xref: /openbmc/linux/arch/arm64/kernel/cpufeature.c (revision 65b96377)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Contains CPU feature definitions
4  *
5  * Copyright (C) 2015 ARM Ltd.
6  *
7  * A note for the weary kernel hacker: the code here is confusing and hard to
8  * follow! That's partly because it's solving a nasty problem, but also because
9  * there's a little bit of over-abstraction that tends to obscure what's going
10  * on behind a maze of helper functions and macros.
11  *
12  * The basic problem is that hardware folks have started gluing together CPUs
13  * with distinct architectural features; in some cases even creating SoCs where
14  * user-visible instructions are available only on a subset of the available
15  * cores. We try to address this by snapshotting the feature registers of the
16  * boot CPU and comparing these with the feature registers of each secondary
17  * CPU when bringing them up. If there is a mismatch, then we update the
18  * snapshot state to indicate the lowest-common denominator of the feature,
19  * known as the "safe" value. This snapshot state can be queried to view the
20  * "sanitised" value of a feature register.
21  *
22  * The sanitised register values are used to decide which capabilities we
23  * have in the system. These may be in the form of traditional "hwcaps"
24  * advertised to userspace or internal "cpucaps" which are used to configure
25  * things like alternative patching and static keys. While a feature mismatch
26  * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27  * may prevent a CPU from being onlined at all.
28  *
29  * Some implementation details worth remembering:
30  *
31  * - Mismatched features are *always* sanitised to a "safe" value, which
32  *   usually indicates that the feature is not supported.
33  *
34  * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35  *   warning when onlining an offending CPU and the kernel will be tainted
36  *   with TAINT_CPU_OUT_OF_SPEC.
37  *
38  * - Features marked as FTR_VISIBLE have their sanitised value visible to
39  *   userspace. FTR_VISIBLE features in registers that are only visible
40  *   to EL0 by trapping *must* have a corresponding HWCAP so that late
41  *   onlining of CPUs cannot lead to features disappearing at runtime.
42  *
43  * - A "feature" is typically a 4-bit register field. A "capability" is the
44  *   high-level description derived from the sanitised field value.
45  *
46  * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47  *   scheme for fields in ID registers") to understand when feature fields
48  *   may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49  *
50  * - KVM exposes its own view of the feature registers to guest operating
51  *   systems regardless of FTR_VISIBLE. This is typically driven from the
52  *   sanitised register values to allow virtual CPUs to be migrated between
53  *   arbitrary physical CPUs, but some features not present on the host are
54  *   also advertised and emulated. Look at sys_reg_descs[] for the gory
55  *   details.
56  *
57  * - If the arm64_ftr_bits[] for a register has a missing field, then this
58  *   field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59  *   This is stronger than FTR_HIDDEN and can be used to hide features from
60  *   KVM guests.
61  */
62 
63 #define pr_fmt(fmt) "CPU features: " fmt
64 
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/sort.h>
69 #include <linux/stop_machine.h>
70 #include <linux/sysfs.h>
71 #include <linux/types.h>
72 #include <linux/minmax.h>
73 #include <linux/mm.h>
74 #include <linux/cpu.h>
75 #include <linux/kasan.h>
76 #include <linux/percpu.h>
77 
78 #include <asm/cpu.h>
79 #include <asm/cpufeature.h>
80 #include <asm/cpu_ops.h>
81 #include <asm/fpsimd.h>
82 #include <asm/insn.h>
83 #include <asm/kvm_host.h>
84 #include <asm/mmu_context.h>
85 #include <asm/mte.h>
86 #include <asm/processor.h>
87 #include <asm/smp.h>
88 #include <asm/sysreg.h>
89 #include <asm/traps.h>
90 #include <asm/vectors.h>
91 #include <asm/virt.h>
92 
93 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
94 static unsigned long elf_hwcap __read_mostly;
95 
96 #ifdef CONFIG_COMPAT
97 #define COMPAT_ELF_HWCAP_DEFAULT	\
98 				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
99 				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
100 				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
101 				 COMPAT_HWCAP_LPAE)
102 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
103 unsigned int compat_elf_hwcap2 __read_mostly;
104 #endif
105 
106 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
107 EXPORT_SYMBOL(cpu_hwcaps);
108 static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
109 
110 /* Need also bit for ARM64_CB_PATCH */
111 DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
112 
113 bool arm64_use_ng_mappings = false;
114 EXPORT_SYMBOL(arm64_use_ng_mappings);
115 
116 DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors;
117 
118 /*
119  * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
120  * support it?
121  */
122 static bool __read_mostly allow_mismatched_32bit_el0;
123 
124 /*
125  * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
126  * seen at least one CPU capable of 32-bit EL0.
127  */
128 DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
129 
130 /*
131  * Mask of CPUs supporting 32-bit EL0.
132  * Only valid if arm64_mismatched_32bit_el0 is enabled.
133  */
134 static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
135 
136 /*
137  * Flag to indicate if we have computed the system wide
138  * capabilities based on the boot time active CPUs. This
139  * will be used to determine if a new booting CPU should
140  * go through the verification process to make sure that it
141  * supports the system capabilities, without using a hotplug
142  * notifier. This is also used to decide if we could use
143  * the fast path for checking constant CPU caps.
144  */
145 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
146 EXPORT_SYMBOL(arm64_const_caps_ready);
147 static inline void finalize_system_capabilities(void)
148 {
149 	static_branch_enable(&arm64_const_caps_ready);
150 }
151 
152 void dump_cpu_features(void)
153 {
154 	/* file-wide pr_fmt adds "CPU features: " prefix */
155 	pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
156 }
157 
158 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
159 EXPORT_SYMBOL(cpu_hwcap_keys);
160 
161 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
162 	{						\
163 		.sign = SIGNED,				\
164 		.visible = VISIBLE,			\
165 		.strict = STRICT,			\
166 		.type = TYPE,				\
167 		.shift = SHIFT,				\
168 		.width = WIDTH,				\
169 		.safe_val = SAFE_VAL,			\
170 	}
171 
172 /* Define a feature with unsigned values */
173 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
174 	__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
175 
176 /* Define a feature with a signed value */
177 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
178 	__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
179 
180 #define ARM64_FTR_END					\
181 	{						\
182 		.width = 0,				\
183 	}
184 
185 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
186 
187 static bool __system_matches_cap(unsigned int n);
188 
189 /*
190  * NOTE: Any changes to the visibility of features should be kept in
191  * sync with the documentation of the CPU feature register ABI.
192  */
193 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
194 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RNDR_SHIFT, 4, 0),
195 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TLB_SHIFT, 4, 0),
196 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
197 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
198 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
199 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
200 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
201 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
202 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
203 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
204 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
205 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
206 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
207 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
208 	ARM64_FTR_END,
209 };
210 
211 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
212 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_I8MM_SHIFT, 4, 0),
213 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DGH_SHIFT, 4, 0),
214 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_BF16_SHIFT, 4, 0),
215 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SPECRES_SHIFT, 4, 0),
216 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SB_SHIFT, 4, 0),
217 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FRINTTS_SHIFT, 4, 0),
218 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
219 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPI_SHIFT, 4, 0),
220 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
221 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPA_SHIFT, 4, 0),
222 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
223 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
224 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
225 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
226 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_API_SHIFT, 4, 0),
227 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
228 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_APA_SHIFT, 4, 0),
229 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
230 	ARM64_FTR_END,
231 };
232 
233 static const struct arm64_ftr_bits ftr_id_aa64isar2[] = {
234 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64ISAR2_CLEARBHB_SHIFT, 4, 0),
235 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
236 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_APA3_SHIFT, 4, 0),
237 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
238 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_GPA3_SHIFT, 4, 0),
239 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_RPRES_SHIFT, 4, 0),
240 	ARM64_FTR_END,
241 };
242 
243 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
244 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
245 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
246 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
247 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_AMU_SHIFT, 4, 0),
248 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_MPAM_SHIFT, 4, 0),
249 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SEL2_SHIFT, 4, 0),
250 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
251 				   FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
252 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
253 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
254 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
255 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
256 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
257 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
258 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_ELx_64BIT_ONLY),
259 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_ELx_64BIT_ONLY),
260 	ARM64_FTR_END,
261 };
262 
263 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
264 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MPAMFRAC_SHIFT, 4, 0),
265 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_RASFRAC_SHIFT, 4, 0),
266 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
267 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MTE_SHIFT, 4, ID_AA64PFR1_MTE_NI),
268 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
269 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
270 				    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_BT_SHIFT, 4, 0),
271 	ARM64_FTR_END,
272 };
273 
274 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
275 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
276 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F64MM_SHIFT, 4, 0),
277 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
278 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F32MM_SHIFT, 4, 0),
279 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
280 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_I8MM_SHIFT, 4, 0),
281 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
282 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SM4_SHIFT, 4, 0),
283 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
284 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SHA3_SHIFT, 4, 0),
285 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
286 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BF16_SHIFT, 4, 0),
287 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
288 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BITPERM_SHIFT, 4, 0),
289 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
290 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_AES_SHIFT, 4, 0),
291 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
292 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SVEVER_SHIFT, 4, 0),
293 	ARM64_FTR_END,
294 };
295 
296 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
297 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ECV_SHIFT, 4, 0),
298 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_FGT_SHIFT, 4, 0),
299 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EXS_SHIFT, 4, 0),
300 	/*
301 	 * Page size not being supported at Stage-2 is not fatal. You
302 	 * just give up KVM if PAGE_SIZE isn't supported there. Go fix
303 	 * your favourite nesting hypervisor.
304 	 *
305 	 * There is a small corner case where the hypervisor explicitly
306 	 * advertises a given granule size at Stage-2 (value 2) on some
307 	 * vCPUs, and uses the fallback to Stage-1 (value 0) for other
308 	 * vCPUs. Although this is not forbidden by the architecture, it
309 	 * indicates that the hypervisor is being silly (or buggy).
310 	 *
311 	 * We make no effort to cope with this and pretend that if these
312 	 * fields are inconsistent across vCPUs, then it isn't worth
313 	 * trying to bring KVM up.
314 	 */
315 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_2_SHIFT, 4, 1),
316 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_2_SHIFT, 4, 1),
317 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_2_SHIFT, 4, 1),
318 	/*
319 	 * We already refuse to boot CPUs that don't support our configured
320 	 * page size, so we can only detect mismatches for a page size other
321 	 * than the one we're currently using. Unfortunately, SoCs like this
322 	 * exist in the wild so, even though we don't like it, we'll have to go
323 	 * along with it and treat them as non-strict.
324 	 */
325 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
326 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
327 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
328 
329 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
330 	/* Linux shouldn't care about secure memory */
331 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
332 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
333 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
334 	/*
335 	 * Differing PARange is fine as long as all peripherals and memory are mapped
336 	 * within the minimum PARange of all CPUs
337 	 */
338 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
339 	ARM64_FTR_END,
340 };
341 
342 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
343 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_AFP_SHIFT, 4, 0),
344 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_ETS_SHIFT, 4, 0),
345 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_TWED_SHIFT, 4, 0),
346 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_XNX_SHIFT, 4, 0),
347 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_SPECSEI_SHIFT, 4, 0),
348 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
349 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
350 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
351 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
352 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
353 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
354 	ARM64_FTR_END,
355 };
356 
357 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
358 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_E0PD_SHIFT, 4, 0),
359 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EVT_SHIFT, 4, 0),
360 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_BBM_SHIFT, 4, 0),
361 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_TTL_SHIFT, 4, 0),
362 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
363 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IDS_SHIFT, 4, 0),
364 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
365 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_ST_SHIFT, 4, 0),
366 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_NV_SHIFT, 4, 0),
367 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CCIDX_SHIFT, 4, 0),
368 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
369 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
370 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
371 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
372 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
373 	ARM64_FTR_END,
374 };
375 
376 static const struct arm64_ftr_bits ftr_ctr[] = {
377 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
378 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
379 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
380 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_CWG_SHIFT, 4, 0),
381 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_ERG_SHIFT, 4, 0),
382 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
383 	/*
384 	 * Linux can handle differing I-cache policies. Userspace JITs will
385 	 * make use of *minLine.
386 	 * If we have differing I-cache policies, report it as the weakest - VIPT.
387 	 */
388 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_L1IP_SHIFT, 2, ICACHE_POLICY_VIPT),	/* L1Ip */
389 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
390 	ARM64_FTR_END,
391 };
392 
393 static struct arm64_ftr_override __ro_after_init no_override = { };
394 
395 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
396 	.name		= "SYS_CTR_EL0",
397 	.ftr_bits	= ftr_ctr,
398 	.override	= &no_override,
399 };
400 
401 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
402 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_INNERSHR_SHIFT, 4, 0xf),
403 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_FCSE_SHIFT, 4, 0),
404 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_AUXREG_SHIFT, 4, 0),
405 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_TCM_SHIFT, 4, 0),
406 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_SHARELVL_SHIFT, 4, 0),
407 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_OUTERSHR_SHIFT, 4, 0xf),
408 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_PMSA_SHIFT, 4, 0),
409 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_VMSA_SHIFT, 4, 0),
410 	ARM64_FTR_END,
411 };
412 
413 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
414 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_DOUBLELOCK_SHIFT, 4, 0),
415 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
416 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
417 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
418 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
419 	/*
420 	 * We can instantiate multiple PMU instances with different levels
421 	 * of support.
422 	 */
423 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
424 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
425 	ARM64_FTR_END,
426 };
427 
428 static const struct arm64_ftr_bits ftr_mvfr2[] = {
429 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_FPMISC_SHIFT, 4, 0),
430 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_SIMDMISC_SHIFT, 4, 0),
431 	ARM64_FTR_END,
432 };
433 
434 static const struct arm64_ftr_bits ftr_dczid[] = {
435 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_DZP_SHIFT, 1, 1),
436 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_BS_SHIFT, 4, 0),
437 	ARM64_FTR_END,
438 };
439 
440 static const struct arm64_ftr_bits ftr_gmid[] = {
441 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, SYS_GMID_EL1_BS_SHIFT, 4, 0),
442 	ARM64_FTR_END,
443 };
444 
445 static const struct arm64_ftr_bits ftr_id_isar0[] = {
446 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DIVIDE_SHIFT, 4, 0),
447 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DEBUG_SHIFT, 4, 0),
448 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_COPROC_SHIFT, 4, 0),
449 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_CMPBRANCH_SHIFT, 4, 0),
450 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITFIELD_SHIFT, 4, 0),
451 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITCOUNT_SHIFT, 4, 0),
452 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_SWAP_SHIFT, 4, 0),
453 	ARM64_FTR_END,
454 };
455 
456 static const struct arm64_ftr_bits ftr_id_isar5[] = {
457 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
458 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
459 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
460 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
461 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
462 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
463 	ARM64_FTR_END,
464 };
465 
466 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
467 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EVT_SHIFT, 4, 0),
468 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CCIDX_SHIFT, 4, 0),
469 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_LSM_SHIFT, 4, 0),
470 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_HPDS_SHIFT, 4, 0),
471 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CNP_SHIFT, 4, 0),
472 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_XNX_SHIFT, 4, 0),
473 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_AC2_SHIFT, 4, 0),
474 
475 	/*
476 	 * SpecSEI = 1 indicates that the PE might generate an SError on an
477 	 * external abort on speculative read. It is safe to assume that an
478 	 * SError might be generated than it will not be. Hence it has been
479 	 * classified as FTR_HIGHER_SAFE.
480 	 */
481 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_SPECSEI_SHIFT, 4, 0),
482 	ARM64_FTR_END,
483 };
484 
485 static const struct arm64_ftr_bits ftr_id_isar4[] = {
486 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SWP_FRAC_SHIFT, 4, 0),
487 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_PSR_M_SHIFT, 4, 0),
488 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SYNCH_PRIM_FRAC_SHIFT, 4, 0),
489 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_BARRIER_SHIFT, 4, 0),
490 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SMC_SHIFT, 4, 0),
491 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WRITEBACK_SHIFT, 4, 0),
492 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WITHSHIFTS_SHIFT, 4, 0),
493 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_UNPRIV_SHIFT, 4, 0),
494 	ARM64_FTR_END,
495 };
496 
497 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
498 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_ETS_SHIFT, 4, 0),
499 	ARM64_FTR_END,
500 };
501 
502 static const struct arm64_ftr_bits ftr_id_isar6[] = {
503 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_I8MM_SHIFT, 4, 0),
504 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_BF16_SHIFT, 4, 0),
505 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SPECRES_SHIFT, 4, 0),
506 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SB_SHIFT, 4, 0),
507 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_FHM_SHIFT, 4, 0),
508 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_DP_SHIFT, 4, 0),
509 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_JSCVT_SHIFT, 4, 0),
510 	ARM64_FTR_END,
511 };
512 
513 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
514 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_DIT_SHIFT, 4, 0),
515 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_CSV2_SHIFT, 4, 0),
516 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE3_SHIFT, 4, 0),
517 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE2_SHIFT, 4, 0),
518 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE1_SHIFT, 4, 0),
519 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE0_SHIFT, 4, 0),
520 	ARM64_FTR_END,
521 };
522 
523 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
524 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GIC_SHIFT, 4, 0),
525 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRT_FRAC_SHIFT, 4, 0),
526 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SEC_FRAC_SHIFT, 4, 0),
527 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GENTIMER_SHIFT, 4, 0),
528 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRTUALIZATION_SHIFT, 4, 0),
529 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_MPROGMOD_SHIFT, 4, 0),
530 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SECURITY_SHIFT, 4, 0),
531 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_PROGMOD_SHIFT, 4, 0),
532 	ARM64_FTR_END,
533 };
534 
535 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
536 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_SSBS_SHIFT, 4, 0),
537 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_CSV3_SHIFT, 4, 0),
538 	ARM64_FTR_END,
539 };
540 
541 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
542 	/* [31:28] TraceFilt */
543 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_PERFMON_SHIFT, 4, 0xf),
544 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MPROFDBG_SHIFT, 4, 0),
545 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPTRC_SHIFT, 4, 0),
546 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPTRC_SHIFT, 4, 0),
547 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPDBG_SHIFT, 4, 0),
548 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPSDBG_SHIFT, 4, 0),
549 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPDBG_SHIFT, 4, 0),
550 	ARM64_FTR_END,
551 };
552 
553 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
554 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_MTPMU_SHIFT, 4, 0),
555 	ARM64_FTR_END,
556 };
557 
558 static const struct arm64_ftr_bits ftr_zcr[] = {
559 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
560 		ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),	/* LEN */
561 	ARM64_FTR_END,
562 };
563 
564 /*
565  * Common ftr bits for a 32bit register with all hidden, strict
566  * attributes, with 4bit feature fields and a default safe value of
567  * 0. Covers the following 32bit registers:
568  * id_isar[1-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
569  */
570 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
571 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
572 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
573 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
574 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
575 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
576 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
577 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
578 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
579 	ARM64_FTR_END,
580 };
581 
582 /* Table for a single 32bit feature value */
583 static const struct arm64_ftr_bits ftr_single32[] = {
584 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
585 	ARM64_FTR_END,
586 };
587 
588 static const struct arm64_ftr_bits ftr_raz[] = {
589 	ARM64_FTR_END,
590 };
591 
592 #define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) {	\
593 		.sys_id = id,					\
594 		.reg = 	&(struct arm64_ftr_reg){		\
595 			.name = id_str,				\
596 			.override = (ovr),			\
597 			.ftr_bits = &((table)[0]),		\
598 	}}
599 
600 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr)	\
601 	__ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr)
602 
603 #define ARM64_FTR_REG(id, table)		\
604 	__ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
605 
606 struct arm64_ftr_override __ro_after_init id_aa64mmfr1_override;
607 struct arm64_ftr_override __ro_after_init id_aa64pfr1_override;
608 struct arm64_ftr_override __ro_after_init id_aa64isar1_override;
609 struct arm64_ftr_override __ro_after_init id_aa64isar2_override;
610 
611 static const struct __ftr_reg_entry {
612 	u32			sys_id;
613 	struct arm64_ftr_reg 	*reg;
614 } arm64_ftr_regs[] = {
615 
616 	/* Op1 = 0, CRn = 0, CRm = 1 */
617 	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
618 	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
619 	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
620 	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
621 	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
622 	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
623 	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
624 
625 	/* Op1 = 0, CRn = 0, CRm = 2 */
626 	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
627 	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
628 	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
629 	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
630 	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
631 	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
632 	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
633 	ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
634 
635 	/* Op1 = 0, CRn = 0, CRm = 3 */
636 	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
637 	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
638 	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
639 	ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
640 	ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
641 	ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
642 
643 	/* Op1 = 0, CRn = 0, CRm = 4 */
644 	ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
645 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
646 			       &id_aa64pfr1_override),
647 	ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0),
648 
649 	/* Op1 = 0, CRn = 0, CRm = 5 */
650 	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
651 	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
652 
653 	/* Op1 = 0, CRn = 0, CRm = 6 */
654 	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
655 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
656 			       &id_aa64isar1_override),
657 	ARM64_FTR_REG(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2),
658 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2,
659 			       &id_aa64isar2_override),
660 
661 	/* Op1 = 0, CRn = 0, CRm = 7 */
662 	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
663 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
664 			       &id_aa64mmfr1_override),
665 	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
666 
667 	/* Op1 = 0, CRn = 1, CRm = 2 */
668 	ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
669 
670 	/* Op1 = 1, CRn = 0, CRm = 0 */
671 	ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
672 
673 	/* Op1 = 3, CRn = 0, CRm = 0 */
674 	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
675 	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
676 
677 	/* Op1 = 3, CRn = 14, CRm = 0 */
678 	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
679 };
680 
681 static int search_cmp_ftr_reg(const void *id, const void *regp)
682 {
683 	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
684 }
685 
686 /*
687  * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
688  * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
689  * ascending order of sys_id, we use binary search to find a matching
690  * entry.
691  *
692  * returns - Upon success,  matching ftr_reg entry for id.
693  *         - NULL on failure. It is upto the caller to decide
694  *	     the impact of a failure.
695  */
696 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
697 {
698 	const struct __ftr_reg_entry *ret;
699 
700 	ret = bsearch((const void *)(unsigned long)sys_id,
701 			arm64_ftr_regs,
702 			ARRAY_SIZE(arm64_ftr_regs),
703 			sizeof(arm64_ftr_regs[0]),
704 			search_cmp_ftr_reg);
705 	if (ret)
706 		return ret->reg;
707 	return NULL;
708 }
709 
710 /*
711  * get_arm64_ftr_reg - Looks up a feature register entry using
712  * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
713  *
714  * returns - Upon success,  matching ftr_reg entry for id.
715  *         - NULL on failure but with an WARN_ON().
716  */
717 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
718 {
719 	struct arm64_ftr_reg *reg;
720 
721 	reg = get_arm64_ftr_reg_nowarn(sys_id);
722 
723 	/*
724 	 * Requesting a non-existent register search is an error. Warn
725 	 * and let the caller handle it.
726 	 */
727 	WARN_ON(!reg);
728 	return reg;
729 }
730 
731 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
732 			       s64 ftr_val)
733 {
734 	u64 mask = arm64_ftr_mask(ftrp);
735 
736 	reg &= ~mask;
737 	reg |= (ftr_val << ftrp->shift) & mask;
738 	return reg;
739 }
740 
741 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
742 				s64 cur)
743 {
744 	s64 ret = 0;
745 
746 	switch (ftrp->type) {
747 	case FTR_EXACT:
748 		ret = ftrp->safe_val;
749 		break;
750 	case FTR_LOWER_SAFE:
751 		ret = min(new, cur);
752 		break;
753 	case FTR_HIGHER_OR_ZERO_SAFE:
754 		if (!cur || !new)
755 			break;
756 		fallthrough;
757 	case FTR_HIGHER_SAFE:
758 		ret = max(new, cur);
759 		break;
760 	default:
761 		BUG();
762 	}
763 
764 	return ret;
765 }
766 
767 static void __init sort_ftr_regs(void)
768 {
769 	unsigned int i;
770 
771 	for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
772 		const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
773 		const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
774 		unsigned int j = 0;
775 
776 		/*
777 		 * Features here must be sorted in descending order with respect
778 		 * to their shift values and should not overlap with each other.
779 		 */
780 		for (; ftr_bits->width != 0; ftr_bits++, j++) {
781 			unsigned int width = ftr_reg->ftr_bits[j].width;
782 			unsigned int shift = ftr_reg->ftr_bits[j].shift;
783 			unsigned int prev_shift;
784 
785 			WARN((shift  + width) > 64,
786 				"%s has invalid feature at shift %d\n",
787 				ftr_reg->name, shift);
788 
789 			/*
790 			 * Skip the first feature. There is nothing to
791 			 * compare against for now.
792 			 */
793 			if (j == 0)
794 				continue;
795 
796 			prev_shift = ftr_reg->ftr_bits[j - 1].shift;
797 			WARN((shift + width) > prev_shift,
798 				"%s has feature overlap at shift %d\n",
799 				ftr_reg->name, shift);
800 		}
801 
802 		/*
803 		 * Skip the first register. There is nothing to
804 		 * compare against for now.
805 		 */
806 		if (i == 0)
807 			continue;
808 		/*
809 		 * Registers here must be sorted in ascending order with respect
810 		 * to sys_id for subsequent binary search in get_arm64_ftr_reg()
811 		 * to work correctly.
812 		 */
813 		BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
814 	}
815 }
816 
817 /*
818  * Initialise the CPU feature register from Boot CPU values.
819  * Also initiliases the strict_mask for the register.
820  * Any bits that are not covered by an arm64_ftr_bits entry are considered
821  * RES0 for the system-wide value, and must strictly match.
822  */
823 static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
824 {
825 	u64 val = 0;
826 	u64 strict_mask = ~0x0ULL;
827 	u64 user_mask = 0;
828 	u64 valid_mask = 0;
829 
830 	const struct arm64_ftr_bits *ftrp;
831 	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
832 
833 	if (!reg)
834 		return;
835 
836 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
837 		u64 ftr_mask = arm64_ftr_mask(ftrp);
838 		s64 ftr_new = arm64_ftr_value(ftrp, new);
839 		s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
840 
841 		if ((ftr_mask & reg->override->mask) == ftr_mask) {
842 			s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
843 			char *str = NULL;
844 
845 			if (ftr_ovr != tmp) {
846 				/* Unsafe, remove the override */
847 				reg->override->mask &= ~ftr_mask;
848 				reg->override->val &= ~ftr_mask;
849 				tmp = ftr_ovr;
850 				str = "ignoring override";
851 			} else if (ftr_new != tmp) {
852 				/* Override was valid */
853 				ftr_new = tmp;
854 				str = "forced";
855 			} else if (ftr_ovr == tmp) {
856 				/* Override was the safe value */
857 				str = "already set";
858 			}
859 
860 			if (str)
861 				pr_warn("%s[%d:%d]: %s to %llx\n",
862 					reg->name,
863 					ftrp->shift + ftrp->width - 1,
864 					ftrp->shift, str, tmp);
865 		} else if ((ftr_mask & reg->override->val) == ftr_mask) {
866 			reg->override->val &= ~ftr_mask;
867 			pr_warn("%s[%d:%d]: impossible override, ignored\n",
868 				reg->name,
869 				ftrp->shift + ftrp->width - 1,
870 				ftrp->shift);
871 		}
872 
873 		val = arm64_ftr_set_value(ftrp, val, ftr_new);
874 
875 		valid_mask |= ftr_mask;
876 		if (!ftrp->strict)
877 			strict_mask &= ~ftr_mask;
878 		if (ftrp->visible)
879 			user_mask |= ftr_mask;
880 		else
881 			reg->user_val = arm64_ftr_set_value(ftrp,
882 							    reg->user_val,
883 							    ftrp->safe_val);
884 	}
885 
886 	val &= valid_mask;
887 
888 	reg->sys_val = val;
889 	reg->strict_mask = strict_mask;
890 	reg->user_mask = user_mask;
891 }
892 
893 extern const struct arm64_cpu_capabilities arm64_errata[];
894 static const struct arm64_cpu_capabilities arm64_features[];
895 
896 static void __init
897 init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
898 {
899 	for (; caps->matches; caps++) {
900 		if (WARN(caps->capability >= ARM64_NCAPS,
901 			"Invalid capability %d\n", caps->capability))
902 			continue;
903 		if (WARN(cpu_hwcaps_ptrs[caps->capability],
904 			"Duplicate entry for capability %d\n",
905 			caps->capability))
906 			continue;
907 		cpu_hwcaps_ptrs[caps->capability] = caps;
908 	}
909 }
910 
911 static void __init init_cpu_hwcaps_indirect_list(void)
912 {
913 	init_cpu_hwcaps_indirect_list_from_array(arm64_features);
914 	init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
915 }
916 
917 static void __init setup_boot_cpu_capabilities(void);
918 
919 static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
920 {
921 	init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
922 	init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
923 	init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
924 	init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
925 	init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
926 	init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
927 	init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
928 	init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
929 	init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
930 	init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
931 	init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
932 	init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
933 	init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
934 	init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
935 	init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
936 	init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
937 	init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
938 	init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
939 	init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
940 	init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
941 	init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
942 }
943 
944 void __init init_cpu_features(struct cpuinfo_arm64 *info)
945 {
946 	/* Before we start using the tables, make sure it is sorted */
947 	sort_ftr_regs();
948 
949 	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
950 	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
951 	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
952 	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
953 	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
954 	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
955 	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
956 	init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2);
957 	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
958 	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
959 	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
960 	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
961 	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
962 	init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
963 
964 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
965 		init_32bit_cpu_features(&info->aarch32);
966 
967 	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
968 		init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
969 		vec_init_vq_map(ARM64_VEC_SVE);
970 	}
971 
972 	if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
973 		init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
974 
975 	/*
976 	 * Initialize the indirect array of CPU hwcaps capabilities pointers
977 	 * before we handle the boot CPU below.
978 	 */
979 	init_cpu_hwcaps_indirect_list();
980 
981 	/*
982 	 * Detect and enable early CPU capabilities based on the boot CPU,
983 	 * after we have initialised the CPU feature infrastructure.
984 	 */
985 	setup_boot_cpu_capabilities();
986 }
987 
988 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
989 {
990 	const struct arm64_ftr_bits *ftrp;
991 
992 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
993 		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
994 		s64 ftr_new = arm64_ftr_value(ftrp, new);
995 
996 		if (ftr_cur == ftr_new)
997 			continue;
998 		/* Find a safe value */
999 		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
1000 		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
1001 	}
1002 
1003 }
1004 
1005 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
1006 {
1007 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1008 
1009 	if (!regp)
1010 		return 0;
1011 
1012 	update_cpu_ftr_reg(regp, val);
1013 	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
1014 		return 0;
1015 	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
1016 			regp->name, boot, cpu, val);
1017 	return 1;
1018 }
1019 
1020 static void relax_cpu_ftr_reg(u32 sys_id, int field)
1021 {
1022 	const struct arm64_ftr_bits *ftrp;
1023 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1024 
1025 	if (!regp)
1026 		return;
1027 
1028 	for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
1029 		if (ftrp->shift == field) {
1030 			regp->strict_mask &= ~arm64_ftr_mask(ftrp);
1031 			break;
1032 		}
1033 	}
1034 
1035 	/* Bogus field? */
1036 	WARN_ON(!ftrp->width);
1037 }
1038 
1039 static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
1040 					 struct cpuinfo_arm64 *boot)
1041 {
1042 	static bool boot_cpu_32bit_regs_overridden = false;
1043 
1044 	if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
1045 		return;
1046 
1047 	if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
1048 		return;
1049 
1050 	boot->aarch32 = info->aarch32;
1051 	init_32bit_cpu_features(&boot->aarch32);
1052 	boot_cpu_32bit_regs_overridden = true;
1053 }
1054 
1055 static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
1056 				     struct cpuinfo_32bit *boot)
1057 {
1058 	int taint = 0;
1059 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1060 
1061 	/*
1062 	 * If we don't have AArch32 at EL1, then relax the strictness of
1063 	 * EL1-dependent register fields to avoid spurious sanity check fails.
1064 	 */
1065 	if (!id_aa64pfr0_32bit_el1(pfr0)) {
1066 		relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_SMC_SHIFT);
1067 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRT_FRAC_SHIFT);
1068 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SEC_FRAC_SHIFT);
1069 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRTUALIZATION_SHIFT);
1070 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SECURITY_SHIFT);
1071 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_PROGMOD_SHIFT);
1072 	}
1073 
1074 	taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1075 				      info->reg_id_dfr0, boot->reg_id_dfr0);
1076 	taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1077 				      info->reg_id_dfr1, boot->reg_id_dfr1);
1078 	taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1079 				      info->reg_id_isar0, boot->reg_id_isar0);
1080 	taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1081 				      info->reg_id_isar1, boot->reg_id_isar1);
1082 	taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1083 				      info->reg_id_isar2, boot->reg_id_isar2);
1084 	taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1085 				      info->reg_id_isar3, boot->reg_id_isar3);
1086 	taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1087 				      info->reg_id_isar4, boot->reg_id_isar4);
1088 	taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1089 				      info->reg_id_isar5, boot->reg_id_isar5);
1090 	taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1091 				      info->reg_id_isar6, boot->reg_id_isar6);
1092 
1093 	/*
1094 	 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1095 	 * ACTLR formats could differ across CPUs and therefore would have to
1096 	 * be trapped for virtualization anyway.
1097 	 */
1098 	taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1099 				      info->reg_id_mmfr0, boot->reg_id_mmfr0);
1100 	taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1101 				      info->reg_id_mmfr1, boot->reg_id_mmfr1);
1102 	taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1103 				      info->reg_id_mmfr2, boot->reg_id_mmfr2);
1104 	taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1105 				      info->reg_id_mmfr3, boot->reg_id_mmfr3);
1106 	taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1107 				      info->reg_id_mmfr4, boot->reg_id_mmfr4);
1108 	taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1109 				      info->reg_id_mmfr5, boot->reg_id_mmfr5);
1110 	taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1111 				      info->reg_id_pfr0, boot->reg_id_pfr0);
1112 	taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1113 				      info->reg_id_pfr1, boot->reg_id_pfr1);
1114 	taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1115 				      info->reg_id_pfr2, boot->reg_id_pfr2);
1116 	taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1117 				      info->reg_mvfr0, boot->reg_mvfr0);
1118 	taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1119 				      info->reg_mvfr1, boot->reg_mvfr1);
1120 	taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1121 				      info->reg_mvfr2, boot->reg_mvfr2);
1122 
1123 	return taint;
1124 }
1125 
1126 /*
1127  * Update system wide CPU feature registers with the values from a
1128  * non-boot CPU. Also performs SANITY checks to make sure that there
1129  * aren't any insane variations from that of the boot CPU.
1130  */
1131 void update_cpu_features(int cpu,
1132 			 struct cpuinfo_arm64 *info,
1133 			 struct cpuinfo_arm64 *boot)
1134 {
1135 	int taint = 0;
1136 
1137 	/*
1138 	 * The kernel can handle differing I-cache policies, but otherwise
1139 	 * caches should look identical. Userspace JITs will make use of
1140 	 * *minLine.
1141 	 */
1142 	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1143 				      info->reg_ctr, boot->reg_ctr);
1144 
1145 	/*
1146 	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
1147 	 * could result in too much or too little memory being zeroed if a
1148 	 * process is preempted and migrated between CPUs.
1149 	 */
1150 	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1151 				      info->reg_dczid, boot->reg_dczid);
1152 
1153 	/* If different, timekeeping will be broken (especially with KVM) */
1154 	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1155 				      info->reg_cntfrq, boot->reg_cntfrq);
1156 
1157 	/*
1158 	 * The kernel uses self-hosted debug features and expects CPUs to
1159 	 * support identical debug features. We presently need CTX_CMPs, WRPs,
1160 	 * and BRPs to be identical.
1161 	 * ID_AA64DFR1 is currently RES0.
1162 	 */
1163 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1164 				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1165 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1166 				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1167 	/*
1168 	 * Even in big.LITTLE, processors should be identical instruction-set
1169 	 * wise.
1170 	 */
1171 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1172 				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1173 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1174 				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1175 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu,
1176 				      info->reg_id_aa64isar2, boot->reg_id_aa64isar2);
1177 
1178 	/*
1179 	 * Differing PARange support is fine as long as all peripherals and
1180 	 * memory are mapped within the minimum PARange of all CPUs.
1181 	 * Linux should not care about secure memory.
1182 	 */
1183 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1184 				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1185 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1186 				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1187 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1188 				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1189 
1190 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1191 				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1192 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1193 				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1194 
1195 	taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1196 				      info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1197 
1198 	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
1199 		taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
1200 					info->reg_zcr, boot->reg_zcr);
1201 
1202 		/* Probe vector lengths, unless we already gave up on SVE */
1203 		if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
1204 		    !system_capabilities_finalized())
1205 			vec_update_vq_map(ARM64_VEC_SVE);
1206 	}
1207 
1208 	/*
1209 	 * The kernel uses the LDGM/STGM instructions and the number of tags
1210 	 * they read/write depends on the GMID_EL1.BS field. Check that the
1211 	 * value is the same on all CPUs.
1212 	 */
1213 	if (IS_ENABLED(CONFIG_ARM64_MTE) &&
1214 	    id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
1215 		taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
1216 					      info->reg_gmid, boot->reg_gmid);
1217 	}
1218 
1219 	/*
1220 	 * If we don't have AArch32 at all then skip the checks entirely
1221 	 * as the register values may be UNKNOWN and we're not going to be
1222 	 * using them for anything.
1223 	 *
1224 	 * This relies on a sanitised view of the AArch64 ID registers
1225 	 * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1226 	 */
1227 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
1228 		lazy_init_32bit_cpu_features(info, boot);
1229 		taint |= update_32bit_cpu_features(cpu, &info->aarch32,
1230 						   &boot->aarch32);
1231 	}
1232 
1233 	/*
1234 	 * Mismatched CPU features are a recipe for disaster. Don't even
1235 	 * pretend to support them.
1236 	 */
1237 	if (taint) {
1238 		pr_warn_once("Unsupported CPU feature variation detected.\n");
1239 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1240 	}
1241 }
1242 
1243 u64 read_sanitised_ftr_reg(u32 id)
1244 {
1245 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1246 
1247 	if (!regp)
1248 		return 0;
1249 	return regp->sys_val;
1250 }
1251 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1252 
1253 #define read_sysreg_case(r)	\
1254 	case r:		val = read_sysreg_s(r); break;
1255 
1256 /*
1257  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1258  * Read the system register on the current CPU
1259  */
1260 u64 __read_sysreg_by_encoding(u32 sys_id)
1261 {
1262 	struct arm64_ftr_reg *regp;
1263 	u64 val;
1264 
1265 	switch (sys_id) {
1266 	read_sysreg_case(SYS_ID_PFR0_EL1);
1267 	read_sysreg_case(SYS_ID_PFR1_EL1);
1268 	read_sysreg_case(SYS_ID_PFR2_EL1);
1269 	read_sysreg_case(SYS_ID_DFR0_EL1);
1270 	read_sysreg_case(SYS_ID_DFR1_EL1);
1271 	read_sysreg_case(SYS_ID_MMFR0_EL1);
1272 	read_sysreg_case(SYS_ID_MMFR1_EL1);
1273 	read_sysreg_case(SYS_ID_MMFR2_EL1);
1274 	read_sysreg_case(SYS_ID_MMFR3_EL1);
1275 	read_sysreg_case(SYS_ID_MMFR4_EL1);
1276 	read_sysreg_case(SYS_ID_MMFR5_EL1);
1277 	read_sysreg_case(SYS_ID_ISAR0_EL1);
1278 	read_sysreg_case(SYS_ID_ISAR1_EL1);
1279 	read_sysreg_case(SYS_ID_ISAR2_EL1);
1280 	read_sysreg_case(SYS_ID_ISAR3_EL1);
1281 	read_sysreg_case(SYS_ID_ISAR4_EL1);
1282 	read_sysreg_case(SYS_ID_ISAR5_EL1);
1283 	read_sysreg_case(SYS_ID_ISAR6_EL1);
1284 	read_sysreg_case(SYS_MVFR0_EL1);
1285 	read_sysreg_case(SYS_MVFR1_EL1);
1286 	read_sysreg_case(SYS_MVFR2_EL1);
1287 
1288 	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1289 	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1290 	read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1291 	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1292 	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1293 	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1294 	read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1295 	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1296 	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1297 	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1298 	read_sysreg_case(SYS_ID_AA64ISAR2_EL1);
1299 
1300 	read_sysreg_case(SYS_CNTFRQ_EL0);
1301 	read_sysreg_case(SYS_CTR_EL0);
1302 	read_sysreg_case(SYS_DCZID_EL0);
1303 
1304 	default:
1305 		BUG();
1306 		return 0;
1307 	}
1308 
1309 	regp  = get_arm64_ftr_reg(sys_id);
1310 	if (regp) {
1311 		val &= ~regp->override->mask;
1312 		val |= (regp->override->val & regp->override->mask);
1313 	}
1314 
1315 	return val;
1316 }
1317 
1318 #include <linux/irqchip/arm-gic-v3.h>
1319 
1320 static bool
1321 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1322 {
1323 	int val = cpuid_feature_extract_field_width(reg, entry->field_pos,
1324 						    entry->field_width,
1325 						    entry->sign);
1326 
1327 	return val >= entry->min_field_value;
1328 }
1329 
1330 static bool
1331 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1332 {
1333 	u64 val;
1334 
1335 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1336 	if (scope == SCOPE_SYSTEM)
1337 		val = read_sanitised_ftr_reg(entry->sys_reg);
1338 	else
1339 		val = __read_sysreg_by_encoding(entry->sys_reg);
1340 
1341 	return feature_matches(val, entry);
1342 }
1343 
1344 const struct cpumask *system_32bit_el0_cpumask(void)
1345 {
1346 	if (!system_supports_32bit_el0())
1347 		return cpu_none_mask;
1348 
1349 	if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
1350 		return cpu_32bit_el0_mask;
1351 
1352 	return cpu_possible_mask;
1353 }
1354 
1355 static int __init parse_32bit_el0_param(char *str)
1356 {
1357 	allow_mismatched_32bit_el0 = true;
1358 	return 0;
1359 }
1360 early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
1361 
1362 static ssize_t aarch32_el0_show(struct device *dev,
1363 				struct device_attribute *attr, char *buf)
1364 {
1365 	const struct cpumask *mask = system_32bit_el0_cpumask();
1366 
1367 	return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
1368 }
1369 static const DEVICE_ATTR_RO(aarch32_el0);
1370 
1371 static int __init aarch32_el0_sysfs_init(void)
1372 {
1373 	if (!allow_mismatched_32bit_el0)
1374 		return 0;
1375 
1376 	return device_create_file(cpu_subsys.dev_root, &dev_attr_aarch32_el0);
1377 }
1378 device_initcall(aarch32_el0_sysfs_init);
1379 
1380 static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
1381 {
1382 	if (!has_cpuid_feature(entry, scope))
1383 		return allow_mismatched_32bit_el0;
1384 
1385 	if (scope == SCOPE_SYSTEM)
1386 		pr_info("detected: 32-bit EL0 Support\n");
1387 
1388 	return true;
1389 }
1390 
1391 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1392 {
1393 	bool has_sre;
1394 
1395 	if (!has_cpuid_feature(entry, scope))
1396 		return false;
1397 
1398 	has_sre = gic_enable_sre();
1399 	if (!has_sre)
1400 		pr_warn_once("%s present but disabled by higher exception level\n",
1401 			     entry->desc);
1402 
1403 	return has_sre;
1404 }
1405 
1406 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
1407 {
1408 	u32 midr = read_cpuid_id();
1409 
1410 	/* Cavium ThunderX pass 1.x and 2.x */
1411 	return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
1412 		MIDR_CPU_VAR_REV(0, 0),
1413 		MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
1414 }
1415 
1416 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
1417 {
1418 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1419 
1420 	return cpuid_feature_extract_signed_field(pfr0,
1421 					ID_AA64PFR0_FP_SHIFT) < 0;
1422 }
1423 
1424 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1425 			  int scope)
1426 {
1427 	u64 ctr;
1428 
1429 	if (scope == SCOPE_SYSTEM)
1430 		ctr = arm64_ftr_reg_ctrel0.sys_val;
1431 	else
1432 		ctr = read_cpuid_effective_cachetype();
1433 
1434 	return ctr & BIT(CTR_IDC_SHIFT);
1435 }
1436 
1437 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1438 {
1439 	/*
1440 	 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1441 	 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1442 	 * to the CTR_EL0 on this CPU and emulate it with the real/safe
1443 	 * value.
1444 	 */
1445 	if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT)))
1446 		sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1447 }
1448 
1449 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1450 			  int scope)
1451 {
1452 	u64 ctr;
1453 
1454 	if (scope == SCOPE_SYSTEM)
1455 		ctr = arm64_ftr_reg_ctrel0.sys_val;
1456 	else
1457 		ctr = read_cpuid_cachetype();
1458 
1459 	return ctr & BIT(CTR_DIC_SHIFT);
1460 }
1461 
1462 static bool __maybe_unused
1463 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1464 {
1465 	/*
1466 	 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1467 	 * may share TLB entries with a CPU stuck in the crashed
1468 	 * kernel.
1469 	 */
1470 	if (is_kdump_kernel())
1471 		return false;
1472 
1473 	if (cpus_have_const_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
1474 		return false;
1475 
1476 	return has_cpuid_feature(entry, scope);
1477 }
1478 
1479 /*
1480  * This check is triggered during the early boot before the cpufeature
1481  * is initialised. Checking the status on the local CPU allows the boot
1482  * CPU to detect the need for non-global mappings and thus avoiding a
1483  * pagetable re-write after all the CPUs are booted. This check will be
1484  * anyway run on individual CPUs, allowing us to get the consistent
1485  * state once the SMP CPUs are up and thus make the switch to non-global
1486  * mappings if required.
1487  */
1488 bool kaslr_requires_kpti(void)
1489 {
1490 	if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
1491 		return false;
1492 
1493 	/*
1494 	 * E0PD does a similar job to KPTI so can be used instead
1495 	 * where available.
1496 	 */
1497 	if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
1498 		u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
1499 		if (cpuid_feature_extract_unsigned_field(mmfr2,
1500 						ID_AA64MMFR2_E0PD_SHIFT))
1501 			return false;
1502 	}
1503 
1504 	/*
1505 	 * Systems affected by Cavium erratum 24756 are incompatible
1506 	 * with KPTI.
1507 	 */
1508 	if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
1509 		extern const struct midr_range cavium_erratum_27456_cpus[];
1510 
1511 		if (is_midr_in_range_list(read_cpuid_id(),
1512 					  cavium_erratum_27456_cpus))
1513 			return false;
1514 	}
1515 
1516 	return kaslr_offset() > 0;
1517 }
1518 
1519 static bool __meltdown_safe = true;
1520 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1521 
1522 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1523 				int scope)
1524 {
1525 	/* List of CPUs that are not vulnerable and don't need KPTI */
1526 	static const struct midr_range kpti_safe_list[] = {
1527 		MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1528 		MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1529 		MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1530 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1531 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1532 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1533 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1534 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1535 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1536 		MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1537 		MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1538 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1539 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1540 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1541 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1542 		{ /* sentinel */ }
1543 	};
1544 	char const *str = "kpti command line option";
1545 	bool meltdown_safe;
1546 
1547 	meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1548 
1549 	/* Defer to CPU feature registers */
1550 	if (has_cpuid_feature(entry, scope))
1551 		meltdown_safe = true;
1552 
1553 	if (!meltdown_safe)
1554 		__meltdown_safe = false;
1555 
1556 	/*
1557 	 * For reasons that aren't entirely clear, enabling KPTI on Cavium
1558 	 * ThunderX leads to apparent I-cache corruption of kernel text, which
1559 	 * ends as well as you might imagine. Don't even try. We cannot rely
1560 	 * on the cpus_have_*cap() helpers here to detect the CPU erratum
1561 	 * because cpucap detection order may change. However, since we know
1562 	 * affected CPUs are always in a homogeneous configuration, it is
1563 	 * safe to rely on this_cpu_has_cap() here.
1564 	 */
1565 	if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1566 		str = "ARM64_WORKAROUND_CAVIUM_27456";
1567 		__kpti_forced = -1;
1568 	}
1569 
1570 	/* Useful for KASLR robustness */
1571 	if (kaslr_requires_kpti()) {
1572 		if (!__kpti_forced) {
1573 			str = "KASLR";
1574 			__kpti_forced = 1;
1575 		}
1576 	}
1577 
1578 	if (cpu_mitigations_off() && !__kpti_forced) {
1579 		str = "mitigations=off";
1580 		__kpti_forced = -1;
1581 	}
1582 
1583 	if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1584 		pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1585 		return false;
1586 	}
1587 
1588 	/* Forced? */
1589 	if (__kpti_forced) {
1590 		pr_info_once("kernel page table isolation forced %s by %s\n",
1591 			     __kpti_forced > 0 ? "ON" : "OFF", str);
1592 		return __kpti_forced > 0;
1593 	}
1594 
1595 	return !meltdown_safe;
1596 }
1597 
1598 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1599 static void __nocfi
1600 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1601 {
1602 	typedef void (kpti_remap_fn)(int, int, phys_addr_t);
1603 	extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1604 	kpti_remap_fn *remap_fn;
1605 
1606 	int cpu = smp_processor_id();
1607 
1608 	if (__this_cpu_read(this_cpu_vector) == vectors) {
1609 		const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI);
1610 
1611 		__this_cpu_write(this_cpu_vector, v);
1612 	}
1613 
1614 	/*
1615 	 * We don't need to rewrite the page-tables if either we've done
1616 	 * it already or we have KASLR enabled and therefore have not
1617 	 * created any global mappings at all.
1618 	 */
1619 	if (arm64_use_ng_mappings)
1620 		return;
1621 
1622 	remap_fn = (void *)__pa_symbol(function_nocfi(idmap_kpti_install_ng_mappings));
1623 
1624 	cpu_install_idmap();
1625 	remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
1626 	cpu_uninstall_idmap();
1627 
1628 	if (!cpu)
1629 		arm64_use_ng_mappings = true;
1630 }
1631 #else
1632 static void
1633 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1634 {
1635 }
1636 #endif	/* CONFIG_UNMAP_KERNEL_AT_EL0 */
1637 
1638 static int __init parse_kpti(char *str)
1639 {
1640 	bool enabled;
1641 	int ret = strtobool(str, &enabled);
1642 
1643 	if (ret)
1644 		return ret;
1645 
1646 	__kpti_forced = enabled ? 1 : -1;
1647 	return 0;
1648 }
1649 early_param("kpti", parse_kpti);
1650 
1651 #ifdef CONFIG_ARM64_HW_AFDBM
1652 static inline void __cpu_enable_hw_dbm(void)
1653 {
1654 	u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1655 
1656 	write_sysreg(tcr, tcr_el1);
1657 	isb();
1658 	local_flush_tlb_all();
1659 }
1660 
1661 static bool cpu_has_broken_dbm(void)
1662 {
1663 	/* List of CPUs which have broken DBM support. */
1664 	static const struct midr_range cpus[] = {
1665 #ifdef CONFIG_ARM64_ERRATUM_1024718
1666 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1667 		/* Kryo4xx Silver (rdpe => r1p0) */
1668 		MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
1669 #endif
1670 #ifdef CONFIG_ARM64_ERRATUM_2051678
1671 		MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2),
1672 #endif
1673 		{},
1674 	};
1675 
1676 	return is_midr_in_range_list(read_cpuid_id(), cpus);
1677 }
1678 
1679 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1680 {
1681 	return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1682 	       !cpu_has_broken_dbm();
1683 }
1684 
1685 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1686 {
1687 	if (cpu_can_use_dbm(cap))
1688 		__cpu_enable_hw_dbm();
1689 }
1690 
1691 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1692 		       int __unused)
1693 {
1694 	static bool detected = false;
1695 	/*
1696 	 * DBM is a non-conflicting feature. i.e, the kernel can safely
1697 	 * run a mix of CPUs with and without the feature. So, we
1698 	 * unconditionally enable the capability to allow any late CPU
1699 	 * to use the feature. We only enable the control bits on the
1700 	 * CPU, if it actually supports.
1701 	 *
1702 	 * We have to make sure we print the "feature" detection only
1703 	 * when at least one CPU actually uses it. So check if this CPU
1704 	 * can actually use it and print the message exactly once.
1705 	 *
1706 	 * This is safe as all CPUs (including secondary CPUs - due to the
1707 	 * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1708 	 * goes through the "matches" check exactly once. Also if a CPU
1709 	 * matches the criteria, it is guaranteed that the CPU will turn
1710 	 * the DBM on, as the capability is unconditionally enabled.
1711 	 */
1712 	if (!detected && cpu_can_use_dbm(cap)) {
1713 		detected = true;
1714 		pr_info("detected: Hardware dirty bit management\n");
1715 	}
1716 
1717 	return true;
1718 }
1719 
1720 #endif
1721 
1722 #ifdef CONFIG_ARM64_AMU_EXTN
1723 
1724 /*
1725  * The "amu_cpus" cpumask only signals that the CPU implementation for the
1726  * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
1727  * information regarding all the events that it supports. When a CPU bit is
1728  * set in the cpumask, the user of this feature can only rely on the presence
1729  * of the 4 fixed counters for that CPU. But this does not guarantee that the
1730  * counters are enabled or access to these counters is enabled by code
1731  * executed at higher exception levels (firmware).
1732  */
1733 static struct cpumask amu_cpus __read_mostly;
1734 
1735 bool cpu_has_amu_feat(int cpu)
1736 {
1737 	return cpumask_test_cpu(cpu, &amu_cpus);
1738 }
1739 
1740 int get_cpu_with_amu_feat(void)
1741 {
1742 	return cpumask_any(&amu_cpus);
1743 }
1744 
1745 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
1746 {
1747 	if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
1748 		pr_info("detected CPU%d: Activity Monitors Unit (AMU)\n",
1749 			smp_processor_id());
1750 		cpumask_set_cpu(smp_processor_id(), &amu_cpus);
1751 		update_freq_counters_refs();
1752 	}
1753 }
1754 
1755 static bool has_amu(const struct arm64_cpu_capabilities *cap,
1756 		    int __unused)
1757 {
1758 	/*
1759 	 * The AMU extension is a non-conflicting feature: the kernel can
1760 	 * safely run a mix of CPUs with and without support for the
1761 	 * activity monitors extension. Therefore, unconditionally enable
1762 	 * the capability to allow any late CPU to use the feature.
1763 	 *
1764 	 * With this feature unconditionally enabled, the cpu_enable
1765 	 * function will be called for all CPUs that match the criteria,
1766 	 * including secondary and hotplugged, marking this feature as
1767 	 * present on that respective CPU. The enable function will also
1768 	 * print a detection message.
1769 	 */
1770 
1771 	return true;
1772 }
1773 #else
1774 int get_cpu_with_amu_feat(void)
1775 {
1776 	return nr_cpu_ids;
1777 }
1778 #endif
1779 
1780 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1781 {
1782 	return is_kernel_in_hyp_mode();
1783 }
1784 
1785 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1786 {
1787 	/*
1788 	 * Copy register values that aren't redirected by hardware.
1789 	 *
1790 	 * Before code patching, we only set tpidr_el1, all CPUs need to copy
1791 	 * this value to tpidr_el2 before we patch the code. Once we've done
1792 	 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1793 	 * do anything here.
1794 	 */
1795 	if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
1796 		write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1797 }
1798 
1799 #ifdef CONFIG_ARM64_PAN
1800 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
1801 {
1802 	/*
1803 	 * We modify PSTATE. This won't work from irq context as the PSTATE
1804 	 * is discarded once we return from the exception.
1805 	 */
1806 	WARN_ON_ONCE(in_interrupt());
1807 
1808 	sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
1809 	set_pstate_pan(1);
1810 }
1811 #endif /* CONFIG_ARM64_PAN */
1812 
1813 #ifdef CONFIG_ARM64_RAS_EXTN
1814 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1815 {
1816 	/* Firmware may have left a deferred SError in this register. */
1817 	write_sysreg_s(0, SYS_DISR_EL1);
1818 }
1819 #endif /* CONFIG_ARM64_RAS_EXTN */
1820 
1821 #ifdef CONFIG_ARM64_PTR_AUTH
1822 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
1823 {
1824 	int boot_val, sec_val;
1825 
1826 	/* We don't expect to be called with SCOPE_SYSTEM */
1827 	WARN_ON(scope == SCOPE_SYSTEM);
1828 	/*
1829 	 * The ptr-auth feature levels are not intercompatible with lower
1830 	 * levels. Hence we must match ptr-auth feature level of the secondary
1831 	 * CPUs with that of the boot CPU. The level of boot cpu is fetched
1832 	 * from the sanitised register whereas direct register read is done for
1833 	 * the secondary CPUs.
1834 	 * The sanitised feature state is guaranteed to match that of the
1835 	 * boot CPU as a mismatched secondary CPU is parked before it gets
1836 	 * a chance to update the state, with the capability.
1837 	 */
1838 	boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
1839 					       entry->field_pos, entry->sign);
1840 	if (scope & SCOPE_BOOT_CPU)
1841 		return boot_val >= entry->min_field_value;
1842 	/* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
1843 	sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
1844 					      entry->field_pos, entry->sign);
1845 	return (sec_val >= entry->min_field_value) && (sec_val == boot_val);
1846 }
1847 
1848 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
1849 				     int scope)
1850 {
1851 	bool api = has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
1852 	bool apa = has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope);
1853 	bool apa3 = has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope);
1854 
1855 	return apa || apa3 || api;
1856 }
1857 
1858 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
1859 			     int __unused)
1860 {
1861 	bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
1862 	bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5);
1863 	bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3);
1864 
1865 	return gpa || gpa3 || gpi;
1866 }
1867 #endif /* CONFIG_ARM64_PTR_AUTH */
1868 
1869 #ifdef CONFIG_ARM64_E0PD
1870 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
1871 {
1872 	if (this_cpu_has_cap(ARM64_HAS_E0PD))
1873 		sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
1874 }
1875 #endif /* CONFIG_ARM64_E0PD */
1876 
1877 #ifdef CONFIG_ARM64_PSEUDO_NMI
1878 static bool enable_pseudo_nmi;
1879 
1880 static int __init early_enable_pseudo_nmi(char *p)
1881 {
1882 	return strtobool(p, &enable_pseudo_nmi);
1883 }
1884 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1885 
1886 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
1887 				   int scope)
1888 {
1889 	return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope);
1890 }
1891 #endif
1892 
1893 #ifdef CONFIG_ARM64_BTI
1894 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
1895 {
1896 	/*
1897 	 * Use of X16/X17 for tail-calls and trampolines that jump to
1898 	 * function entry points using BR is a requirement for
1899 	 * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
1900 	 * So, be strict and forbid other BRs using other registers to
1901 	 * jump onto a PACIxSP instruction:
1902 	 */
1903 	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
1904 	isb();
1905 }
1906 #endif /* CONFIG_ARM64_BTI */
1907 
1908 #ifdef CONFIG_ARM64_MTE
1909 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
1910 {
1911 	sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
1912 	isb();
1913 
1914 	/*
1915 	 * Clear the tags in the zero page. This needs to be done via the
1916 	 * linear map which has the Tagged attribute.
1917 	 */
1918 	if (!test_and_set_bit(PG_mte_tagged, &ZERO_PAGE(0)->flags))
1919 		mte_clear_page_tags(lm_alias(empty_zero_page));
1920 
1921 	kasan_init_hw_tags_cpu();
1922 }
1923 #endif /* CONFIG_ARM64_MTE */
1924 
1925 #ifdef CONFIG_KVM
1926 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
1927 {
1928 	if (kvm_get_mode() != KVM_MODE_PROTECTED)
1929 		return false;
1930 
1931 	if (is_kernel_in_hyp_mode()) {
1932 		pr_warn("Protected KVM not available with VHE\n");
1933 		return false;
1934 	}
1935 
1936 	return true;
1937 }
1938 #endif /* CONFIG_KVM */
1939 
1940 /* Internal helper functions to match cpu capability type */
1941 static bool
1942 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
1943 {
1944 	return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
1945 }
1946 
1947 static bool
1948 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
1949 {
1950 	return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
1951 }
1952 
1953 static bool
1954 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
1955 {
1956 	return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
1957 }
1958 
1959 static const struct arm64_cpu_capabilities arm64_features[] = {
1960 	{
1961 		.desc = "GIC system register CPU interface",
1962 		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
1963 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1964 		.matches = has_useable_gicv3_cpuif,
1965 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1966 		.field_pos = ID_AA64PFR0_GIC_SHIFT,
1967 		.field_width = 4,
1968 		.sign = FTR_UNSIGNED,
1969 		.min_field_value = 1,
1970 	},
1971 	{
1972 		.desc = "Enhanced Counter Virtualization",
1973 		.capability = ARM64_HAS_ECV,
1974 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1975 		.matches = has_cpuid_feature,
1976 		.sys_reg = SYS_ID_AA64MMFR0_EL1,
1977 		.field_pos = ID_AA64MMFR0_ECV_SHIFT,
1978 		.field_width = 4,
1979 		.sign = FTR_UNSIGNED,
1980 		.min_field_value = 1,
1981 	},
1982 #ifdef CONFIG_ARM64_PAN
1983 	{
1984 		.desc = "Privileged Access Never",
1985 		.capability = ARM64_HAS_PAN,
1986 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1987 		.matches = has_cpuid_feature,
1988 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
1989 		.field_pos = ID_AA64MMFR1_PAN_SHIFT,
1990 		.field_width = 4,
1991 		.sign = FTR_UNSIGNED,
1992 		.min_field_value = 1,
1993 		.cpu_enable = cpu_enable_pan,
1994 	},
1995 #endif /* CONFIG_ARM64_PAN */
1996 #ifdef CONFIG_ARM64_EPAN
1997 	{
1998 		.desc = "Enhanced Privileged Access Never",
1999 		.capability = ARM64_HAS_EPAN,
2000 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2001 		.matches = has_cpuid_feature,
2002 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
2003 		.field_pos = ID_AA64MMFR1_PAN_SHIFT,
2004 		.field_width = 4,
2005 		.sign = FTR_UNSIGNED,
2006 		.min_field_value = 3,
2007 	},
2008 #endif /* CONFIG_ARM64_EPAN */
2009 #ifdef CONFIG_ARM64_LSE_ATOMICS
2010 	{
2011 		.desc = "LSE atomic instructions",
2012 		.capability = ARM64_HAS_LSE_ATOMICS,
2013 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2014 		.matches = has_cpuid_feature,
2015 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
2016 		.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
2017 		.field_width = 4,
2018 		.sign = FTR_UNSIGNED,
2019 		.min_field_value = 2,
2020 	},
2021 #endif /* CONFIG_ARM64_LSE_ATOMICS */
2022 	{
2023 		.desc = "Software prefetching using PRFM",
2024 		.capability = ARM64_HAS_NO_HW_PREFETCH,
2025 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2026 		.matches = has_no_hw_prefetch,
2027 	},
2028 	{
2029 		.desc = "Virtualization Host Extensions",
2030 		.capability = ARM64_HAS_VIRT_HOST_EXTN,
2031 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2032 		.matches = runs_at_el2,
2033 		.cpu_enable = cpu_copy_el2regs,
2034 	},
2035 	{
2036 		.capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
2037 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2038 		.matches = has_32bit_el0,
2039 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2040 		.sign = FTR_UNSIGNED,
2041 		.field_pos = ID_AA64PFR0_EL0_SHIFT,
2042 		.field_width = 4,
2043 		.min_field_value = ID_AA64PFR0_ELx_32BIT_64BIT,
2044 	},
2045 #ifdef CONFIG_KVM
2046 	{
2047 		.desc = "32-bit EL1 Support",
2048 		.capability = ARM64_HAS_32BIT_EL1,
2049 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2050 		.matches = has_cpuid_feature,
2051 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2052 		.sign = FTR_UNSIGNED,
2053 		.field_pos = ID_AA64PFR0_EL1_SHIFT,
2054 		.field_width = 4,
2055 		.min_field_value = ID_AA64PFR0_ELx_32BIT_64BIT,
2056 	},
2057 	{
2058 		.desc = "Protected KVM",
2059 		.capability = ARM64_KVM_PROTECTED_MODE,
2060 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2061 		.matches = is_kvm_protected_mode,
2062 	},
2063 #endif
2064 	{
2065 		.desc = "Kernel page table isolation (KPTI)",
2066 		.capability = ARM64_UNMAP_KERNEL_AT_EL0,
2067 		.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2068 		/*
2069 		 * The ID feature fields below are used to indicate that
2070 		 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
2071 		 * more details.
2072 		 */
2073 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2074 		.field_pos = ID_AA64PFR0_CSV3_SHIFT,
2075 		.field_width = 4,
2076 		.min_field_value = 1,
2077 		.matches = unmap_kernel_at_el0,
2078 		.cpu_enable = kpti_install_ng_mappings,
2079 	},
2080 	{
2081 		/* FP/SIMD is not implemented */
2082 		.capability = ARM64_HAS_NO_FPSIMD,
2083 		.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2084 		.min_field_value = 0,
2085 		.matches = has_no_fpsimd,
2086 	},
2087 #ifdef CONFIG_ARM64_PMEM
2088 	{
2089 		.desc = "Data cache clean to Point of Persistence",
2090 		.capability = ARM64_HAS_DCPOP,
2091 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2092 		.matches = has_cpuid_feature,
2093 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2094 		.field_pos = ID_AA64ISAR1_DPB_SHIFT,
2095 		.field_width = 4,
2096 		.min_field_value = 1,
2097 	},
2098 	{
2099 		.desc = "Data cache clean to Point of Deep Persistence",
2100 		.capability = ARM64_HAS_DCPODP,
2101 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2102 		.matches = has_cpuid_feature,
2103 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2104 		.sign = FTR_UNSIGNED,
2105 		.field_pos = ID_AA64ISAR1_DPB_SHIFT,
2106 		.field_width = 4,
2107 		.min_field_value = 2,
2108 	},
2109 #endif
2110 #ifdef CONFIG_ARM64_SVE
2111 	{
2112 		.desc = "Scalable Vector Extension",
2113 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2114 		.capability = ARM64_SVE,
2115 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2116 		.sign = FTR_UNSIGNED,
2117 		.field_pos = ID_AA64PFR0_SVE_SHIFT,
2118 		.field_width = 4,
2119 		.min_field_value = ID_AA64PFR0_SVE,
2120 		.matches = has_cpuid_feature,
2121 		.cpu_enable = sve_kernel_enable,
2122 	},
2123 #endif /* CONFIG_ARM64_SVE */
2124 #ifdef CONFIG_ARM64_RAS_EXTN
2125 	{
2126 		.desc = "RAS Extension Support",
2127 		.capability = ARM64_HAS_RAS_EXTN,
2128 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2129 		.matches = has_cpuid_feature,
2130 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2131 		.sign = FTR_UNSIGNED,
2132 		.field_pos = ID_AA64PFR0_RAS_SHIFT,
2133 		.field_width = 4,
2134 		.min_field_value = ID_AA64PFR0_RAS_V1,
2135 		.cpu_enable = cpu_clear_disr,
2136 	},
2137 #endif /* CONFIG_ARM64_RAS_EXTN */
2138 #ifdef CONFIG_ARM64_AMU_EXTN
2139 	{
2140 		/*
2141 		 * The feature is enabled by default if CONFIG_ARM64_AMU_EXTN=y.
2142 		 * Therefore, don't provide .desc as we don't want the detection
2143 		 * message to be shown until at least one CPU is detected to
2144 		 * support the feature.
2145 		 */
2146 		.capability = ARM64_HAS_AMU_EXTN,
2147 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2148 		.matches = has_amu,
2149 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2150 		.sign = FTR_UNSIGNED,
2151 		.field_pos = ID_AA64PFR0_AMU_SHIFT,
2152 		.field_width = 4,
2153 		.min_field_value = ID_AA64PFR0_AMU,
2154 		.cpu_enable = cpu_amu_enable,
2155 	},
2156 #endif /* CONFIG_ARM64_AMU_EXTN */
2157 	{
2158 		.desc = "Data cache clean to the PoU not required for I/D coherence",
2159 		.capability = ARM64_HAS_CACHE_IDC,
2160 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2161 		.matches = has_cache_idc,
2162 		.cpu_enable = cpu_emulate_effective_ctr,
2163 	},
2164 	{
2165 		.desc = "Instruction cache invalidation not required for I/D coherence",
2166 		.capability = ARM64_HAS_CACHE_DIC,
2167 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2168 		.matches = has_cache_dic,
2169 	},
2170 	{
2171 		.desc = "Stage-2 Force Write-Back",
2172 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2173 		.capability = ARM64_HAS_STAGE2_FWB,
2174 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
2175 		.sign = FTR_UNSIGNED,
2176 		.field_pos = ID_AA64MMFR2_FWB_SHIFT,
2177 		.field_width = 4,
2178 		.min_field_value = 1,
2179 		.matches = has_cpuid_feature,
2180 	},
2181 	{
2182 		.desc = "ARMv8.4 Translation Table Level",
2183 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2184 		.capability = ARM64_HAS_ARMv8_4_TTL,
2185 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
2186 		.sign = FTR_UNSIGNED,
2187 		.field_pos = ID_AA64MMFR2_TTL_SHIFT,
2188 		.field_width = 4,
2189 		.min_field_value = 1,
2190 		.matches = has_cpuid_feature,
2191 	},
2192 	{
2193 		.desc = "TLB range maintenance instructions",
2194 		.capability = ARM64_HAS_TLB_RANGE,
2195 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2196 		.matches = has_cpuid_feature,
2197 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
2198 		.field_pos = ID_AA64ISAR0_TLB_SHIFT,
2199 		.field_width = 4,
2200 		.sign = FTR_UNSIGNED,
2201 		.min_field_value = ID_AA64ISAR0_TLB_RANGE,
2202 	},
2203 #ifdef CONFIG_ARM64_HW_AFDBM
2204 	{
2205 		/*
2206 		 * Since we turn this on always, we don't want the user to
2207 		 * think that the feature is available when it may not be.
2208 		 * So hide the description.
2209 		 *
2210 		 * .desc = "Hardware pagetable Dirty Bit Management",
2211 		 *
2212 		 */
2213 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2214 		.capability = ARM64_HW_DBM,
2215 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
2216 		.sign = FTR_UNSIGNED,
2217 		.field_pos = ID_AA64MMFR1_HADBS_SHIFT,
2218 		.field_width = 4,
2219 		.min_field_value = 2,
2220 		.matches = has_hw_dbm,
2221 		.cpu_enable = cpu_enable_hw_dbm,
2222 	},
2223 #endif
2224 	{
2225 		.desc = "CRC32 instructions",
2226 		.capability = ARM64_HAS_CRC32,
2227 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2228 		.matches = has_cpuid_feature,
2229 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
2230 		.field_pos = ID_AA64ISAR0_CRC32_SHIFT,
2231 		.field_width = 4,
2232 		.min_field_value = 1,
2233 	},
2234 	{
2235 		.desc = "Speculative Store Bypassing Safe (SSBS)",
2236 		.capability = ARM64_SSBS,
2237 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2238 		.matches = has_cpuid_feature,
2239 		.sys_reg = SYS_ID_AA64PFR1_EL1,
2240 		.field_pos = ID_AA64PFR1_SSBS_SHIFT,
2241 		.field_width = 4,
2242 		.sign = FTR_UNSIGNED,
2243 		.min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
2244 	},
2245 #ifdef CONFIG_ARM64_CNP
2246 	{
2247 		.desc = "Common not Private translations",
2248 		.capability = ARM64_HAS_CNP,
2249 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2250 		.matches = has_useable_cnp,
2251 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
2252 		.sign = FTR_UNSIGNED,
2253 		.field_pos = ID_AA64MMFR2_CNP_SHIFT,
2254 		.field_width = 4,
2255 		.min_field_value = 1,
2256 		.cpu_enable = cpu_enable_cnp,
2257 	},
2258 #endif
2259 	{
2260 		.desc = "Speculation barrier (SB)",
2261 		.capability = ARM64_HAS_SB,
2262 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2263 		.matches = has_cpuid_feature,
2264 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2265 		.field_pos = ID_AA64ISAR1_SB_SHIFT,
2266 		.field_width = 4,
2267 		.sign = FTR_UNSIGNED,
2268 		.min_field_value = 1,
2269 	},
2270 #ifdef CONFIG_ARM64_PTR_AUTH
2271 	{
2272 		.desc = "Address authentication (architected QARMA5 algorithm)",
2273 		.capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5,
2274 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2275 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2276 		.sign = FTR_UNSIGNED,
2277 		.field_pos = ID_AA64ISAR1_APA_SHIFT,
2278 		.field_width = 4,
2279 		.min_field_value = ID_AA64ISAR1_APA_ARCHITECTED,
2280 		.matches = has_address_auth_cpucap,
2281 	},
2282 	{
2283 		.desc = "Address authentication (architected QARMA3 algorithm)",
2284 		.capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3,
2285 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2286 		.sys_reg = SYS_ID_AA64ISAR2_EL1,
2287 		.sign = FTR_UNSIGNED,
2288 		.field_pos = ID_AA64ISAR2_APA3_SHIFT,
2289 		.field_width = 4,
2290 		.min_field_value = ID_AA64ISAR2_APA3_ARCHITECTED,
2291 		.matches = has_address_auth_cpucap,
2292 	},
2293 	{
2294 		.desc = "Address authentication (IMP DEF algorithm)",
2295 		.capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2296 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2297 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2298 		.sign = FTR_UNSIGNED,
2299 		.field_pos = ID_AA64ISAR1_API_SHIFT,
2300 		.field_width = 4,
2301 		.min_field_value = ID_AA64ISAR1_API_IMP_DEF,
2302 		.matches = has_address_auth_cpucap,
2303 	},
2304 	{
2305 		.capability = ARM64_HAS_ADDRESS_AUTH,
2306 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2307 		.matches = has_address_auth_metacap,
2308 	},
2309 	{
2310 		.desc = "Generic authentication (architected QARMA5 algorithm)",
2311 		.capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5,
2312 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2313 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2314 		.sign = FTR_UNSIGNED,
2315 		.field_pos = ID_AA64ISAR1_GPA_SHIFT,
2316 		.field_width = 4,
2317 		.min_field_value = ID_AA64ISAR1_GPA_ARCHITECTED,
2318 		.matches = has_cpuid_feature,
2319 	},
2320 	{
2321 		.desc = "Generic authentication (architected QARMA3 algorithm)",
2322 		.capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3,
2323 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2324 		.sys_reg = SYS_ID_AA64ISAR2_EL1,
2325 		.sign = FTR_UNSIGNED,
2326 		.field_pos = ID_AA64ISAR2_GPA3_SHIFT,
2327 		.field_width = 4,
2328 		.min_field_value = ID_AA64ISAR2_GPA3_ARCHITECTED,
2329 		.matches = has_cpuid_feature,
2330 	},
2331 	{
2332 		.desc = "Generic authentication (IMP DEF algorithm)",
2333 		.capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2334 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2335 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2336 		.sign = FTR_UNSIGNED,
2337 		.field_pos = ID_AA64ISAR1_GPI_SHIFT,
2338 		.field_width = 4,
2339 		.min_field_value = ID_AA64ISAR1_GPI_IMP_DEF,
2340 		.matches = has_cpuid_feature,
2341 	},
2342 	{
2343 		.capability = ARM64_HAS_GENERIC_AUTH,
2344 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2345 		.matches = has_generic_auth,
2346 	},
2347 #endif /* CONFIG_ARM64_PTR_AUTH */
2348 #ifdef CONFIG_ARM64_PSEUDO_NMI
2349 	{
2350 		/*
2351 		 * Depends on having GICv3
2352 		 */
2353 		.desc = "IRQ priority masking",
2354 		.capability = ARM64_HAS_IRQ_PRIO_MASKING,
2355 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2356 		.matches = can_use_gic_priorities,
2357 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2358 		.field_pos = ID_AA64PFR0_GIC_SHIFT,
2359 		.field_width = 4,
2360 		.sign = FTR_UNSIGNED,
2361 		.min_field_value = 1,
2362 	},
2363 #endif
2364 #ifdef CONFIG_ARM64_E0PD
2365 	{
2366 		.desc = "E0PD",
2367 		.capability = ARM64_HAS_E0PD,
2368 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2369 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
2370 		.sign = FTR_UNSIGNED,
2371 		.field_width = 4,
2372 		.field_pos = ID_AA64MMFR2_E0PD_SHIFT,
2373 		.matches = has_cpuid_feature,
2374 		.min_field_value = 1,
2375 		.cpu_enable = cpu_enable_e0pd,
2376 	},
2377 #endif
2378 #ifdef CONFIG_ARCH_RANDOM
2379 	{
2380 		.desc = "Random Number Generator",
2381 		.capability = ARM64_HAS_RNG,
2382 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2383 		.matches = has_cpuid_feature,
2384 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
2385 		.field_pos = ID_AA64ISAR0_RNDR_SHIFT,
2386 		.field_width = 4,
2387 		.sign = FTR_UNSIGNED,
2388 		.min_field_value = 1,
2389 	},
2390 #endif
2391 #ifdef CONFIG_ARM64_BTI
2392 	{
2393 		.desc = "Branch Target Identification",
2394 		.capability = ARM64_BTI,
2395 #ifdef CONFIG_ARM64_BTI_KERNEL
2396 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2397 #else
2398 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2399 #endif
2400 		.matches = has_cpuid_feature,
2401 		.cpu_enable = bti_enable,
2402 		.sys_reg = SYS_ID_AA64PFR1_EL1,
2403 		.field_pos = ID_AA64PFR1_BT_SHIFT,
2404 		.field_width = 4,
2405 		.min_field_value = ID_AA64PFR1_BT_BTI,
2406 		.sign = FTR_UNSIGNED,
2407 	},
2408 #endif
2409 #ifdef CONFIG_ARM64_MTE
2410 	{
2411 		.desc = "Memory Tagging Extension",
2412 		.capability = ARM64_MTE,
2413 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2414 		.matches = has_cpuid_feature,
2415 		.sys_reg = SYS_ID_AA64PFR1_EL1,
2416 		.field_pos = ID_AA64PFR1_MTE_SHIFT,
2417 		.field_width = 4,
2418 		.min_field_value = ID_AA64PFR1_MTE,
2419 		.sign = FTR_UNSIGNED,
2420 		.cpu_enable = cpu_enable_mte,
2421 	},
2422 	{
2423 		.desc = "Asymmetric MTE Tag Check Fault",
2424 		.capability = ARM64_MTE_ASYMM,
2425 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2426 		.matches = has_cpuid_feature,
2427 		.sys_reg = SYS_ID_AA64PFR1_EL1,
2428 		.field_pos = ID_AA64PFR1_MTE_SHIFT,
2429 		.field_width = 4,
2430 		.min_field_value = ID_AA64PFR1_MTE_ASYMM,
2431 		.sign = FTR_UNSIGNED,
2432 	},
2433 #endif /* CONFIG_ARM64_MTE */
2434 	{
2435 		.desc = "RCpc load-acquire (LDAPR)",
2436 		.capability = ARM64_HAS_LDAPR,
2437 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2438 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2439 		.sign = FTR_UNSIGNED,
2440 		.field_pos = ID_AA64ISAR1_LRCPC_SHIFT,
2441 		.field_width = 4,
2442 		.matches = has_cpuid_feature,
2443 		.min_field_value = 1,
2444 	},
2445 	{},
2446 };
2447 
2448 #define HWCAP_CPUID_MATCH(reg, field, width, s, min_value)			\
2449 		.matches = has_cpuid_feature,					\
2450 		.sys_reg = reg,							\
2451 		.field_pos = field,						\
2452 		.field_width = width,						\
2453 		.sign = s,							\
2454 		.min_field_value = min_value,
2455 
2456 #define __HWCAP_CAP(name, cap_type, cap)					\
2457 		.desc = name,							\
2458 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,				\
2459 		.hwcap_type = cap_type,						\
2460 		.hwcap = cap,							\
2461 
2462 #define HWCAP_CAP(reg, field, width, s, min_value, cap_type, cap)		\
2463 	{									\
2464 		__HWCAP_CAP(#cap, cap_type, cap)				\
2465 		HWCAP_CPUID_MATCH(reg, field, width, s, min_value) 		\
2466 	}
2467 
2468 #define HWCAP_MULTI_CAP(list, cap_type, cap)					\
2469 	{									\
2470 		__HWCAP_CAP(#cap, cap_type, cap)				\
2471 		.matches = cpucap_multi_entry_cap_matches,			\
2472 		.match_list = list,						\
2473 	}
2474 
2475 #define HWCAP_CAP_MATCH(match, cap_type, cap)					\
2476 	{									\
2477 		__HWCAP_CAP(#cap, cap_type, cap)				\
2478 		.matches = match,						\
2479 	}
2480 
2481 #ifdef CONFIG_ARM64_PTR_AUTH
2482 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
2483 	{
2484 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_APA_SHIFT,
2485 				  4, FTR_UNSIGNED,
2486 				  ID_AA64ISAR1_APA_ARCHITECTED)
2487 	},
2488 	{
2489 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_APA3_SHIFT,
2490 				  4, FTR_UNSIGNED, ID_AA64ISAR2_APA3_ARCHITECTED)
2491 	},
2492 	{
2493 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_API_SHIFT,
2494 				  4, FTR_UNSIGNED, ID_AA64ISAR1_API_IMP_DEF)
2495 	},
2496 	{},
2497 };
2498 
2499 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
2500 	{
2501 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPA_SHIFT,
2502 				  4, FTR_UNSIGNED, ID_AA64ISAR1_GPA_ARCHITECTED)
2503 	},
2504 	{
2505 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_GPA3_SHIFT,
2506 				  4, FTR_UNSIGNED, ID_AA64ISAR2_GPA3_ARCHITECTED)
2507 	},
2508 	{
2509 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPI_SHIFT,
2510 				  4, FTR_UNSIGNED, ID_AA64ISAR1_GPI_IMP_DEF)
2511 	},
2512 	{},
2513 };
2514 #endif
2515 
2516 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
2517 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL),
2518 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES),
2519 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1),
2520 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2),
2521 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512),
2522 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32),
2523 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
2524 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
2525 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3),
2526 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3),
2527 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4),
2528 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
2529 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
2530 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
2531 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
2532 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RNDR_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RNG),
2533 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, 4, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP),
2534 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, 4, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP),
2535 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, 4, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
2536 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, 4, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
2537 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, 4, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT),
2538 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
2539 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
2540 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
2541 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA),
2542 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
2543 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
2544 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FRINTTS_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT),
2545 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_SB_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB),
2546 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_BF16_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_BF16),
2547 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DGH_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DGH),
2548 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_I8MM_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_I8MM),
2549 	HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT),
2550 #ifdef CONFIG_ARM64_SVE
2551 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, KERNEL_HWCAP_SVE),
2552 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SVEVER_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_SVEVER_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
2553 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_AES, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
2554 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_AES_PMULL, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
2555 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BITPERM_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_BITPERM, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
2556 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BF16_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_BF16, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
2557 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SHA3_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_SHA3, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
2558 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SM4_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_SM4, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
2559 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_I8MM_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_I8MM, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
2560 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F32MM_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_F32MM, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
2561 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F64MM_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_F64MM, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
2562 #endif
2563 	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, KERNEL_HWCAP_SSBS),
2564 #ifdef CONFIG_ARM64_BTI
2565 	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_BT_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_BT_BTI, CAP_HWCAP, KERNEL_HWCAP_BTI),
2566 #endif
2567 #ifdef CONFIG_ARM64_PTR_AUTH
2568 	HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
2569 	HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
2570 #endif
2571 #ifdef CONFIG_ARM64_MTE
2572 	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_MTE_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_MTE, CAP_HWCAP, KERNEL_HWCAP_MTE),
2573 	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_MTE_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_MTE_ASYMM, CAP_HWCAP, KERNEL_HWCAP_MTE3),
2574 #endif /* CONFIG_ARM64_MTE */
2575 	HWCAP_CAP(SYS_ID_AA64MMFR0_EL1, ID_AA64MMFR0_ECV_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ECV),
2576 	HWCAP_CAP(SYS_ID_AA64MMFR1_EL1, ID_AA64MMFR1_AFP_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AFP),
2577 	HWCAP_CAP(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_RPRES_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RPRES),
2578 	{},
2579 };
2580 
2581 #ifdef CONFIG_COMPAT
2582 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
2583 {
2584 	/*
2585 	 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
2586 	 * in line with that of arm32 as in vfp_init(). We make sure that the
2587 	 * check is future proof, by making sure value is non-zero.
2588 	 */
2589 	u32 mvfr1;
2590 
2591 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
2592 	if (scope == SCOPE_SYSTEM)
2593 		mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
2594 	else
2595 		mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
2596 
2597 	return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDSP_SHIFT) &&
2598 		cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDINT_SHIFT) &&
2599 		cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDLS_SHIFT);
2600 }
2601 #endif
2602 
2603 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
2604 #ifdef CONFIG_COMPAT
2605 	HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
2606 	HWCAP_CAP(SYS_MVFR1_EL1, MVFR1_SIMDFMAC_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
2607 	/* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
2608 	HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, 4, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
2609 	HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, 4, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
2610 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 4, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
2611 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
2612 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
2613 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
2614 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
2615 #endif
2616 	{},
2617 };
2618 
2619 static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2620 {
2621 	switch (cap->hwcap_type) {
2622 	case CAP_HWCAP:
2623 		cpu_set_feature(cap->hwcap);
2624 		break;
2625 #ifdef CONFIG_COMPAT
2626 	case CAP_COMPAT_HWCAP:
2627 		compat_elf_hwcap |= (u32)cap->hwcap;
2628 		break;
2629 	case CAP_COMPAT_HWCAP2:
2630 		compat_elf_hwcap2 |= (u32)cap->hwcap;
2631 		break;
2632 #endif
2633 	default:
2634 		WARN_ON(1);
2635 		break;
2636 	}
2637 }
2638 
2639 /* Check if we have a particular HWCAP enabled */
2640 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2641 {
2642 	bool rc;
2643 
2644 	switch (cap->hwcap_type) {
2645 	case CAP_HWCAP:
2646 		rc = cpu_have_feature(cap->hwcap);
2647 		break;
2648 #ifdef CONFIG_COMPAT
2649 	case CAP_COMPAT_HWCAP:
2650 		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
2651 		break;
2652 	case CAP_COMPAT_HWCAP2:
2653 		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
2654 		break;
2655 #endif
2656 	default:
2657 		WARN_ON(1);
2658 		rc = false;
2659 	}
2660 
2661 	return rc;
2662 }
2663 
2664 static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
2665 {
2666 	/* We support emulation of accesses to CPU ID feature registers */
2667 	cpu_set_named_feature(CPUID);
2668 	for (; hwcaps->matches; hwcaps++)
2669 		if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
2670 			cap_set_elf_hwcap(hwcaps);
2671 }
2672 
2673 static void update_cpu_capabilities(u16 scope_mask)
2674 {
2675 	int i;
2676 	const struct arm64_cpu_capabilities *caps;
2677 
2678 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2679 	for (i = 0; i < ARM64_NCAPS; i++) {
2680 		caps = cpu_hwcaps_ptrs[i];
2681 		if (!caps || !(caps->type & scope_mask) ||
2682 		    cpus_have_cap(caps->capability) ||
2683 		    !caps->matches(caps, cpucap_default_scope(caps)))
2684 			continue;
2685 
2686 		if (caps->desc)
2687 			pr_info("detected: %s\n", caps->desc);
2688 		cpus_set_cap(caps->capability);
2689 
2690 		if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
2691 			set_bit(caps->capability, boot_capabilities);
2692 	}
2693 }
2694 
2695 /*
2696  * Enable all the available capabilities on this CPU. The capabilities
2697  * with BOOT_CPU scope are handled separately and hence skipped here.
2698  */
2699 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
2700 {
2701 	int i;
2702 	u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
2703 
2704 	for_each_available_cap(i) {
2705 		const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
2706 
2707 		if (WARN_ON(!cap))
2708 			continue;
2709 
2710 		if (!(cap->type & non_boot_scope))
2711 			continue;
2712 
2713 		if (cap->cpu_enable)
2714 			cap->cpu_enable(cap);
2715 	}
2716 	return 0;
2717 }
2718 
2719 /*
2720  * Run through the enabled capabilities and enable() it on all active
2721  * CPUs
2722  */
2723 static void __init enable_cpu_capabilities(u16 scope_mask)
2724 {
2725 	int i;
2726 	const struct arm64_cpu_capabilities *caps;
2727 	bool boot_scope;
2728 
2729 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2730 	boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
2731 
2732 	for (i = 0; i < ARM64_NCAPS; i++) {
2733 		unsigned int num;
2734 
2735 		caps = cpu_hwcaps_ptrs[i];
2736 		if (!caps || !(caps->type & scope_mask))
2737 			continue;
2738 		num = caps->capability;
2739 		if (!cpus_have_cap(num))
2740 			continue;
2741 
2742 		/* Ensure cpus_have_const_cap(num) works */
2743 		static_branch_enable(&cpu_hwcap_keys[num]);
2744 
2745 		if (boot_scope && caps->cpu_enable)
2746 			/*
2747 			 * Capabilities with SCOPE_BOOT_CPU scope are finalised
2748 			 * before any secondary CPU boots. Thus, each secondary
2749 			 * will enable the capability as appropriate via
2750 			 * check_local_cpu_capabilities(). The only exception is
2751 			 * the boot CPU, for which the capability must be
2752 			 * enabled here. This approach avoids costly
2753 			 * stop_machine() calls for this case.
2754 			 */
2755 			caps->cpu_enable(caps);
2756 	}
2757 
2758 	/*
2759 	 * For all non-boot scope capabilities, use stop_machine()
2760 	 * as it schedules the work allowing us to modify PSTATE,
2761 	 * instead of on_each_cpu() which uses an IPI, giving us a
2762 	 * PSTATE that disappears when we return.
2763 	 */
2764 	if (!boot_scope)
2765 		stop_machine(cpu_enable_non_boot_scope_capabilities,
2766 			     NULL, cpu_online_mask);
2767 }
2768 
2769 /*
2770  * Run through the list of capabilities to check for conflicts.
2771  * If the system has already detected a capability, take necessary
2772  * action on this CPU.
2773  */
2774 static void verify_local_cpu_caps(u16 scope_mask)
2775 {
2776 	int i;
2777 	bool cpu_has_cap, system_has_cap;
2778 	const struct arm64_cpu_capabilities *caps;
2779 
2780 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2781 
2782 	for (i = 0; i < ARM64_NCAPS; i++) {
2783 		caps = cpu_hwcaps_ptrs[i];
2784 		if (!caps || !(caps->type & scope_mask))
2785 			continue;
2786 
2787 		cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
2788 		system_has_cap = cpus_have_cap(caps->capability);
2789 
2790 		if (system_has_cap) {
2791 			/*
2792 			 * Check if the new CPU misses an advertised feature,
2793 			 * which is not safe to miss.
2794 			 */
2795 			if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
2796 				break;
2797 			/*
2798 			 * We have to issue cpu_enable() irrespective of
2799 			 * whether the CPU has it or not, as it is enabeld
2800 			 * system wide. It is upto the call back to take
2801 			 * appropriate action on this CPU.
2802 			 */
2803 			if (caps->cpu_enable)
2804 				caps->cpu_enable(caps);
2805 		} else {
2806 			/*
2807 			 * Check if the CPU has this capability if it isn't
2808 			 * safe to have when the system doesn't.
2809 			 */
2810 			if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
2811 				break;
2812 		}
2813 	}
2814 
2815 	if (i < ARM64_NCAPS) {
2816 		pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
2817 			smp_processor_id(), caps->capability,
2818 			caps->desc, system_has_cap, cpu_has_cap);
2819 
2820 		if (cpucap_panic_on_conflict(caps))
2821 			cpu_panic_kernel();
2822 		else
2823 			cpu_die_early();
2824 	}
2825 }
2826 
2827 /*
2828  * Check for CPU features that are used in early boot
2829  * based on the Boot CPU value.
2830  */
2831 static void check_early_cpu_features(void)
2832 {
2833 	verify_cpu_asid_bits();
2834 
2835 	verify_local_cpu_caps(SCOPE_BOOT_CPU);
2836 }
2837 
2838 static void
2839 __verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
2840 {
2841 
2842 	for (; caps->matches; caps++)
2843 		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
2844 			pr_crit("CPU%d: missing HWCAP: %s\n",
2845 					smp_processor_id(), caps->desc);
2846 			cpu_die_early();
2847 		}
2848 }
2849 
2850 static void verify_local_elf_hwcaps(void)
2851 {
2852 	__verify_local_elf_hwcaps(arm64_elf_hwcaps);
2853 
2854 	if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
2855 		__verify_local_elf_hwcaps(compat_elf_hwcaps);
2856 }
2857 
2858 static void verify_sve_features(void)
2859 {
2860 	u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
2861 	u64 zcr = read_zcr_features();
2862 
2863 	unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
2864 	unsigned int len = zcr & ZCR_ELx_LEN_MASK;
2865 
2866 	if (len < safe_len || vec_verify_vq_map(ARM64_VEC_SVE)) {
2867 		pr_crit("CPU%d: SVE: vector length support mismatch\n",
2868 			smp_processor_id());
2869 		cpu_die_early();
2870 	}
2871 
2872 	/* Add checks on other ZCR bits here if necessary */
2873 }
2874 
2875 static void verify_hyp_capabilities(void)
2876 {
2877 	u64 safe_mmfr1, mmfr0, mmfr1;
2878 	int parange, ipa_max;
2879 	unsigned int safe_vmid_bits, vmid_bits;
2880 
2881 	if (!IS_ENABLED(CONFIG_KVM))
2882 		return;
2883 
2884 	safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2885 	mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
2886 	mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
2887 
2888 	/* Verify VMID bits */
2889 	safe_vmid_bits = get_vmid_bits(safe_mmfr1);
2890 	vmid_bits = get_vmid_bits(mmfr1);
2891 	if (vmid_bits < safe_vmid_bits) {
2892 		pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
2893 		cpu_die_early();
2894 	}
2895 
2896 	/* Verify IPA range */
2897 	parange = cpuid_feature_extract_unsigned_field(mmfr0,
2898 				ID_AA64MMFR0_PARANGE_SHIFT);
2899 	ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
2900 	if (ipa_max < get_kvm_ipa_limit()) {
2901 		pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
2902 		cpu_die_early();
2903 	}
2904 }
2905 
2906 /*
2907  * Run through the enabled system capabilities and enable() it on this CPU.
2908  * The capabilities were decided based on the available CPUs at the boot time.
2909  * Any new CPU should match the system wide status of the capability. If the
2910  * new CPU doesn't have a capability which the system now has enabled, we
2911  * cannot do anything to fix it up and could cause unexpected failures. So
2912  * we park the CPU.
2913  */
2914 static void verify_local_cpu_capabilities(void)
2915 {
2916 	/*
2917 	 * The capabilities with SCOPE_BOOT_CPU are checked from
2918 	 * check_early_cpu_features(), as they need to be verified
2919 	 * on all secondary CPUs.
2920 	 */
2921 	verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
2922 	verify_local_elf_hwcaps();
2923 
2924 	if (system_supports_sve())
2925 		verify_sve_features();
2926 
2927 	if (is_hyp_mode_available())
2928 		verify_hyp_capabilities();
2929 }
2930 
2931 void check_local_cpu_capabilities(void)
2932 {
2933 	/*
2934 	 * All secondary CPUs should conform to the early CPU features
2935 	 * in use by the kernel based on boot CPU.
2936 	 */
2937 	check_early_cpu_features();
2938 
2939 	/*
2940 	 * If we haven't finalised the system capabilities, this CPU gets
2941 	 * a chance to update the errata work arounds and local features.
2942 	 * Otherwise, this CPU should verify that it has all the system
2943 	 * advertised capabilities.
2944 	 */
2945 	if (!system_capabilities_finalized())
2946 		update_cpu_capabilities(SCOPE_LOCAL_CPU);
2947 	else
2948 		verify_local_cpu_capabilities();
2949 }
2950 
2951 static void __init setup_boot_cpu_capabilities(void)
2952 {
2953 	/* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
2954 	update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
2955 	/* Enable the SCOPE_BOOT_CPU capabilities alone right away */
2956 	enable_cpu_capabilities(SCOPE_BOOT_CPU);
2957 }
2958 
2959 bool this_cpu_has_cap(unsigned int n)
2960 {
2961 	if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
2962 		const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
2963 
2964 		if (cap)
2965 			return cap->matches(cap, SCOPE_LOCAL_CPU);
2966 	}
2967 
2968 	return false;
2969 }
2970 EXPORT_SYMBOL_GPL(this_cpu_has_cap);
2971 
2972 /*
2973  * This helper function is used in a narrow window when,
2974  * - The system wide safe registers are set with all the SMP CPUs and,
2975  * - The SYSTEM_FEATURE cpu_hwcaps may not have been set.
2976  * In all other cases cpus_have_{const_}cap() should be used.
2977  */
2978 static bool __maybe_unused __system_matches_cap(unsigned int n)
2979 {
2980 	if (n < ARM64_NCAPS) {
2981 		const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
2982 
2983 		if (cap)
2984 			return cap->matches(cap, SCOPE_SYSTEM);
2985 	}
2986 	return false;
2987 }
2988 
2989 void cpu_set_feature(unsigned int num)
2990 {
2991 	WARN_ON(num >= MAX_CPU_FEATURES);
2992 	elf_hwcap |= BIT(num);
2993 }
2994 EXPORT_SYMBOL_GPL(cpu_set_feature);
2995 
2996 bool cpu_have_feature(unsigned int num)
2997 {
2998 	WARN_ON(num >= MAX_CPU_FEATURES);
2999 	return elf_hwcap & BIT(num);
3000 }
3001 EXPORT_SYMBOL_GPL(cpu_have_feature);
3002 
3003 unsigned long cpu_get_elf_hwcap(void)
3004 {
3005 	/*
3006 	 * We currently only populate the first 32 bits of AT_HWCAP. Please
3007 	 * note that for userspace compatibility we guarantee that bits 62
3008 	 * and 63 will always be returned as 0.
3009 	 */
3010 	return lower_32_bits(elf_hwcap);
3011 }
3012 
3013 unsigned long cpu_get_elf_hwcap2(void)
3014 {
3015 	return upper_32_bits(elf_hwcap);
3016 }
3017 
3018 static void __init setup_system_capabilities(void)
3019 {
3020 	/*
3021 	 * We have finalised the system-wide safe feature
3022 	 * registers, finalise the capabilities that depend
3023 	 * on it. Also enable all the available capabilities,
3024 	 * that are not enabled already.
3025 	 */
3026 	update_cpu_capabilities(SCOPE_SYSTEM);
3027 	enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3028 }
3029 
3030 void __init setup_cpu_features(void)
3031 {
3032 	u32 cwg;
3033 
3034 	setup_system_capabilities();
3035 	setup_elf_hwcaps(arm64_elf_hwcaps);
3036 
3037 	if (system_supports_32bit_el0())
3038 		setup_elf_hwcaps(compat_elf_hwcaps);
3039 
3040 	if (system_uses_ttbr0_pan())
3041 		pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
3042 
3043 	sve_setup();
3044 	minsigstksz_setup();
3045 
3046 	/* Advertise that we have computed the system capabilities */
3047 	finalize_system_capabilities();
3048 
3049 	/*
3050 	 * Check for sane CTR_EL0.CWG value.
3051 	 */
3052 	cwg = cache_type_cwg();
3053 	if (!cwg)
3054 		pr_warn("No Cache Writeback Granule information, assuming %d\n",
3055 			ARCH_DMA_MINALIGN);
3056 }
3057 
3058 static int enable_mismatched_32bit_el0(unsigned int cpu)
3059 {
3060 	/*
3061 	 * The first 32-bit-capable CPU we detected and so can no longer
3062 	 * be offlined by userspace. -1 indicates we haven't yet onlined
3063 	 * a 32-bit-capable CPU.
3064 	 */
3065 	static int lucky_winner = -1;
3066 
3067 	struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
3068 	bool cpu_32bit = id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0);
3069 
3070 	if (cpu_32bit) {
3071 		cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
3072 		static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
3073 	}
3074 
3075 	if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
3076 		return 0;
3077 
3078 	if (lucky_winner >= 0)
3079 		return 0;
3080 
3081 	/*
3082 	 * We've detected a mismatch. We need to keep one of our CPUs with
3083 	 * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
3084 	 * every CPU in the system for a 32-bit task.
3085 	 */
3086 	lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
3087 							 cpu_active_mask);
3088 	get_cpu_device(lucky_winner)->offline_disabled = true;
3089 	setup_elf_hwcaps(compat_elf_hwcaps);
3090 	pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
3091 		cpu, lucky_winner);
3092 	return 0;
3093 }
3094 
3095 static int __init init_32bit_el0_mask(void)
3096 {
3097 	if (!allow_mismatched_32bit_el0)
3098 		return 0;
3099 
3100 	if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
3101 		return -ENOMEM;
3102 
3103 	return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
3104 				 "arm64/mismatched_32bit_el0:online",
3105 				 enable_mismatched_32bit_el0, NULL);
3106 }
3107 subsys_initcall_sync(init_32bit_el0_mask);
3108 
3109 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
3110 {
3111 	cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
3112 }
3113 
3114 /*
3115  * We emulate only the following system register space.
3116  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
3117  * See Table C5-6 System instruction encodings for System register accesses,
3118  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
3119  */
3120 static inline bool __attribute_const__ is_emulated(u32 id)
3121 {
3122 	return (sys_reg_Op0(id) == 0x3 &&
3123 		sys_reg_CRn(id) == 0x0 &&
3124 		sys_reg_Op1(id) == 0x0 &&
3125 		(sys_reg_CRm(id) == 0 ||
3126 		 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
3127 }
3128 
3129 /*
3130  * With CRm == 0, reg should be one of :
3131  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
3132  */
3133 static inline int emulate_id_reg(u32 id, u64 *valp)
3134 {
3135 	switch (id) {
3136 	case SYS_MIDR_EL1:
3137 		*valp = read_cpuid_id();
3138 		break;
3139 	case SYS_MPIDR_EL1:
3140 		*valp = SYS_MPIDR_SAFE_VAL;
3141 		break;
3142 	case SYS_REVIDR_EL1:
3143 		/* IMPLEMENTATION DEFINED values are emulated with 0 */
3144 		*valp = 0;
3145 		break;
3146 	default:
3147 		return -EINVAL;
3148 	}
3149 
3150 	return 0;
3151 }
3152 
3153 static int emulate_sys_reg(u32 id, u64 *valp)
3154 {
3155 	struct arm64_ftr_reg *regp;
3156 
3157 	if (!is_emulated(id))
3158 		return -EINVAL;
3159 
3160 	if (sys_reg_CRm(id) == 0)
3161 		return emulate_id_reg(id, valp);
3162 
3163 	regp = get_arm64_ftr_reg_nowarn(id);
3164 	if (regp)
3165 		*valp = arm64_ftr_reg_user_value(regp);
3166 	else
3167 		/*
3168 		 * The untracked registers are either IMPLEMENTATION DEFINED
3169 		 * (e.g, ID_AFR0_EL1) or reserved RAZ.
3170 		 */
3171 		*valp = 0;
3172 	return 0;
3173 }
3174 
3175 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
3176 {
3177 	int rc;
3178 	u64 val;
3179 
3180 	rc = emulate_sys_reg(sys_reg, &val);
3181 	if (!rc) {
3182 		pt_regs_write_reg(regs, rt, val);
3183 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
3184 	}
3185 	return rc;
3186 }
3187 
3188 static int emulate_mrs(struct pt_regs *regs, u32 insn)
3189 {
3190 	u32 sys_reg, rt;
3191 
3192 	/*
3193 	 * sys_reg values are defined as used in mrs/msr instruction.
3194 	 * shift the imm value to get the encoding.
3195 	 */
3196 	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
3197 	rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
3198 	return do_emulate_mrs(regs, sys_reg, rt);
3199 }
3200 
3201 static struct undef_hook mrs_hook = {
3202 	.instr_mask = 0xffff0000,
3203 	.instr_val  = 0xd5380000,
3204 	.pstate_mask = PSR_AA32_MODE_MASK,
3205 	.pstate_val = PSR_MODE_EL0t,
3206 	.fn = emulate_mrs,
3207 };
3208 
3209 static int __init enable_mrs_emulation(void)
3210 {
3211 	register_undef_hook(&mrs_hook);
3212 	return 0;
3213 }
3214 
3215 core_initcall(enable_mrs_emulation);
3216 
3217 enum mitigation_state arm64_get_meltdown_state(void)
3218 {
3219 	if (__meltdown_safe)
3220 		return SPECTRE_UNAFFECTED;
3221 
3222 	if (arm64_kernel_unmapped_at_el0())
3223 		return SPECTRE_MITIGATED;
3224 
3225 	return SPECTRE_VULNERABLE;
3226 }
3227 
3228 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
3229 			  char *buf)
3230 {
3231 	switch (arm64_get_meltdown_state()) {
3232 	case SPECTRE_UNAFFECTED:
3233 		return sprintf(buf, "Not affected\n");
3234 
3235 	case SPECTRE_MITIGATED:
3236 		return sprintf(buf, "Mitigation: PTI\n");
3237 
3238 	default:
3239 		return sprintf(buf, "Vulnerable\n");
3240 	}
3241 }
3242