when
1107 			 * we return.
1108 			 */
1109 			stop_machine(caps->enable, NULL, cpu_online_mask);
1110 		}
1111 	}
1112 }
1113 
1114 /*
1115  * Check for CPU features that are used in early boot
1116  * based on the Boot CPU value.
1117  */
1118 static void check_early_cpu_features(void)
1119 {
1120 	verify_cpu_run_el();
1121 	verify_cpu_asid_bits();
1122 }
1123 
1124 static void
1125 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1126 {
1127 
1128 	for (; caps->matches; caps++)
1129 		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1130 			pr_crit("CPU%d: missing HWCAP: %s\n",
1131 					smp_processor_id(), caps->desc);
1132 			cpu_die_early();
1133 		}
1134 }
1135 
1136 static void
1137 verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
1138 {
1139 	for (; caps->matches; caps++) {
1140 		if (!cpus_have_cap(caps->capability))
1141 			continue;
1142 		/*
1143 		 * If the new CPU misses an advertised feature, we cannot proceed
1144 		 * further, park the cpu.
1145 		 */
1146 		if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
1147 			pr_crit("CPU%d: missing feature: %s\n",
1148 					smp_processor_id(), caps->desc);
1149 			cpu_die_early();
1150 		}
1151 		if (caps->enable)
1152 			caps->enable(NULL);
1153 	}
1154 }
1155 
1156 static void verify_sve_features(void)
1157 {
1158 	u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1159 	u64 zcr = read_zcr_features();
1160 
1161 	unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
1162 	unsigned int len = zcr & ZCR_ELx_LEN_MASK;
1163 
1164 	if (len < safe_len || sve_verify_vq_map()) {
1165 		pr_crit("CPU%d: SVE: required vector length(s) missing\n",
1166 			smp_processor_id());
1167 		cpu_die_early();
1168 	}
1169 
1170 	/* Add checks on other ZCR bits here if necessary */
1171 }
1172 
1173 /*
1174  * Run through the enabled system capabilities and enable() it on this CPU.
1175  * The capabilities were decided based on the available CPUs at the boot time.
1176  * Any new CPU should match the system wide status of the capability. If the
1177  * new CPU doesn't have a capability which the system now has enabled, we
1178  * cannot do anything to fix it up and could cause unexpected failures. So
1179  * we park the CPU.
1180  */
1181 static void verify_local_cpu_capabilities(void)
1182 {
1183 	verify_local_cpu_errata_workarounds();
1184 	verify_local_cpu_features(arm64_features);
1185 	verify_local_elf_hwcaps(arm64_elf_hwcaps);
1186 
1187 	if (system_supports_32bit_el0())
1188 		verify_local_elf_hwcaps(compat_elf_hwcaps);
1189 
1190 	if (system_supports_sve())
1191 		verify_sve_features();
1192 }
1193 
1194 void check_local_cpu_capabilities(void)
1195 {
1196 	/*
1197 	 * All secondary CPUs should conform to the early CPU features
1198 	 * in use by the kernel based on boot CPU.
1199 	 */
1200 	check_early_cpu_features();
1201 
1202 	/*
1203 	 * If we haven't finalised the system capabilities, this CPU gets
1204 	 * a chance to update the errata work arounds.
1205 	 * Otherwise, this CPU should verify that it has all the system
1206 	 * advertised capabilities.
1207 	 */
1208 	if (!sys_caps_initialised)
1209 		update_cpu_errata_workarounds();
1210 	else
1211 		verify_local_cpu_capabilities();
1212 }
1213 
1214 static void __init setup_feature_capabilities(void)
1215 {
1216 	update_cpu_capabilities(arm64_features, "detected feature:");
1217 	enable_cpu_capabilities(arm64_features);
1218 }
1219 
1220 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1221 EXPORT_SYMBOL(arm64_const_caps_ready);
1222 
1223 static void __init mark_const_caps_ready(void)
1224 {
1225 	static_branch_enable(&arm64_const_caps_ready);
1226 }
1227 
1228 /*
1229  * Check if the current CPU has a given feature capability.
1230  * Should be called from non-preemptible context.
1231  */
1232 static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
1233 			       unsigned int cap)
1234 {
1235 	const struct arm64_cpu_capabilities *caps;
1236 
1237 	if (WARN_ON(preemptible()))
1238 		return false;
1239 
1240 	for (caps = cap_array; caps->desc; caps++)
1241 		if (caps->capability == cap && caps->matches)
1242 			return caps->matches(caps, SCOPE_LOCAL_CPU);
1243 
1244 	return false;
1245 }
1246 
1247 extern const struct arm64_cpu_capabilities arm64_errata[];
1248 
1249 bool this_cpu_has_cap(unsigned int cap)
1250 {
1251 	return (__this_cpu_has_cap(arm64_features, cap) ||
1252 		__this_cpu_has_cap(arm64_errata, cap));
1253 }
1254 
1255 void __init setup_cpu_features(void)
1256 {
1257 	u32 cwg;
1258 	int cls;
1259 
1260 	/* Set the CPU feature capabilies */
1261 	setup_feature_capabilities();
1262 	enable_errata_workarounds();
1263 	mark_const_caps_ready();
1264 	setup_elf_hwcaps(arm64_elf_hwcaps);
1265 
1266 	if (system_supports_32bit_el0())
1267 		setup_elf_hwcaps(compat_elf_hwcaps);
1268 
1269 	sve_setup();
1270 
1271 	/* Advertise that we have computed the system capabilities */
1272 	set_sys_caps_initialised();
1273 
1274 	/*
1275 	 * Check for sane CTR_EL0.CWG value.
1276 	 */
1277 	cwg = cache_type_cwg();
1278 	cls = cache_line_size();
1279 	if (!cwg)
1280 		pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1281 			cls);
1282 	if (L1_CACHE_BYTES < cls)
1283 		pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1284 			L1_CACHE_BYTES, cls);
1285 }
1286 
1287 static bool __maybe_unused
1288 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1289 {
1290 	return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1291 }
1292 
1293 /*
1294  * We emulate only the following system register space.
1295  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1296  * See Table C5-6 System instruction encodings for System register accesses,
1297  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1298  */
1299 static inline bool __attribute_const__ is_emulated(u32 id)
1300 {
1301 	return (sys_reg_Op0(id) == 0x3 &&
1302 		sys_reg_CRn(id) == 0x0 &&
1303 		sys_reg_Op1(id) == 0x0 &&
1304 		(sys_reg_CRm(id) == 0 ||
1305 		 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
1306 }
1307 
1308 /*
1309  * With CRm == 0, reg should be one of :
1310  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1311  */
1312 static inline int emulate_id_reg(u32 id, u64 *valp)
1313 {
1314 	switch (id) {
1315 	case SYS_MIDR_EL1:
1316 		*valp = read_cpuid_id();
1317 		break;
1318 	case SYS_MPIDR_EL1:
1319 		*valp = SYS_MPIDR_SAFE_VAL;
1320 		break;
1321 	case SYS_REVIDR_EL1:
1322 		/* IMPLEMENTATION DEFINED values are emulated with 0 */
1323 		*valp = 0;
1324 		break;
1325 	default:
1326 		return -EINVAL;
1327 	}
1328 
1329 	return 0;
1330 }
1331 
1332 static int emulate_sys_reg(u32 id, u64 *valp)
1333 {
1334 	struct arm64_ftr_reg *regp;
1335 
1336 	if (!is_emulated(id))
1337 		return -EINVAL;
1338 
1339 	if (sys_reg_CRm(id) == 0)
1340 		return emulate_id_reg(id, valp);
1341 
1342 	regp = get_arm64_ftr_reg(id);
1343 	if (regp)
1344 		*valp = arm64_ftr_reg_user_value(regp);
1345 	else
1346 		/*
1347 		 * The untracked registers are either IMPLEMENTATION DEFINED
1348 		 * (e.g, ID_AFR0_EL1) or reserved RAZ.
1349 		 */
1350 		*valp = 0;
1351 	return 0;
1352 }
1353 
1354 static int emulate_mrs(struct pt_regs *regs, u32 insn)
1355 {
1356 	int rc;
1357 	u32 sys_reg, dst;
1358 	u64 val;
1359 
1360 	/*
1361 	 * sys_reg values are defined as used in mrs/msr instruction.
1362 	 * shift the imm value to get the encoding.
1363 	 */
1364 	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
1365 	rc = emulate_sys_reg(sys_reg, &val);
1366 	if (!rc) {
1367 		dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
1368 		pt_regs_write_reg(regs, dst, val);
1369 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1370 	}
1371 
1372 	return rc;
1373 }
1374 
1375 static struct undef_hook mrs_hook = {
1376 	.instr_mask = 0xfff00000,
1377 	.instr_val  = 0xd5300000,
1378 	.pstate_mask = COMPAT_PSR_MODE_MASK,
1379 	.pstate_val = PSR_MODE_EL0t,
1380 	.fn = emulate_mrs,
1381 };
1382 
1383 static int __init enable_mrs_emulation(void)
1384 {
1385 	register_undef_hook(&mrs_hook);
1386 	return 0;
1387 }
1388 
1389 core_initcall(enable_mrs_emulation);
1390