xref: /openbmc/linux/arch/arm64/kernel/cpufeature.c (revision 5a244f48)
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #define pr_fmt(fmt) "CPU features: " fmt
20 
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <asm/cpu.h>
28 #include <asm/cpufeature.h>
29 #include <asm/cpu_ops.h>
30 #include <asm/mmu_context.h>
31 #include <asm/processor.h>
32 #include <asm/sysreg.h>
33 #include <asm/traps.h>
34 #include <asm/virt.h>
35 
36 unsigned long elf_hwcap __read_mostly;
37 EXPORT_SYMBOL_GPL(elf_hwcap);
38 
39 #ifdef CONFIG_COMPAT
40 #define COMPAT_ELF_HWCAP_DEFAULT	\
41 				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
42 				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
43 				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
44 				 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
45 				 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
46 				 COMPAT_HWCAP_LPAE)
47 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
48 unsigned int compat_elf_hwcap2 __read_mostly;
49 #endif
50 
51 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
52 EXPORT_SYMBOL(cpu_hwcaps);
53 
54 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
55 {
56 	/* file-wide pr_fmt adds "CPU features: " prefix */
57 	pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
58 	return 0;
59 }
60 
61 static struct notifier_block cpu_hwcaps_notifier = {
62 	.notifier_call = dump_cpu_hwcaps
63 };
64 
65 static int __init register_cpu_hwcaps_dumper(void)
66 {
67 	atomic_notifier_chain_register(&panic_notifier_list,
68 				       &cpu_hwcaps_notifier);
69 	return 0;
70 }
71 __initcall(register_cpu_hwcaps_dumper);
72 
73 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
74 EXPORT_SYMBOL(cpu_hwcap_keys);
75 
76 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
77 	{						\
78 		.sign = SIGNED,				\
79 		.visible = VISIBLE,			\
80 		.strict = STRICT,			\
81 		.type = TYPE,				\
82 		.shift = SHIFT,				\
83 		.width = WIDTH,				\
84 		.safe_val = SAFE_VAL,			\
85 	}
86 
87 /* Define a feature with unsigned values */
88 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
89 	__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
90 
91 /* Define a feature with a signed value */
92 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
93 	__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
94 
95 #define ARM64_FTR_END					\
96 	{						\
97 		.width = 0,				\
98 	}
99 
100 /* meta feature for alternatives */
101 static bool __maybe_unused
102 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
103 
104 
105 /*
106  * NOTE: Any changes to the visibility of features should be kept in
107  * sync with the documentation of the CPU feature register ABI.
108  */
109 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
110 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
111 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
112 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
113 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
114 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
115 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
116 	ARM64_FTR_END,
117 };
118 
119 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
120 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
121 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
122 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
123 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
124 	ARM64_FTR_END,
125 };
126 
127 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
128 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
129 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
130 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
131 	/* Linux doesn't care about the EL3 */
132 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
133 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
134 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
135 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
136 	ARM64_FTR_END,
137 };
138 
139 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
140 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
141 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
142 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
143 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
144 	/* Linux shouldn't care about secure memory */
145 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
146 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
147 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
148 	/*
149 	 * Differing PARange is fine as long as all peripherals and memory are mapped
150 	 * within the minimum PARange of all CPUs
151 	 */
152 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
153 	ARM64_FTR_END,
154 };
155 
156 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
157 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
158 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
159 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
160 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
161 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
162 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
163 	ARM64_FTR_END,
164 };
165 
166 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
167 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
168 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
169 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
170 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
171 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
172 	ARM64_FTR_END,
173 };
174 
175 static const struct arm64_ftr_bits ftr_ctr[] = {
176 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1),	/* RAO */
177 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),	/* CWG */
178 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* ERG */
179 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1),	/* DminLine */
180 	/*
181 	 * Linux can handle differing I-cache policies. Userspace JITs will
182 	 * make use of *minLine.
183 	 * If we have differing I-cache policies, report it as the weakest - VIPT.
184 	 */
185 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),	/* L1Ip */
186 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* IminLine */
187 	ARM64_FTR_END,
188 };
189 
190 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
191 	.name		= "SYS_CTR_EL0",
192 	.ftr_bits	= ftr_ctr
193 };
194 
195 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
196 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 28, 4, 0xf),	/* InnerShr */
197 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 24, 4, 0),	/* FCSE */
198 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* AuxReg */
199 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 16, 4, 0),	/* TCM */
200 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 12, 4, 0),	/* ShareLvl */
201 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 8, 4, 0xf),	/* OuterShr */
202 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0),	/* PMSA */
203 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0),	/* VMSA */
204 	ARM64_FTR_END,
205 };
206 
207 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
208 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
209 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
210 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
211 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
212 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
213 	/*
214 	 * We can instantiate multiple PMU instances with different levels
215 	 * of support.
216 	 */
217 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
218 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
219 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
220 	ARM64_FTR_END,
221 };
222 
223 static const struct arm64_ftr_bits ftr_mvfr2[] = {
224 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* FPMisc */
225 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* SIMDMisc */
226 	ARM64_FTR_END,
227 };
228 
229 static const struct arm64_ftr_bits ftr_dczid[] = {
230 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),		/* DZP */
231 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* BS */
232 	ARM64_FTR_END,
233 };
234 
235 
236 static const struct arm64_ftr_bits ftr_id_isar5[] = {
237 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
238 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
239 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
240 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
241 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
242 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
243 	ARM64_FTR_END,
244 };
245 
246 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
247 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* ac2 */
248 	ARM64_FTR_END,
249 };
250 
251 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
252 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 12, 4, 0),	/* State3 */
253 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 8, 4, 0),		/* State2 */
254 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* State1 */
255 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* State0 */
256 	ARM64_FTR_END,
257 };
258 
259 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
260 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
261 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),	/* PerfMon */
262 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
263 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
264 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
265 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
266 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
267 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
268 	ARM64_FTR_END,
269 };
270 
271 /*
272  * Common ftr bits for a 32bit register with all hidden, strict
273  * attributes, with 4bit feature fields and a default safe value of
274  * 0. Covers the following 32bit registers:
275  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
276  */
277 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
278 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
279 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
280 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
281 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
282 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
283 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
284 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
285 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
286 	ARM64_FTR_END,
287 };
288 
289 /* Table for a single 32bit feature value */
290 static const struct arm64_ftr_bits ftr_single32[] = {
291 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
292 	ARM64_FTR_END,
293 };
294 
295 static const struct arm64_ftr_bits ftr_raz[] = {
296 	ARM64_FTR_END,
297 };
298 
299 #define ARM64_FTR_REG(id, table) {		\
300 	.sys_id = id,				\
301 	.reg = 	&(struct arm64_ftr_reg){	\
302 		.name = #id,			\
303 		.ftr_bits = &((table)[0]),	\
304 	}}
305 
306 static const struct __ftr_reg_entry {
307 	u32			sys_id;
308 	struct arm64_ftr_reg 	*reg;
309 } arm64_ftr_regs[] = {
310 
311 	/* Op1 = 0, CRn = 0, CRm = 1 */
312 	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
313 	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
314 	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
315 	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
316 	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
317 	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
318 	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
319 
320 	/* Op1 = 0, CRn = 0, CRm = 2 */
321 	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
322 	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
323 	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
324 	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
325 	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
326 	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
327 	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
328 
329 	/* Op1 = 0, CRn = 0, CRm = 3 */
330 	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
331 	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
332 	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
333 
334 	/* Op1 = 0, CRn = 0, CRm = 4 */
335 	ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
336 	ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_raz),
337 
338 	/* Op1 = 0, CRn = 0, CRm = 5 */
339 	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
340 	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
341 
342 	/* Op1 = 0, CRn = 0, CRm = 6 */
343 	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
344 	ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
345 
346 	/* Op1 = 0, CRn = 0, CRm = 7 */
347 	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
348 	ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
349 	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
350 
351 	/* Op1 = 3, CRn = 0, CRm = 0 */
352 	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
353 	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
354 
355 	/* Op1 = 3, CRn = 14, CRm = 0 */
356 	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
357 };
358 
359 static int search_cmp_ftr_reg(const void *id, const void *regp)
360 {
361 	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
362 }
363 
364 /*
365  * get_arm64_ftr_reg - Lookup a feature register entry using its
366  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
367  * ascending order of sys_id , we use binary search to find a matching
368  * entry.
369  *
370  * returns - Upon success,  matching ftr_reg entry for id.
371  *         - NULL on failure. It is upto the caller to decide
372  *	     the impact of a failure.
373  */
374 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
375 {
376 	const struct __ftr_reg_entry *ret;
377 
378 	ret = bsearch((const void *)(unsigned long)sys_id,
379 			arm64_ftr_regs,
380 			ARRAY_SIZE(arm64_ftr_regs),
381 			sizeof(arm64_ftr_regs[0]),
382 			search_cmp_ftr_reg);
383 	if (ret)
384 		return ret->reg;
385 	return NULL;
386 }
387 
388 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
389 			       s64 ftr_val)
390 {
391 	u64 mask = arm64_ftr_mask(ftrp);
392 
393 	reg &= ~mask;
394 	reg |= (ftr_val << ftrp->shift) & mask;
395 	return reg;
396 }
397 
398 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
399 				s64 cur)
400 {
401 	s64 ret = 0;
402 
403 	switch (ftrp->type) {
404 	case FTR_EXACT:
405 		ret = ftrp->safe_val;
406 		break;
407 	case FTR_LOWER_SAFE:
408 		ret = new < cur ? new : cur;
409 		break;
410 	case FTR_HIGHER_SAFE:
411 		ret = new > cur ? new : cur;
412 		break;
413 	default:
414 		BUG();
415 	}
416 
417 	return ret;
418 }
419 
420 static void __init sort_ftr_regs(void)
421 {
422 	int i;
423 
424 	/* Check that the array is sorted so that we can do the binary search */
425 	for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
426 		BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
427 }
428 
429 /*
430  * Initialise the CPU feature register from Boot CPU values.
431  * Also initiliases the strict_mask for the register.
432  * Any bits that are not covered by an arm64_ftr_bits entry are considered
433  * RES0 for the system-wide value, and must strictly match.
434  */
435 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
436 {
437 	u64 val = 0;
438 	u64 strict_mask = ~0x0ULL;
439 	u64 user_mask = 0;
440 	u64 valid_mask = 0;
441 
442 	const struct arm64_ftr_bits *ftrp;
443 	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
444 
445 	BUG_ON(!reg);
446 
447 	for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
448 		u64 ftr_mask = arm64_ftr_mask(ftrp);
449 		s64 ftr_new = arm64_ftr_value(ftrp, new);
450 
451 		val = arm64_ftr_set_value(ftrp, val, ftr_new);
452 
453 		valid_mask |= ftr_mask;
454 		if (!ftrp->strict)
455 			strict_mask &= ~ftr_mask;
456 		if (ftrp->visible)
457 			user_mask |= ftr_mask;
458 		else
459 			reg->user_val = arm64_ftr_set_value(ftrp,
460 							    reg->user_val,
461 							    ftrp->safe_val);
462 	}
463 
464 	val &= valid_mask;
465 
466 	reg->sys_val = val;
467 	reg->strict_mask = strict_mask;
468 	reg->user_mask = user_mask;
469 }
470 
471 void __init init_cpu_features(struct cpuinfo_arm64 *info)
472 {
473 	/* Before we start using the tables, make sure it is sorted */
474 	sort_ftr_regs();
475 
476 	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
477 	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
478 	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
479 	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
480 	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
481 	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
482 	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
483 	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
484 	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
485 	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
486 	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
487 	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
488 
489 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
490 		init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
491 		init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
492 		init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
493 		init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
494 		init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
495 		init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
496 		init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
497 		init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
498 		init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
499 		init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
500 		init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
501 		init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
502 		init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
503 		init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
504 		init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
505 		init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
506 	}
507 
508 }
509 
510 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
511 {
512 	const struct arm64_ftr_bits *ftrp;
513 
514 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
515 		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
516 		s64 ftr_new = arm64_ftr_value(ftrp, new);
517 
518 		if (ftr_cur == ftr_new)
519 			continue;
520 		/* Find a safe value */
521 		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
522 		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
523 	}
524 
525 }
526 
527 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
528 {
529 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
530 
531 	BUG_ON(!regp);
532 	update_cpu_ftr_reg(regp, val);
533 	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
534 		return 0;
535 	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
536 			regp->name, boot, cpu, val);
537 	return 1;
538 }
539 
540 /*
541  * Update system wide CPU feature registers with the values from a
542  * non-boot CPU. Also performs SANITY checks to make sure that there
543  * aren't any insane variations from that of the boot CPU.
544  */
545 void update_cpu_features(int cpu,
546 			 struct cpuinfo_arm64 *info,
547 			 struct cpuinfo_arm64 *boot)
548 {
549 	int taint = 0;
550 
551 	/*
552 	 * The kernel can handle differing I-cache policies, but otherwise
553 	 * caches should look identical. Userspace JITs will make use of
554 	 * *minLine.
555 	 */
556 	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
557 				      info->reg_ctr, boot->reg_ctr);
558 
559 	/*
560 	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
561 	 * could result in too much or too little memory being zeroed if a
562 	 * process is preempted and migrated between CPUs.
563 	 */
564 	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
565 				      info->reg_dczid, boot->reg_dczid);
566 
567 	/* If different, timekeeping will be broken (especially with KVM) */
568 	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
569 				      info->reg_cntfrq, boot->reg_cntfrq);
570 
571 	/*
572 	 * The kernel uses self-hosted debug features and expects CPUs to
573 	 * support identical debug features. We presently need CTX_CMPs, WRPs,
574 	 * and BRPs to be identical.
575 	 * ID_AA64DFR1 is currently RES0.
576 	 */
577 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
578 				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
579 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
580 				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
581 	/*
582 	 * Even in big.LITTLE, processors should be identical instruction-set
583 	 * wise.
584 	 */
585 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
586 				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
587 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
588 				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
589 
590 	/*
591 	 * Differing PARange support is fine as long as all peripherals and
592 	 * memory are mapped within the minimum PARange of all CPUs.
593 	 * Linux should not care about secure memory.
594 	 */
595 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
596 				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
597 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
598 				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
599 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
600 				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
601 
602 	/*
603 	 * EL3 is not our concern.
604 	 * ID_AA64PFR1 is currently RES0.
605 	 */
606 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
607 				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
608 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
609 				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
610 
611 	/*
612 	 * If we have AArch32, we care about 32-bit features for compat.
613 	 * If the system doesn't support AArch32, don't update them.
614 	 */
615 	if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
616 		id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
617 
618 		taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
619 					info->reg_id_dfr0, boot->reg_id_dfr0);
620 		taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
621 					info->reg_id_isar0, boot->reg_id_isar0);
622 		taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
623 					info->reg_id_isar1, boot->reg_id_isar1);
624 		taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
625 					info->reg_id_isar2, boot->reg_id_isar2);
626 		taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
627 					info->reg_id_isar3, boot->reg_id_isar3);
628 		taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
629 					info->reg_id_isar4, boot->reg_id_isar4);
630 		taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
631 					info->reg_id_isar5, boot->reg_id_isar5);
632 
633 		/*
634 		 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
635 		 * ACTLR formats could differ across CPUs and therefore would have to
636 		 * be trapped for virtualization anyway.
637 		 */
638 		taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
639 					info->reg_id_mmfr0, boot->reg_id_mmfr0);
640 		taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
641 					info->reg_id_mmfr1, boot->reg_id_mmfr1);
642 		taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
643 					info->reg_id_mmfr2, boot->reg_id_mmfr2);
644 		taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
645 					info->reg_id_mmfr3, boot->reg_id_mmfr3);
646 		taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
647 					info->reg_id_pfr0, boot->reg_id_pfr0);
648 		taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
649 					info->reg_id_pfr1, boot->reg_id_pfr1);
650 		taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
651 					info->reg_mvfr0, boot->reg_mvfr0);
652 		taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
653 					info->reg_mvfr1, boot->reg_mvfr1);
654 		taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
655 					info->reg_mvfr2, boot->reg_mvfr2);
656 	}
657 
658 	/*
659 	 * Mismatched CPU features are a recipe for disaster. Don't even
660 	 * pretend to support them.
661 	 */
662 	if (taint) {
663 		pr_warn_once("Unsupported CPU feature variation detected.\n");
664 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
665 	}
666 }
667 
668 u64 read_sanitised_ftr_reg(u32 id)
669 {
670 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
671 
672 	/* We shouldn't get a request for an unsupported register */
673 	BUG_ON(!regp);
674 	return regp->sys_val;
675 }
676 
677 #define read_sysreg_case(r)	\
678 	case r:		return read_sysreg_s(r)
679 
680 /*
681  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
682  * Read the system register on the current CPU
683  */
684 static u64 __read_sysreg_by_encoding(u32 sys_id)
685 {
686 	switch (sys_id) {
687 	read_sysreg_case(SYS_ID_PFR0_EL1);
688 	read_sysreg_case(SYS_ID_PFR1_EL1);
689 	read_sysreg_case(SYS_ID_DFR0_EL1);
690 	read_sysreg_case(SYS_ID_MMFR0_EL1);
691 	read_sysreg_case(SYS_ID_MMFR1_EL1);
692 	read_sysreg_case(SYS_ID_MMFR2_EL1);
693 	read_sysreg_case(SYS_ID_MMFR3_EL1);
694 	read_sysreg_case(SYS_ID_ISAR0_EL1);
695 	read_sysreg_case(SYS_ID_ISAR1_EL1);
696 	read_sysreg_case(SYS_ID_ISAR2_EL1);
697 	read_sysreg_case(SYS_ID_ISAR3_EL1);
698 	read_sysreg_case(SYS_ID_ISAR4_EL1);
699 	read_sysreg_case(SYS_ID_ISAR5_EL1);
700 	read_sysreg_case(SYS_MVFR0_EL1);
701 	read_sysreg_case(SYS_MVFR1_EL1);
702 	read_sysreg_case(SYS_MVFR2_EL1);
703 
704 	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
705 	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
706 	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
707 	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
708 	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
709 	read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
710 	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
711 	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
712 	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
713 
714 	read_sysreg_case(SYS_CNTFRQ_EL0);
715 	read_sysreg_case(SYS_CTR_EL0);
716 	read_sysreg_case(SYS_DCZID_EL0);
717 
718 	default:
719 		BUG();
720 		return 0;
721 	}
722 }
723 
724 #include <linux/irqchip/arm-gic-v3.h>
725 
726 static bool
727 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
728 {
729 	int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
730 
731 	return val >= entry->min_field_value;
732 }
733 
734 static bool
735 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
736 {
737 	u64 val;
738 
739 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
740 	if (scope == SCOPE_SYSTEM)
741 		val = read_sanitised_ftr_reg(entry->sys_reg);
742 	else
743 		val = __read_sysreg_by_encoding(entry->sys_reg);
744 
745 	return feature_matches(val, entry);
746 }
747 
748 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
749 {
750 	bool has_sre;
751 
752 	if (!has_cpuid_feature(entry, scope))
753 		return false;
754 
755 	has_sre = gic_enable_sre();
756 	if (!has_sre)
757 		pr_warn_once("%s present but disabled by higher exception level\n",
758 			     entry->desc);
759 
760 	return has_sre;
761 }
762 
763 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
764 {
765 	u32 midr = read_cpuid_id();
766 
767 	/* Cavium ThunderX pass 1.x and 2.x */
768 	return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
769 		MIDR_CPU_VAR_REV(0, 0),
770 		MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
771 }
772 
773 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
774 {
775 	return is_kernel_in_hyp_mode();
776 }
777 
778 static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
779 			   int __unused)
780 {
781 	phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
782 
783 	/*
784 	 * Activate the lower HYP offset only if:
785 	 * - the idmap doesn't clash with it,
786 	 * - the kernel is not running at EL2.
787 	 */
788 	return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
789 }
790 
791 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
792 {
793 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
794 
795 	return cpuid_feature_extract_signed_field(pfr0,
796 					ID_AA64PFR0_FP_SHIFT) < 0;
797 }
798 
799 static const struct arm64_cpu_capabilities arm64_features[] = {
800 	{
801 		.desc = "GIC system register CPU interface",
802 		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
803 		.def_scope = SCOPE_SYSTEM,
804 		.matches = has_useable_gicv3_cpuif,
805 		.sys_reg = SYS_ID_AA64PFR0_EL1,
806 		.field_pos = ID_AA64PFR0_GIC_SHIFT,
807 		.sign = FTR_UNSIGNED,
808 		.min_field_value = 1,
809 	},
810 #ifdef CONFIG_ARM64_PAN
811 	{
812 		.desc = "Privileged Access Never",
813 		.capability = ARM64_HAS_PAN,
814 		.def_scope = SCOPE_SYSTEM,
815 		.matches = has_cpuid_feature,
816 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
817 		.field_pos = ID_AA64MMFR1_PAN_SHIFT,
818 		.sign = FTR_UNSIGNED,
819 		.min_field_value = 1,
820 		.enable = cpu_enable_pan,
821 	},
822 #endif /* CONFIG_ARM64_PAN */
823 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
824 	{
825 		.desc = "LSE atomic instructions",
826 		.capability = ARM64_HAS_LSE_ATOMICS,
827 		.def_scope = SCOPE_SYSTEM,
828 		.matches = has_cpuid_feature,
829 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
830 		.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
831 		.sign = FTR_UNSIGNED,
832 		.min_field_value = 2,
833 	},
834 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
835 	{
836 		.desc = "Software prefetching using PRFM",
837 		.capability = ARM64_HAS_NO_HW_PREFETCH,
838 		.def_scope = SCOPE_SYSTEM,
839 		.matches = has_no_hw_prefetch,
840 	},
841 #ifdef CONFIG_ARM64_UAO
842 	{
843 		.desc = "User Access Override",
844 		.capability = ARM64_HAS_UAO,
845 		.def_scope = SCOPE_SYSTEM,
846 		.matches = has_cpuid_feature,
847 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
848 		.field_pos = ID_AA64MMFR2_UAO_SHIFT,
849 		.min_field_value = 1,
850 		/*
851 		 * We rely on stop_machine() calling uao_thread_switch() to set
852 		 * UAO immediately after patching.
853 		 */
854 	},
855 #endif /* CONFIG_ARM64_UAO */
856 #ifdef CONFIG_ARM64_PAN
857 	{
858 		.capability = ARM64_ALT_PAN_NOT_UAO,
859 		.def_scope = SCOPE_SYSTEM,
860 		.matches = cpufeature_pan_not_uao,
861 	},
862 #endif /* CONFIG_ARM64_PAN */
863 	{
864 		.desc = "Virtualization Host Extensions",
865 		.capability = ARM64_HAS_VIRT_HOST_EXTN,
866 		.def_scope = SCOPE_SYSTEM,
867 		.matches = runs_at_el2,
868 	},
869 	{
870 		.desc = "32-bit EL0 Support",
871 		.capability = ARM64_HAS_32BIT_EL0,
872 		.def_scope = SCOPE_SYSTEM,
873 		.matches = has_cpuid_feature,
874 		.sys_reg = SYS_ID_AA64PFR0_EL1,
875 		.sign = FTR_UNSIGNED,
876 		.field_pos = ID_AA64PFR0_EL0_SHIFT,
877 		.min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
878 	},
879 	{
880 		.desc = "Reduced HYP mapping offset",
881 		.capability = ARM64_HYP_OFFSET_LOW,
882 		.def_scope = SCOPE_SYSTEM,
883 		.matches = hyp_offset_low,
884 	},
885 	{
886 		/* FP/SIMD is not implemented */
887 		.capability = ARM64_HAS_NO_FPSIMD,
888 		.def_scope = SCOPE_SYSTEM,
889 		.min_field_value = 0,
890 		.matches = has_no_fpsimd,
891 	},
892 #ifdef CONFIG_ARM64_PMEM
893 	{
894 		.desc = "Data cache clean to Point of Persistence",
895 		.capability = ARM64_HAS_DCPOP,
896 		.def_scope = SCOPE_SYSTEM,
897 		.matches = has_cpuid_feature,
898 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
899 		.field_pos = ID_AA64ISAR1_DPB_SHIFT,
900 		.min_field_value = 1,
901 	},
902 #endif
903 	{},
904 };
905 
906 #define HWCAP_CAP(reg, field, s, min_value, type, cap)	\
907 	{							\
908 		.desc = #cap,					\
909 		.def_scope = SCOPE_SYSTEM,			\
910 		.matches = has_cpuid_feature,			\
911 		.sys_reg = reg,					\
912 		.field_pos = field,				\
913 		.sign = s,					\
914 		.min_field_value = min_value,			\
915 		.hwcap_type = type,				\
916 		.hwcap = cap,					\
917 	}
918 
919 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
920 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
921 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
922 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
923 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
924 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
925 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
926 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
927 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
928 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
929 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
930 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
931 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_DCPOP),
932 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
933 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
934 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
935 	{},
936 };
937 
938 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
939 #ifdef CONFIG_COMPAT
940 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
941 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
942 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
943 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
944 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
945 #endif
946 	{},
947 };
948 
949 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
950 {
951 	switch (cap->hwcap_type) {
952 	case CAP_HWCAP:
953 		elf_hwcap |= cap->hwcap;
954 		break;
955 #ifdef CONFIG_COMPAT
956 	case CAP_COMPAT_HWCAP:
957 		compat_elf_hwcap |= (u32)cap->hwcap;
958 		break;
959 	case CAP_COMPAT_HWCAP2:
960 		compat_elf_hwcap2 |= (u32)cap->hwcap;
961 		break;
962 #endif
963 	default:
964 		WARN_ON(1);
965 		break;
966 	}
967 }
968 
969 /* Check if we have a particular HWCAP enabled */
970 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
971 {
972 	bool rc;
973 
974 	switch (cap->hwcap_type) {
975 	case CAP_HWCAP:
976 		rc = (elf_hwcap & cap->hwcap) != 0;
977 		break;
978 #ifdef CONFIG_COMPAT
979 	case CAP_COMPAT_HWCAP:
980 		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
981 		break;
982 	case CAP_COMPAT_HWCAP2:
983 		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
984 		break;
985 #endif
986 	default:
987 		WARN_ON(1);
988 		rc = false;
989 	}
990 
991 	return rc;
992 }
993 
994 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
995 {
996 	/* We support emulation of accesses to CPU ID feature registers */
997 	elf_hwcap |= HWCAP_CPUID;
998 	for (; hwcaps->matches; hwcaps++)
999 		if (hwcaps->matches(hwcaps, hwcaps->def_scope))
1000 			cap_set_elf_hwcap(hwcaps);
1001 }
1002 
1003 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
1004 			    const char *info)
1005 {
1006 	for (; caps->matches; caps++) {
1007 		if (!caps->matches(caps, caps->def_scope))
1008 			continue;
1009 
1010 		if (!cpus_have_cap(caps->capability) && caps->desc)
1011 			pr_info("%s %s\n", info, caps->desc);
1012 		cpus_set_cap(caps->capability);
1013 	}
1014 }
1015 
1016 /*
1017  * Run through the enabled capabilities and enable() it on all active
1018  * CPUs
1019  */
1020 void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
1021 {
1022 	for (; caps->matches; caps++) {
1023 		unsigned int num = caps->capability;
1024 
1025 		if (!cpus_have_cap(num))
1026 			continue;
1027 
1028 		/* Ensure cpus_have_const_cap(num) works */
1029 		static_branch_enable(&cpu_hwcap_keys[num]);
1030 
1031 		if (caps->enable) {
1032 			/*
1033 			 * Use stop_machine() as it schedules the work allowing
1034 			 * us to modify PSTATE, instead of on_each_cpu() which
1035 			 * uses an IPI, giving us a PSTATE that disappears when
1036 			 * we return.
1037 			 */
1038 			stop_machine(caps->enable, NULL, cpu_online_mask);
1039 		}
1040 	}
1041 }
1042 
1043 /*
1044  * Flag to indicate if we have computed the system wide
1045  * capabilities based on the boot time active CPUs. This
1046  * will be used to determine if a new booting CPU should
1047  * go through the verification process to make sure that it
1048  * supports the system capabilities, without using a hotplug
1049  * notifier.
1050  */
1051 static bool sys_caps_initialised;
1052 
1053 static inline void set_sys_caps_initialised(void)
1054 {
1055 	sys_caps_initialised = true;
1056 }
1057 
1058 /*
1059  * Check for CPU features that are used in early boot
1060  * based on the Boot CPU value.
1061  */
1062 static void check_early_cpu_features(void)
1063 {
1064 	verify_cpu_run_el();
1065 	verify_cpu_asid_bits();
1066 }
1067 
1068 static void
1069 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1070 {
1071 
1072 	for (; caps->matches; caps++)
1073 		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1074 			pr_crit("CPU%d: missing HWCAP: %s\n",
1075 					smp_processor_id(), caps->desc);
1076 			cpu_die_early();
1077 		}
1078 }
1079 
1080 static void
1081 verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
1082 {
1083 	for (; caps->matches; caps++) {
1084 		if (!cpus_have_cap(caps->capability))
1085 			continue;
1086 		/*
1087 		 * If the new CPU misses an advertised feature, we cannot proceed
1088 		 * further, park the cpu.
1089 		 */
1090 		if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
1091 			pr_crit("CPU%d: missing feature: %s\n",
1092 					smp_processor_id(), caps->desc);
1093 			cpu_die_early();
1094 		}
1095 		if (caps->enable)
1096 			caps->enable(NULL);
1097 	}
1098 }
1099 
1100 /*
1101  * Run through the enabled system capabilities and enable() it on this CPU.
1102  * The capabilities were decided based on the available CPUs at the boot time.
1103  * Any new CPU should match the system wide status of the capability. If the
1104  * new CPU doesn't have a capability which the system now has enabled, we
1105  * cannot do anything to fix it up and could cause unexpected failures. So
1106  * we park the CPU.
1107  */
1108 static void verify_local_cpu_capabilities(void)
1109 {
1110 	verify_local_cpu_errata_workarounds();
1111 	verify_local_cpu_features(arm64_features);
1112 	verify_local_elf_hwcaps(arm64_elf_hwcaps);
1113 	if (system_supports_32bit_el0())
1114 		verify_local_elf_hwcaps(compat_elf_hwcaps);
1115 }
1116 
1117 void check_local_cpu_capabilities(void)
1118 {
1119 	/*
1120 	 * All secondary CPUs should conform to the early CPU features
1121 	 * in use by the kernel based on boot CPU.
1122 	 */
1123 	check_early_cpu_features();
1124 
1125 	/*
1126 	 * If we haven't finalised the system capabilities, this CPU gets
1127 	 * a chance to update the errata work arounds.
1128 	 * Otherwise, this CPU should verify that it has all the system
1129 	 * advertised capabilities.
1130 	 */
1131 	if (!sys_caps_initialised)
1132 		update_cpu_errata_workarounds();
1133 	else
1134 		verify_local_cpu_capabilities();
1135 }
1136 
1137 static void __init setup_feature_capabilities(void)
1138 {
1139 	update_cpu_capabilities(arm64_features, "detected feature:");
1140 	enable_cpu_capabilities(arm64_features);
1141 }
1142 
1143 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1144 EXPORT_SYMBOL(arm64_const_caps_ready);
1145 
1146 static void __init mark_const_caps_ready(void)
1147 {
1148 	static_branch_enable(&arm64_const_caps_ready);
1149 }
1150 
1151 /*
1152  * Check if the current CPU has a given feature capability.
1153  * Should be called from non-preemptible context.
1154  */
1155 static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
1156 			       unsigned int cap)
1157 {
1158 	const struct arm64_cpu_capabilities *caps;
1159 
1160 	if (WARN_ON(preemptible()))
1161 		return false;
1162 
1163 	for (caps = cap_array; caps->desc; caps++)
1164 		if (caps->capability == cap && caps->matches)
1165 			return caps->matches(caps, SCOPE_LOCAL_CPU);
1166 
1167 	return false;
1168 }
1169 
1170 extern const struct arm64_cpu_capabilities arm64_errata[];
1171 
1172 bool this_cpu_has_cap(unsigned int cap)
1173 {
1174 	return (__this_cpu_has_cap(arm64_features, cap) ||
1175 		__this_cpu_has_cap(arm64_errata, cap));
1176 }
1177 
1178 void __init setup_cpu_features(void)
1179 {
1180 	u32 cwg;
1181 	int cls;
1182 
1183 	/* Set the CPU feature capabilies */
1184 	setup_feature_capabilities();
1185 	enable_errata_workarounds();
1186 	mark_const_caps_ready();
1187 	setup_elf_hwcaps(arm64_elf_hwcaps);
1188 
1189 	if (system_supports_32bit_el0())
1190 		setup_elf_hwcaps(compat_elf_hwcaps);
1191 
1192 	/* Advertise that we have computed the system capabilities */
1193 	set_sys_caps_initialised();
1194 
1195 	/*
1196 	 * Check for sane CTR_EL0.CWG value.
1197 	 */
1198 	cwg = cache_type_cwg();
1199 	cls = cache_line_size();
1200 	if (!cwg)
1201 		pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1202 			cls);
1203 	if (L1_CACHE_BYTES < cls)
1204 		pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1205 			L1_CACHE_BYTES, cls);
1206 }
1207 
1208 static bool __maybe_unused
1209 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1210 {
1211 	return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1212 }
1213 
1214 /*
1215  * We emulate only the following system register space.
1216  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1217  * See Table C5-6 System instruction encodings for System register accesses,
1218  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1219  */
1220 static inline bool __attribute_const__ is_emulated(u32 id)
1221 {
1222 	return (sys_reg_Op0(id) == 0x3 &&
1223 		sys_reg_CRn(id) == 0x0 &&
1224 		sys_reg_Op1(id) == 0x0 &&
1225 		(sys_reg_CRm(id) == 0 ||
1226 		 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
1227 }
1228 
1229 /*
1230  * With CRm == 0, reg should be one of :
1231  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1232  */
1233 static inline int emulate_id_reg(u32 id, u64 *valp)
1234 {
1235 	switch (id) {
1236 	case SYS_MIDR_EL1:
1237 		*valp = read_cpuid_id();
1238 		break;
1239 	case SYS_MPIDR_EL1:
1240 		*valp = SYS_MPIDR_SAFE_VAL;
1241 		break;
1242 	case SYS_REVIDR_EL1:
1243 		/* IMPLEMENTATION DEFINED values are emulated with 0 */
1244 		*valp = 0;
1245 		break;
1246 	default:
1247 		return -EINVAL;
1248 	}
1249 
1250 	return 0;
1251 }
1252 
1253 static int emulate_sys_reg(u32 id, u64 *valp)
1254 {
1255 	struct arm64_ftr_reg *regp;
1256 
1257 	if (!is_emulated(id))
1258 		return -EINVAL;
1259 
1260 	if (sys_reg_CRm(id) == 0)
1261 		return emulate_id_reg(id, valp);
1262 
1263 	regp = get_arm64_ftr_reg(id);
1264 	if (regp)
1265 		*valp = arm64_ftr_reg_user_value(regp);
1266 	else
1267 		/*
1268 		 * The untracked registers are either IMPLEMENTATION DEFINED
1269 		 * (e.g, ID_AFR0_EL1) or reserved RAZ.
1270 		 */
1271 		*valp = 0;
1272 	return 0;
1273 }
1274 
1275 static int emulate_mrs(struct pt_regs *regs, u32 insn)
1276 {
1277 	int rc;
1278 	u32 sys_reg, dst;
1279 	u64 val;
1280 
1281 	/*
1282 	 * sys_reg values are defined as used in mrs/msr instruction.
1283 	 * shift the imm value to get the encoding.
1284 	 */
1285 	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
1286 	rc = emulate_sys_reg(sys_reg, &val);
1287 	if (!rc) {
1288 		dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
1289 		pt_regs_write_reg(regs, dst, val);
1290 		regs->pc += 4;
1291 	}
1292 
1293 	return rc;
1294 }
1295 
1296 static struct undef_hook mrs_hook = {
1297 	.instr_mask = 0xfff00000,
1298 	.instr_val  = 0xd5300000,
1299 	.pstate_mask = COMPAT_PSR_MODE_MASK,
1300 	.pstate_val = PSR_MODE_EL0t,
1301 	.fn = emulate_mrs,
1302 };
1303 
1304 static int __init enable_mrs_emulation(void)
1305 {
1306 	register_undef_hook(&mrs_hook);
1307 	return 0;
1308 }
1309 
1310 core_initcall(enable_mrs_emulation);
1311