xref: /openbmc/linux/arch/arm64/kernel/cpufeature.c (revision 57ee11ea)
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #define pr_fmt(fmt) "CPU features: " fmt
20 
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <asm/cpu.h>
28 #include <asm/cpufeature.h>
29 #include <asm/cpu_ops.h>
30 #include <asm/mmu_context.h>
31 #include <asm/processor.h>
32 #include <asm/sysreg.h>
33 #include <asm/traps.h>
34 #include <asm/virt.h>
35 
36 unsigned long elf_hwcap __read_mostly;
37 EXPORT_SYMBOL_GPL(elf_hwcap);
38 
39 #ifdef CONFIG_COMPAT
40 #define COMPAT_ELF_HWCAP_DEFAULT	\
41 				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
42 				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
43 				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
44 				 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
45 				 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
46 				 COMPAT_HWCAP_LPAE)
47 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
48 unsigned int compat_elf_hwcap2 __read_mostly;
49 #endif
50 
51 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
52 EXPORT_SYMBOL(cpu_hwcaps);
53 
54 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
55 {
56 	/* file-wide pr_fmt adds "CPU features: " prefix */
57 	pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
58 	return 0;
59 }
60 
61 static struct notifier_block cpu_hwcaps_notifier = {
62 	.notifier_call = dump_cpu_hwcaps
63 };
64 
65 static int __init register_cpu_hwcaps_dumper(void)
66 {
67 	atomic_notifier_chain_register(&panic_notifier_list,
68 				       &cpu_hwcaps_notifier);
69 	return 0;
70 }
71 __initcall(register_cpu_hwcaps_dumper);
72 
73 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
74 EXPORT_SYMBOL(cpu_hwcap_keys);
75 
76 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
77 	{						\
78 		.sign = SIGNED,				\
79 		.visible = VISIBLE,			\
80 		.strict = STRICT,			\
81 		.type = TYPE,				\
82 		.shift = SHIFT,				\
83 		.width = WIDTH,				\
84 		.safe_val = SAFE_VAL,			\
85 	}
86 
87 /* Define a feature with unsigned values */
88 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
89 	__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
90 
91 /* Define a feature with a signed value */
92 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
93 	__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
94 
95 #define ARM64_FTR_END					\
96 	{						\
97 		.width = 0,				\
98 	}
99 
100 /* meta feature for alternatives */
101 static bool __maybe_unused
102 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
103 
104 
105 /*
106  * NOTE: Any changes to the visibility of features should be kept in
107  * sync with the documentation of the CPU feature register ABI.
108  */
109 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
110 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
111 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
112 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
113 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
114 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
115 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
116 	ARM64_FTR_END,
117 };
118 
119 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
120 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
121 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
122 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
123 	ARM64_FTR_END,
124 };
125 
126 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
127 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
128 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
129 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
130 	/* Linux doesn't care about the EL3 */
131 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
132 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
133 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
134 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
135 	ARM64_FTR_END,
136 };
137 
138 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
139 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
140 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
141 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
142 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
143 	/* Linux shouldn't care about secure memory */
144 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
145 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
146 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
147 	/*
148 	 * Differing PARange is fine as long as all peripherals and memory are mapped
149 	 * within the minimum PARange of all CPUs
150 	 */
151 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
152 	ARM64_FTR_END,
153 };
154 
155 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
156 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
157 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
158 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
159 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
160 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
161 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
162 	ARM64_FTR_END,
163 };
164 
165 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
166 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
167 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
168 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
169 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
170 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
171 	ARM64_FTR_END,
172 };
173 
174 static const struct arm64_ftr_bits ftr_ctr[] = {
175 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1),	/* RAO */
176 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),	/* CWG */
177 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* ERG */
178 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1),	/* DminLine */
179 	/*
180 	 * Linux can handle differing I-cache policies. Userspace JITs will
181 	 * make use of *minLine.
182 	 * If we have differing I-cache policies, report it as the weakest - VIPT.
183 	 */
184 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),	/* L1Ip */
185 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* IminLine */
186 	ARM64_FTR_END,
187 };
188 
189 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
190 	.name		= "SYS_CTR_EL0",
191 	.ftr_bits	= ftr_ctr
192 };
193 
194 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
195 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 28, 4, 0xf),	/* InnerShr */
196 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 24, 4, 0),	/* FCSE */
197 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* AuxReg */
198 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 16, 4, 0),	/* TCM */
199 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 12, 4, 0),	/* ShareLvl */
200 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 8, 4, 0xf),	/* OuterShr */
201 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0),	/* PMSA */
202 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0),	/* VMSA */
203 	ARM64_FTR_END,
204 };
205 
206 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
207 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
208 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
209 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
210 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
211 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
212 	/*
213 	 * We can instantiate multiple PMU instances with different levels
214 	 * of support.
215 	 */
216 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
217 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
218 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
219 	ARM64_FTR_END,
220 };
221 
222 static const struct arm64_ftr_bits ftr_mvfr2[] = {
223 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* FPMisc */
224 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* SIMDMisc */
225 	ARM64_FTR_END,
226 };
227 
228 static const struct arm64_ftr_bits ftr_dczid[] = {
229 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),		/* DZP */
230 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* BS */
231 	ARM64_FTR_END,
232 };
233 
234 
235 static const struct arm64_ftr_bits ftr_id_isar5[] = {
236 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
237 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
238 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
239 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
240 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
241 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
242 	ARM64_FTR_END,
243 };
244 
245 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
246 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* ac2 */
247 	ARM64_FTR_END,
248 };
249 
250 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
251 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 12, 4, 0),	/* State3 */
252 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 8, 4, 0),		/* State2 */
253 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* State1 */
254 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* State0 */
255 	ARM64_FTR_END,
256 };
257 
258 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
259 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
260 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),	/* PerfMon */
261 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
262 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
263 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
264 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
265 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
266 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
267 	ARM64_FTR_END,
268 };
269 
270 /*
271  * Common ftr bits for a 32bit register with all hidden, strict
272  * attributes, with 4bit feature fields and a default safe value of
273  * 0. Covers the following 32bit registers:
274  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
275  */
276 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
277 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
278 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
279 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
280 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
281 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
282 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
283 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
284 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
285 	ARM64_FTR_END,
286 };
287 
288 /* Table for a single 32bit feature value */
289 static const struct arm64_ftr_bits ftr_single32[] = {
290 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
291 	ARM64_FTR_END,
292 };
293 
294 static const struct arm64_ftr_bits ftr_raz[] = {
295 	ARM64_FTR_END,
296 };
297 
298 #define ARM64_FTR_REG(id, table) {		\
299 	.sys_id = id,				\
300 	.reg = 	&(struct arm64_ftr_reg){	\
301 		.name = #id,			\
302 		.ftr_bits = &((table)[0]),	\
303 	}}
304 
305 static const struct __ftr_reg_entry {
306 	u32			sys_id;
307 	struct arm64_ftr_reg 	*reg;
308 } arm64_ftr_regs[] = {
309 
310 	/* Op1 = 0, CRn = 0, CRm = 1 */
311 	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
312 	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
313 	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
314 	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
315 	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
316 	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
317 	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
318 
319 	/* Op1 = 0, CRn = 0, CRm = 2 */
320 	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
321 	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
322 	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
323 	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
324 	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
325 	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
326 	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
327 
328 	/* Op1 = 0, CRn = 0, CRm = 3 */
329 	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
330 	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
331 	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
332 
333 	/* Op1 = 0, CRn = 0, CRm = 4 */
334 	ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
335 	ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_raz),
336 
337 	/* Op1 = 0, CRn = 0, CRm = 5 */
338 	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
339 	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
340 
341 	/* Op1 = 0, CRn = 0, CRm = 6 */
342 	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
343 	ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
344 
345 	/* Op1 = 0, CRn = 0, CRm = 7 */
346 	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
347 	ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
348 	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
349 
350 	/* Op1 = 3, CRn = 0, CRm = 0 */
351 	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
352 	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
353 
354 	/* Op1 = 3, CRn = 14, CRm = 0 */
355 	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
356 };
357 
358 static int search_cmp_ftr_reg(const void *id, const void *regp)
359 {
360 	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
361 }
362 
363 /*
364  * get_arm64_ftr_reg - Lookup a feature register entry using its
365  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
366  * ascending order of sys_id , we use binary search to find a matching
367  * entry.
368  *
369  * returns - Upon success,  matching ftr_reg entry for id.
370  *         - NULL on failure. It is upto the caller to decide
371  *	     the impact of a failure.
372  */
373 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
374 {
375 	const struct __ftr_reg_entry *ret;
376 
377 	ret = bsearch((const void *)(unsigned long)sys_id,
378 			arm64_ftr_regs,
379 			ARRAY_SIZE(arm64_ftr_regs),
380 			sizeof(arm64_ftr_regs[0]),
381 			search_cmp_ftr_reg);
382 	if (ret)
383 		return ret->reg;
384 	return NULL;
385 }
386 
387 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
388 			       s64 ftr_val)
389 {
390 	u64 mask = arm64_ftr_mask(ftrp);
391 
392 	reg &= ~mask;
393 	reg |= (ftr_val << ftrp->shift) & mask;
394 	return reg;
395 }
396 
397 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
398 				s64 cur)
399 {
400 	s64 ret = 0;
401 
402 	switch (ftrp->type) {
403 	case FTR_EXACT:
404 		ret = ftrp->safe_val;
405 		break;
406 	case FTR_LOWER_SAFE:
407 		ret = new < cur ? new : cur;
408 		break;
409 	case FTR_HIGHER_SAFE:
410 		ret = new > cur ? new : cur;
411 		break;
412 	default:
413 		BUG();
414 	}
415 
416 	return ret;
417 }
418 
419 static void __init sort_ftr_regs(void)
420 {
421 	int i;
422 
423 	/* Check that the array is sorted so that we can do the binary search */
424 	for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
425 		BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
426 }
427 
428 /*
429  * Initialise the CPU feature register from Boot CPU values.
430  * Also initiliases the strict_mask for the register.
431  * Any bits that are not covered by an arm64_ftr_bits entry are considered
432  * RES0 for the system-wide value, and must strictly match.
433  */
434 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
435 {
436 	u64 val = 0;
437 	u64 strict_mask = ~0x0ULL;
438 	u64 user_mask = 0;
439 	u64 valid_mask = 0;
440 
441 	const struct arm64_ftr_bits *ftrp;
442 	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
443 
444 	BUG_ON(!reg);
445 
446 	for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
447 		u64 ftr_mask = arm64_ftr_mask(ftrp);
448 		s64 ftr_new = arm64_ftr_value(ftrp, new);
449 
450 		val = arm64_ftr_set_value(ftrp, val, ftr_new);
451 
452 		valid_mask |= ftr_mask;
453 		if (!ftrp->strict)
454 			strict_mask &= ~ftr_mask;
455 		if (ftrp->visible)
456 			user_mask |= ftr_mask;
457 		else
458 			reg->user_val = arm64_ftr_set_value(ftrp,
459 							    reg->user_val,
460 							    ftrp->safe_val);
461 	}
462 
463 	val &= valid_mask;
464 
465 	reg->sys_val = val;
466 	reg->strict_mask = strict_mask;
467 	reg->user_mask = user_mask;
468 }
469 
470 void __init init_cpu_features(struct cpuinfo_arm64 *info)
471 {
472 	/* Before we start using the tables, make sure it is sorted */
473 	sort_ftr_regs();
474 
475 	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
476 	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
477 	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
478 	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
479 	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
480 	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
481 	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
482 	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
483 	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
484 	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
485 	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
486 	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
487 
488 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
489 		init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
490 		init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
491 		init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
492 		init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
493 		init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
494 		init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
495 		init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
496 		init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
497 		init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
498 		init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
499 		init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
500 		init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
501 		init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
502 		init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
503 		init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
504 		init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
505 	}
506 
507 }
508 
509 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
510 {
511 	const struct arm64_ftr_bits *ftrp;
512 
513 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
514 		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
515 		s64 ftr_new = arm64_ftr_value(ftrp, new);
516 
517 		if (ftr_cur == ftr_new)
518 			continue;
519 		/* Find a safe value */
520 		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
521 		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
522 	}
523 
524 }
525 
526 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
527 {
528 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
529 
530 	BUG_ON(!regp);
531 	update_cpu_ftr_reg(regp, val);
532 	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
533 		return 0;
534 	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
535 			regp->name, boot, cpu, val);
536 	return 1;
537 }
538 
539 /*
540  * Update system wide CPU feature registers with the values from a
541  * non-boot CPU. Also performs SANITY checks to make sure that there
542  * aren't any insane variations from that of the boot CPU.
543  */
544 void update_cpu_features(int cpu,
545 			 struct cpuinfo_arm64 *info,
546 			 struct cpuinfo_arm64 *boot)
547 {
548 	int taint = 0;
549 
550 	/*
551 	 * The kernel can handle differing I-cache policies, but otherwise
552 	 * caches should look identical. Userspace JITs will make use of
553 	 * *minLine.
554 	 */
555 	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
556 				      info->reg_ctr, boot->reg_ctr);
557 
558 	/*
559 	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
560 	 * could result in too much or too little memory being zeroed if a
561 	 * process is preempted and migrated between CPUs.
562 	 */
563 	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
564 				      info->reg_dczid, boot->reg_dczid);
565 
566 	/* If different, timekeeping will be broken (especially with KVM) */
567 	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
568 				      info->reg_cntfrq, boot->reg_cntfrq);
569 
570 	/*
571 	 * The kernel uses self-hosted debug features and expects CPUs to
572 	 * support identical debug features. We presently need CTX_CMPs, WRPs,
573 	 * and BRPs to be identical.
574 	 * ID_AA64DFR1 is currently RES0.
575 	 */
576 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
577 				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
578 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
579 				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
580 	/*
581 	 * Even in big.LITTLE, processors should be identical instruction-set
582 	 * wise.
583 	 */
584 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
585 				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
586 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
587 				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
588 
589 	/*
590 	 * Differing PARange support is fine as long as all peripherals and
591 	 * memory are mapped within the minimum PARange of all CPUs.
592 	 * Linux should not care about secure memory.
593 	 */
594 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
595 				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
596 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
597 				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
598 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
599 				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
600 
601 	/*
602 	 * EL3 is not our concern.
603 	 * ID_AA64PFR1 is currently RES0.
604 	 */
605 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
606 				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
607 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
608 				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
609 
610 	/*
611 	 * If we have AArch32, we care about 32-bit features for compat.
612 	 * If the system doesn't support AArch32, don't update them.
613 	 */
614 	if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
615 		id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
616 
617 		taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
618 					info->reg_id_dfr0, boot->reg_id_dfr0);
619 		taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
620 					info->reg_id_isar0, boot->reg_id_isar0);
621 		taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
622 					info->reg_id_isar1, boot->reg_id_isar1);
623 		taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
624 					info->reg_id_isar2, boot->reg_id_isar2);
625 		taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
626 					info->reg_id_isar3, boot->reg_id_isar3);
627 		taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
628 					info->reg_id_isar4, boot->reg_id_isar4);
629 		taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
630 					info->reg_id_isar5, boot->reg_id_isar5);
631 
632 		/*
633 		 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
634 		 * ACTLR formats could differ across CPUs and therefore would have to
635 		 * be trapped for virtualization anyway.
636 		 */
637 		taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
638 					info->reg_id_mmfr0, boot->reg_id_mmfr0);
639 		taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
640 					info->reg_id_mmfr1, boot->reg_id_mmfr1);
641 		taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
642 					info->reg_id_mmfr2, boot->reg_id_mmfr2);
643 		taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
644 					info->reg_id_mmfr3, boot->reg_id_mmfr3);
645 		taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
646 					info->reg_id_pfr0, boot->reg_id_pfr0);
647 		taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
648 					info->reg_id_pfr1, boot->reg_id_pfr1);
649 		taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
650 					info->reg_mvfr0, boot->reg_mvfr0);
651 		taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
652 					info->reg_mvfr1, boot->reg_mvfr1);
653 		taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
654 					info->reg_mvfr2, boot->reg_mvfr2);
655 	}
656 
657 	/*
658 	 * Mismatched CPU features are a recipe for disaster. Don't even
659 	 * pretend to support them.
660 	 */
661 	if (taint) {
662 		pr_warn_once("Unsupported CPU feature variation detected.\n");
663 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
664 	}
665 }
666 
667 u64 read_sanitised_ftr_reg(u32 id)
668 {
669 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
670 
671 	/* We shouldn't get a request for an unsupported register */
672 	BUG_ON(!regp);
673 	return regp->sys_val;
674 }
675 
676 #define read_sysreg_case(r)	\
677 	case r:		return read_sysreg_s(r)
678 
679 /*
680  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
681  * Read the system register on the current CPU
682  */
683 static u64 __read_sysreg_by_encoding(u32 sys_id)
684 {
685 	switch (sys_id) {
686 	read_sysreg_case(SYS_ID_PFR0_EL1);
687 	read_sysreg_case(SYS_ID_PFR1_EL1);
688 	read_sysreg_case(SYS_ID_DFR0_EL1);
689 	read_sysreg_case(SYS_ID_MMFR0_EL1);
690 	read_sysreg_case(SYS_ID_MMFR1_EL1);
691 	read_sysreg_case(SYS_ID_MMFR2_EL1);
692 	read_sysreg_case(SYS_ID_MMFR3_EL1);
693 	read_sysreg_case(SYS_ID_ISAR0_EL1);
694 	read_sysreg_case(SYS_ID_ISAR1_EL1);
695 	read_sysreg_case(SYS_ID_ISAR2_EL1);
696 	read_sysreg_case(SYS_ID_ISAR3_EL1);
697 	read_sysreg_case(SYS_ID_ISAR4_EL1);
698 	read_sysreg_case(SYS_ID_ISAR5_EL1);
699 	read_sysreg_case(SYS_MVFR0_EL1);
700 	read_sysreg_case(SYS_MVFR1_EL1);
701 	read_sysreg_case(SYS_MVFR2_EL1);
702 
703 	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
704 	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
705 	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
706 	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
707 	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
708 	read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
709 	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
710 	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
711 	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
712 
713 	read_sysreg_case(SYS_CNTFRQ_EL0);
714 	read_sysreg_case(SYS_CTR_EL0);
715 	read_sysreg_case(SYS_DCZID_EL0);
716 
717 	default:
718 		BUG();
719 		return 0;
720 	}
721 }
722 
723 #include <linux/irqchip/arm-gic-v3.h>
724 
725 static bool
726 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
727 {
728 	int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
729 
730 	return val >= entry->min_field_value;
731 }
732 
733 static bool
734 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
735 {
736 	u64 val;
737 
738 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
739 	if (scope == SCOPE_SYSTEM)
740 		val = read_sanitised_ftr_reg(entry->sys_reg);
741 	else
742 		val = __read_sysreg_by_encoding(entry->sys_reg);
743 
744 	return feature_matches(val, entry);
745 }
746 
747 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
748 {
749 	bool has_sre;
750 
751 	if (!has_cpuid_feature(entry, scope))
752 		return false;
753 
754 	has_sre = gic_enable_sre();
755 	if (!has_sre)
756 		pr_warn_once("%s present but disabled by higher exception level\n",
757 			     entry->desc);
758 
759 	return has_sre;
760 }
761 
762 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
763 {
764 	u32 midr = read_cpuid_id();
765 
766 	/* Cavium ThunderX pass 1.x and 2.x */
767 	return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
768 		MIDR_CPU_VAR_REV(0, 0),
769 		MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
770 }
771 
772 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
773 {
774 	return is_kernel_in_hyp_mode();
775 }
776 
777 static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
778 			   int __unused)
779 {
780 	phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
781 
782 	/*
783 	 * Activate the lower HYP offset only if:
784 	 * - the idmap doesn't clash with it,
785 	 * - the kernel is not running at EL2.
786 	 */
787 	return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
788 }
789 
790 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
791 {
792 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
793 
794 	return cpuid_feature_extract_signed_field(pfr0,
795 					ID_AA64PFR0_FP_SHIFT) < 0;
796 }
797 
798 static const struct arm64_cpu_capabilities arm64_features[] = {
799 	{
800 		.desc = "GIC system register CPU interface",
801 		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
802 		.def_scope = SCOPE_SYSTEM,
803 		.matches = has_useable_gicv3_cpuif,
804 		.sys_reg = SYS_ID_AA64PFR0_EL1,
805 		.field_pos = ID_AA64PFR0_GIC_SHIFT,
806 		.sign = FTR_UNSIGNED,
807 		.min_field_value = 1,
808 	},
809 #ifdef CONFIG_ARM64_PAN
810 	{
811 		.desc = "Privileged Access Never",
812 		.capability = ARM64_HAS_PAN,
813 		.def_scope = SCOPE_SYSTEM,
814 		.matches = has_cpuid_feature,
815 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
816 		.field_pos = ID_AA64MMFR1_PAN_SHIFT,
817 		.sign = FTR_UNSIGNED,
818 		.min_field_value = 1,
819 		.enable = cpu_enable_pan,
820 	},
821 #endif /* CONFIG_ARM64_PAN */
822 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
823 	{
824 		.desc = "LSE atomic instructions",
825 		.capability = ARM64_HAS_LSE_ATOMICS,
826 		.def_scope = SCOPE_SYSTEM,
827 		.matches = has_cpuid_feature,
828 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
829 		.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
830 		.sign = FTR_UNSIGNED,
831 		.min_field_value = 2,
832 	},
833 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
834 	{
835 		.desc = "Software prefetching using PRFM",
836 		.capability = ARM64_HAS_NO_HW_PREFETCH,
837 		.def_scope = SCOPE_SYSTEM,
838 		.matches = has_no_hw_prefetch,
839 	},
840 #ifdef CONFIG_ARM64_UAO
841 	{
842 		.desc = "User Access Override",
843 		.capability = ARM64_HAS_UAO,
844 		.def_scope = SCOPE_SYSTEM,
845 		.matches = has_cpuid_feature,
846 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
847 		.field_pos = ID_AA64MMFR2_UAO_SHIFT,
848 		.min_field_value = 1,
849 		/*
850 		 * We rely on stop_machine() calling uao_thread_switch() to set
851 		 * UAO immediately after patching.
852 		 */
853 	},
854 #endif /* CONFIG_ARM64_UAO */
855 #ifdef CONFIG_ARM64_PAN
856 	{
857 		.capability = ARM64_ALT_PAN_NOT_UAO,
858 		.def_scope = SCOPE_SYSTEM,
859 		.matches = cpufeature_pan_not_uao,
860 	},
861 #endif /* CONFIG_ARM64_PAN */
862 	{
863 		.desc = "Virtualization Host Extensions",
864 		.capability = ARM64_HAS_VIRT_HOST_EXTN,
865 		.def_scope = SCOPE_SYSTEM,
866 		.matches = runs_at_el2,
867 	},
868 	{
869 		.desc = "32-bit EL0 Support",
870 		.capability = ARM64_HAS_32BIT_EL0,
871 		.def_scope = SCOPE_SYSTEM,
872 		.matches = has_cpuid_feature,
873 		.sys_reg = SYS_ID_AA64PFR0_EL1,
874 		.sign = FTR_UNSIGNED,
875 		.field_pos = ID_AA64PFR0_EL0_SHIFT,
876 		.min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
877 	},
878 	{
879 		.desc = "Reduced HYP mapping offset",
880 		.capability = ARM64_HYP_OFFSET_LOW,
881 		.def_scope = SCOPE_SYSTEM,
882 		.matches = hyp_offset_low,
883 	},
884 	{
885 		/* FP/SIMD is not implemented */
886 		.capability = ARM64_HAS_NO_FPSIMD,
887 		.def_scope = SCOPE_SYSTEM,
888 		.min_field_value = 0,
889 		.matches = has_no_fpsimd,
890 	},
891 	{},
892 };
893 
894 #define HWCAP_CAP(reg, field, s, min_value, type, cap)	\
895 	{							\
896 		.desc = #cap,					\
897 		.def_scope = SCOPE_SYSTEM,			\
898 		.matches = has_cpuid_feature,			\
899 		.sys_reg = reg,					\
900 		.field_pos = field,				\
901 		.sign = s,					\
902 		.min_field_value = min_value,			\
903 		.hwcap_type = type,				\
904 		.hwcap = cap,					\
905 	}
906 
907 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
908 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
909 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
910 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
911 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
912 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
913 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
914 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
915 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
916 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
917 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
918 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
919 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
920 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
921 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
922 	{},
923 };
924 
925 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
926 #ifdef CONFIG_COMPAT
927 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
928 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
929 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
930 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
931 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
932 #endif
933 	{},
934 };
935 
936 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
937 {
938 	switch (cap->hwcap_type) {
939 	case CAP_HWCAP:
940 		elf_hwcap |= cap->hwcap;
941 		break;
942 #ifdef CONFIG_COMPAT
943 	case CAP_COMPAT_HWCAP:
944 		compat_elf_hwcap |= (u32)cap->hwcap;
945 		break;
946 	case CAP_COMPAT_HWCAP2:
947 		compat_elf_hwcap2 |= (u32)cap->hwcap;
948 		break;
949 #endif
950 	default:
951 		WARN_ON(1);
952 		break;
953 	}
954 }
955 
956 /* Check if we have a particular HWCAP enabled */
957 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
958 {
959 	bool rc;
960 
961 	switch (cap->hwcap_type) {
962 	case CAP_HWCAP:
963 		rc = (elf_hwcap & cap->hwcap) != 0;
964 		break;
965 #ifdef CONFIG_COMPAT
966 	case CAP_COMPAT_HWCAP:
967 		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
968 		break;
969 	case CAP_COMPAT_HWCAP2:
970 		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
971 		break;
972 #endif
973 	default:
974 		WARN_ON(1);
975 		rc = false;
976 	}
977 
978 	return rc;
979 }
980 
981 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
982 {
983 	/* We support emulation of accesses to CPU ID feature registers */
984 	elf_hwcap |= HWCAP_CPUID;
985 	for (; hwcaps->matches; hwcaps++)
986 		if (hwcaps->matches(hwcaps, hwcaps->def_scope))
987 			cap_set_elf_hwcap(hwcaps);
988 }
989 
990 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
991 			    const char *info)
992 {
993 	for (; caps->matches; caps++) {
994 		if (!caps->matches(caps, caps->def_scope))
995 			continue;
996 
997 		if (!cpus_have_cap(caps->capability) && caps->desc)
998 			pr_info("%s %s\n", info, caps->desc);
999 		cpus_set_cap(caps->capability);
1000 	}
1001 }
1002 
1003 /*
1004  * Run through the enabled capabilities and enable() it on all active
1005  * CPUs
1006  */
1007 void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
1008 {
1009 	for (; caps->matches; caps++) {
1010 		unsigned int num = caps->capability;
1011 
1012 		if (!cpus_have_cap(num))
1013 			continue;
1014 
1015 		/* Ensure cpus_have_const_cap(num) works */
1016 		static_branch_enable(&cpu_hwcap_keys[num]);
1017 
1018 		if (caps->enable) {
1019 			/*
1020 			 * Use stop_machine() as it schedules the work allowing
1021 			 * us to modify PSTATE, instead of on_each_cpu() which
1022 			 * uses an IPI, giving us a PSTATE that disappears when
1023 			 * we return.
1024 			 */
1025 			stop_machine(caps->enable, NULL, cpu_online_mask);
1026 		}
1027 	}
1028 }
1029 
1030 /*
1031  * Flag to indicate if we have computed the system wide
1032  * capabilities based on the boot time active CPUs. This
1033  * will be used to determine if a new booting CPU should
1034  * go through the verification process to make sure that it
1035  * supports the system capabilities, without using a hotplug
1036  * notifier.
1037  */
1038 static bool sys_caps_initialised;
1039 
1040 static inline void set_sys_caps_initialised(void)
1041 {
1042 	sys_caps_initialised = true;
1043 }
1044 
1045 /*
1046  * Check for CPU features that are used in early boot
1047  * based on the Boot CPU value.
1048  */
1049 static void check_early_cpu_features(void)
1050 {
1051 	verify_cpu_run_el();
1052 	verify_cpu_asid_bits();
1053 }
1054 
1055 static void
1056 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1057 {
1058 
1059 	for (; caps->matches; caps++)
1060 		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1061 			pr_crit("CPU%d: missing HWCAP: %s\n",
1062 					smp_processor_id(), caps->desc);
1063 			cpu_die_early();
1064 		}
1065 }
1066 
1067 static void
1068 verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
1069 {
1070 	for (; caps->matches; caps++) {
1071 		if (!cpus_have_cap(caps->capability))
1072 			continue;
1073 		/*
1074 		 * If the new CPU misses an advertised feature, we cannot proceed
1075 		 * further, park the cpu.
1076 		 */
1077 		if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
1078 			pr_crit("CPU%d: missing feature: %s\n",
1079 					smp_processor_id(), caps->desc);
1080 			cpu_die_early();
1081 		}
1082 		if (caps->enable)
1083 			caps->enable(NULL);
1084 	}
1085 }
1086 
1087 /*
1088  * Run through the enabled system capabilities and enable() it on this CPU.
1089  * The capabilities were decided based on the available CPUs at the boot time.
1090  * Any new CPU should match the system wide status of the capability. If the
1091  * new CPU doesn't have a capability which the system now has enabled, we
1092  * cannot do anything to fix it up and could cause unexpected failures. So
1093  * we park the CPU.
1094  */
1095 static void verify_local_cpu_capabilities(void)
1096 {
1097 	verify_local_cpu_errata_workarounds();
1098 	verify_local_cpu_features(arm64_features);
1099 	verify_local_elf_hwcaps(arm64_elf_hwcaps);
1100 	if (system_supports_32bit_el0())
1101 		verify_local_elf_hwcaps(compat_elf_hwcaps);
1102 }
1103 
1104 void check_local_cpu_capabilities(void)
1105 {
1106 	/*
1107 	 * All secondary CPUs should conform to the early CPU features
1108 	 * in use by the kernel based on boot CPU.
1109 	 */
1110 	check_early_cpu_features();
1111 
1112 	/*
1113 	 * If we haven't finalised the system capabilities, this CPU gets
1114 	 * a chance to update the errata work arounds.
1115 	 * Otherwise, this CPU should verify that it has all the system
1116 	 * advertised capabilities.
1117 	 */
1118 	if (!sys_caps_initialised)
1119 		update_cpu_errata_workarounds();
1120 	else
1121 		verify_local_cpu_capabilities();
1122 }
1123 
1124 static void __init setup_feature_capabilities(void)
1125 {
1126 	update_cpu_capabilities(arm64_features, "detected feature:");
1127 	enable_cpu_capabilities(arm64_features);
1128 }
1129 
1130 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1131 EXPORT_SYMBOL(arm64_const_caps_ready);
1132 
1133 static void __init mark_const_caps_ready(void)
1134 {
1135 	static_branch_enable(&arm64_const_caps_ready);
1136 }
1137 
1138 /*
1139  * Check if the current CPU has a given feature capability.
1140  * Should be called from non-preemptible context.
1141  */
1142 static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
1143 			       unsigned int cap)
1144 {
1145 	const struct arm64_cpu_capabilities *caps;
1146 
1147 	if (WARN_ON(preemptible()))
1148 		return false;
1149 
1150 	for (caps = cap_array; caps->desc; caps++)
1151 		if (caps->capability == cap && caps->matches)
1152 			return caps->matches(caps, SCOPE_LOCAL_CPU);
1153 
1154 	return false;
1155 }
1156 
1157 extern const struct arm64_cpu_capabilities arm64_errata[];
1158 
1159 bool this_cpu_has_cap(unsigned int cap)
1160 {
1161 	return (__this_cpu_has_cap(arm64_features, cap) ||
1162 		__this_cpu_has_cap(arm64_errata, cap));
1163 }
1164 
1165 void __init setup_cpu_features(void)
1166 {
1167 	u32 cwg;
1168 	int cls;
1169 
1170 	/* Set the CPU feature capabilies */
1171 	setup_feature_capabilities();
1172 	enable_errata_workarounds();
1173 	mark_const_caps_ready();
1174 	setup_elf_hwcaps(arm64_elf_hwcaps);
1175 
1176 	if (system_supports_32bit_el0())
1177 		setup_elf_hwcaps(compat_elf_hwcaps);
1178 
1179 	/* Advertise that we have computed the system capabilities */
1180 	set_sys_caps_initialised();
1181 
1182 	/*
1183 	 * Check for sane CTR_EL0.CWG value.
1184 	 */
1185 	cwg = cache_type_cwg();
1186 	cls = cache_line_size();
1187 	if (!cwg)
1188 		pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1189 			cls);
1190 	if (L1_CACHE_BYTES < cls)
1191 		pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1192 			L1_CACHE_BYTES, cls);
1193 }
1194 
1195 static bool __maybe_unused
1196 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1197 {
1198 	return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1199 }
1200 
1201 /*
1202  * We emulate only the following system register space.
1203  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1204  * See Table C5-6 System instruction encodings for System register accesses,
1205  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1206  */
1207 static inline bool __attribute_const__ is_emulated(u32 id)
1208 {
1209 	return (sys_reg_Op0(id) == 0x3 &&
1210 		sys_reg_CRn(id) == 0x0 &&
1211 		sys_reg_Op1(id) == 0x0 &&
1212 		(sys_reg_CRm(id) == 0 ||
1213 		 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
1214 }
1215 
1216 /*
1217  * With CRm == 0, reg should be one of :
1218  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1219  */
1220 static inline int emulate_id_reg(u32 id, u64 *valp)
1221 {
1222 	switch (id) {
1223 	case SYS_MIDR_EL1:
1224 		*valp = read_cpuid_id();
1225 		break;
1226 	case SYS_MPIDR_EL1:
1227 		*valp = SYS_MPIDR_SAFE_VAL;
1228 		break;
1229 	case SYS_REVIDR_EL1:
1230 		/* IMPLEMENTATION DEFINED values are emulated with 0 */
1231 		*valp = 0;
1232 		break;
1233 	default:
1234 		return -EINVAL;
1235 	}
1236 
1237 	return 0;
1238 }
1239 
1240 static int emulate_sys_reg(u32 id, u64 *valp)
1241 {
1242 	struct arm64_ftr_reg *regp;
1243 
1244 	if (!is_emulated(id))
1245 		return -EINVAL;
1246 
1247 	if (sys_reg_CRm(id) == 0)
1248 		return emulate_id_reg(id, valp);
1249 
1250 	regp = get_arm64_ftr_reg(id);
1251 	if (regp)
1252 		*valp = arm64_ftr_reg_user_value(regp);
1253 	else
1254 		/*
1255 		 * The untracked registers are either IMPLEMENTATION DEFINED
1256 		 * (e.g, ID_AFR0_EL1) or reserved RAZ.
1257 		 */
1258 		*valp = 0;
1259 	return 0;
1260 }
1261 
1262 static int emulate_mrs(struct pt_regs *regs, u32 insn)
1263 {
1264 	int rc;
1265 	u32 sys_reg, dst;
1266 	u64 val;
1267 
1268 	/*
1269 	 * sys_reg values are defined as used in mrs/msr instruction.
1270 	 * shift the imm value to get the encoding.
1271 	 */
1272 	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
1273 	rc = emulate_sys_reg(sys_reg, &val);
1274 	if (!rc) {
1275 		dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
1276 		pt_regs_write_reg(regs, dst, val);
1277 		regs->pc += 4;
1278 	}
1279 
1280 	return rc;
1281 }
1282 
1283 static struct undef_hook mrs_hook = {
1284 	.instr_mask = 0xfff00000,
1285 	.instr_val  = 0xd5300000,
1286 	.pstate_mask = COMPAT_PSR_MODE_MASK,
1287 	.pstate_val = PSR_MODE_EL0t,
1288 	.fn = emulate_mrs,
1289 };
1290 
1291 static int __init enable_mrs_emulation(void)
1292 {
1293 	register_undef_hook(&mrs_hook);
1294 	return 0;
1295 }
1296 
1297 late_initcall(enable_mrs_emulation);
1298