xref: /openbmc/linux/arch/arm64/kernel/cpufeature.c (revision 4b0aaacee51eb6592a03fdefd5ce97558518e291)
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #define pr_fmt(fmt) "CPU features: " fmt
20 
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <asm/cpu.h>
28 #include <asm/cpufeature.h>
29 #include <asm/cpu_ops.h>
30 #include <asm/fpsimd.h>
31 #include <asm/mmu_context.h>
32 #include <asm/processor.h>
33 #include <asm/sysreg.h>
34 #include <asm/traps.h>
35 #include <asm/virt.h>
36 
37 unsigned long elf_hwcap __read_mostly;
38 EXPORT_SYMBOL_GPL(elf_hwcap);
39 
40 #ifdef CONFIG_COMPAT
41 #define COMPAT_ELF_HWCAP_DEFAULT	\
42 				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
43 				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
44 				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
45 				 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
46 				 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
47 				 COMPAT_HWCAP_LPAE)
48 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
49 unsigned int compat_elf_hwcap2 __read_mostly;
50 #endif
51 
52 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
53 EXPORT_SYMBOL(cpu_hwcaps);
54 
55 /*
56  * Flag to indicate if we have computed the system wide
57  * capabilities based on the boot time active CPUs. This
58  * will be used to determine if a new booting CPU should
59  * go through the verification process to make sure that it
60  * supports the system capabilities, without using a hotplug
61  * notifier.
62  */
63 static bool sys_caps_initialised;
64 
65 static inline void set_sys_caps_initialised(void)
66 {
67 	sys_caps_initialised = true;
68 }
69 
70 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
71 {
72 	/* file-wide pr_fmt adds "CPU features: " prefix */
73 	pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
74 	return 0;
75 }
76 
77 static struct notifier_block cpu_hwcaps_notifier = {
78 	.notifier_call = dump_cpu_hwcaps
79 };
80 
81 static int __init register_cpu_hwcaps_dumper(void)
82 {
83 	atomic_notifier_chain_register(&panic_notifier_list,
84 				       &cpu_hwcaps_notifier);
85 	return 0;
86 }
87 __initcall(register_cpu_hwcaps_dumper);
88 
89 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
90 EXPORT_SYMBOL(cpu_hwcap_keys);
91 
92 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
93 	{						\
94 		.sign = SIGNED,				\
95 		.visible = VISIBLE,			\
96 		.strict = STRICT,			\
97 		.type = TYPE,				\
98 		.shift = SHIFT,				\
99 		.width = WIDTH,				\
100 		.safe_val = SAFE_VAL,			\
101 	}
102 
103 /* Define a feature with unsigned values */
104 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
105 	__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
106 
107 /* Define a feature with a signed value */
108 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
109 	__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
110 
111 #define ARM64_FTR_END					\
112 	{						\
113 		.width = 0,				\
114 	}
115 
116 /* meta feature for alternatives */
117 static bool __maybe_unused
118 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
119 
120 
121 /*
122  * NOTE: Any changes to the visibility of features should be kept in
123  * sync with the documentation of the CPU feature register ABI.
124  */
125 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
126 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
127 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
128 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
129 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
130 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
131 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
132 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
133 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
134 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
135 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
136 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
137 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
138 	ARM64_FTR_END,
139 };
140 
141 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
142 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
143 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
144 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
145 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
146 	ARM64_FTR_END,
147 };
148 
149 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
150 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
151 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
152 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
153 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
154 				   FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
155 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
156 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
157 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
158 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
159 	/* Linux doesn't care about the EL3 */
160 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
161 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
162 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
163 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
164 	ARM64_FTR_END,
165 };
166 
167 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
168 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
169 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
170 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
171 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
172 	/* Linux shouldn't care about secure memory */
173 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
174 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
175 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
176 	/*
177 	 * Differing PARange is fine as long as all peripherals and memory are mapped
178 	 * within the minimum PARange of all CPUs
179 	 */
180 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
181 	ARM64_FTR_END,
182 };
183 
184 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
185 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
186 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
187 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
188 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
189 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
190 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
191 	ARM64_FTR_END,
192 };
193 
194 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
195 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
196 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
197 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
198 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
199 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
200 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
201 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
202 	ARM64_FTR_END,
203 };
204 
205 static const struct arm64_ftr_bits ftr_ctr[] = {
206 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
207 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
208 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
209 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, CTR_CWG_SHIFT, 4, 0),
210 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, CTR_ERG_SHIFT, 4, 0),
211 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
212 	/*
213 	 * Linux can handle differing I-cache policies. Userspace JITs will
214 	 * make use of *minLine.
215 	 * If we have differing I-cache policies, report it as the weakest - VIPT.
216 	 */
217 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),	/* L1Ip */
218 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
219 	ARM64_FTR_END,
220 };
221 
222 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
223 	.name		= "SYS_CTR_EL0",
224 	.ftr_bits	= ftr_ctr
225 };
226 
227 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
228 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf),	/* InnerShr */
229 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),	/* FCSE */
230 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* AuxReg */
231 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),	/* TCM */
232 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),	/* ShareLvl */
233 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf),	/* OuterShr */
234 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),	/* PMSA */
235 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* VMSA */
236 	ARM64_FTR_END,
237 };
238 
239 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
240 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
241 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
242 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
243 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
244 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
245 	/*
246 	 * We can instantiate multiple PMU instances with different levels
247 	 * of support.
248 	 */
249 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
250 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
251 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
252 	ARM64_FTR_END,
253 };
254 
255 static const struct arm64_ftr_bits ftr_mvfr2[] = {
256 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),		/* FPMisc */
257 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),		/* SIMDMisc */
258 	ARM64_FTR_END,
259 };
260 
261 static const struct arm64_ftr_bits ftr_dczid[] = {
262 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),		/* DZP */
263 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* BS */
264 	ARM64_FTR_END,
265 };
266 
267 
268 static const struct arm64_ftr_bits ftr_id_isar5[] = {
269 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
270 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
271 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
272 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
273 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
274 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
275 	ARM64_FTR_END,
276 };
277 
278 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
279 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),	/* ac2 */
280 	ARM64_FTR_END,
281 };
282 
283 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
284 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),		/* State3 */
285 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),		/* State2 */
286 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),		/* State1 */
287 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),		/* State0 */
288 	ARM64_FTR_END,
289 };
290 
291 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
292 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
293 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),	/* PerfMon */
294 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
295 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
296 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
297 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
298 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
299 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
300 	ARM64_FTR_END,
301 };
302 
303 static const struct arm64_ftr_bits ftr_zcr[] = {
304 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
305 		ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),	/* LEN */
306 	ARM64_FTR_END,
307 };
308 
309 /*
310  * Common ftr bits for a 32bit register with all hidden, strict
311  * attributes, with 4bit feature fields and a default safe value of
312  * 0. Covers the following 32bit registers:
313  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
314  */
315 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
316 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
317 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
318 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
319 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
320 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
321 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
322 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
323 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
324 	ARM64_FTR_END,
325 };
326 
327 /* Table for a single 32bit feature value */
328 static const struct arm64_ftr_bits ftr_single32[] = {
329 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
330 	ARM64_FTR_END,
331 };
332 
333 static const struct arm64_ftr_bits ftr_raz[] = {
334 	ARM64_FTR_END,
335 };
336 
337 #define ARM64_FTR_REG(id, table) {		\
338 	.sys_id = id,				\
339 	.reg = 	&(struct arm64_ftr_reg){	\
340 		.name = #id,			\
341 		.ftr_bits = &((table)[0]),	\
342 	}}
343 
344 static const struct __ftr_reg_entry {
345 	u32			sys_id;
346 	struct arm64_ftr_reg 	*reg;
347 } arm64_ftr_regs[] = {
348 
349 	/* Op1 = 0, CRn = 0, CRm = 1 */
350 	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
351 	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
352 	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
353 	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
354 	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
355 	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
356 	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
357 
358 	/* Op1 = 0, CRn = 0, CRm = 2 */
359 	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
360 	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
361 	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
362 	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
363 	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
364 	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
365 	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
366 
367 	/* Op1 = 0, CRn = 0, CRm = 3 */
368 	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
369 	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
370 	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
371 
372 	/* Op1 = 0, CRn = 0, CRm = 4 */
373 	ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
374 	ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_raz),
375 	ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_raz),
376 
377 	/* Op1 = 0, CRn = 0, CRm = 5 */
378 	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
379 	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
380 
381 	/* Op1 = 0, CRn = 0, CRm = 6 */
382 	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
383 	ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
384 
385 	/* Op1 = 0, CRn = 0, CRm = 7 */
386 	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
387 	ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
388 	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
389 
390 	/* Op1 = 0, CRn = 1, CRm = 2 */
391 	ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
392 
393 	/* Op1 = 3, CRn = 0, CRm = 0 */
394 	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
395 	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
396 
397 	/* Op1 = 3, CRn = 14, CRm = 0 */
398 	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
399 };
400 
401 static int search_cmp_ftr_reg(const void *id, const void *regp)
402 {
403 	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
404 }
405 
406 /*
407  * get_arm64_ftr_reg - Lookup a feature register entry using its
408  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
409  * ascending order of sys_id , we use binary search to find a matching
410  * entry.
411  *
412  * returns - Upon success,  matching ftr_reg entry for id.
413  *         - NULL on failure. It is upto the caller to decide
414  *	     the impact of a failure.
415  */
416 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
417 {
418 	const struct __ftr_reg_entry *ret;
419 
420 	ret = bsearch((const void *)(unsigned long)sys_id,
421 			arm64_ftr_regs,
422 			ARRAY_SIZE(arm64_ftr_regs),
423 			sizeof(arm64_ftr_regs[0]),
424 			search_cmp_ftr_reg);
425 	if (ret)
426 		return ret->reg;
427 	return NULL;
428 }
429 
430 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
431 			       s64 ftr_val)
432 {
433 	u64 mask = arm64_ftr_mask(ftrp);
434 
435 	reg &= ~mask;
436 	reg |= (ftr_val << ftrp->shift) & mask;
437 	return reg;
438 }
439 
440 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
441 				s64 cur)
442 {
443 	s64 ret = 0;
444 
445 	switch (ftrp->type) {
446 	case FTR_EXACT:
447 		ret = ftrp->safe_val;
448 		break;
449 	case FTR_LOWER_SAFE:
450 		ret = new < cur ? new : cur;
451 		break;
452 	case FTR_HIGHER_SAFE:
453 		ret = new > cur ? new : cur;
454 		break;
455 	default:
456 		BUG();
457 	}
458 
459 	return ret;
460 }
461 
462 static void __init sort_ftr_regs(void)
463 {
464 	int i;
465 
466 	/* Check that the array is sorted so that we can do the binary search */
467 	for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
468 		BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
469 }
470 
471 /*
472  * Initialise the CPU feature register from Boot CPU values.
473  * Also initiliases the strict_mask for the register.
474  * Any bits that are not covered by an arm64_ftr_bits entry are considered
475  * RES0 for the system-wide value, and must strictly match.
476  */
477 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
478 {
479 	u64 val = 0;
480 	u64 strict_mask = ~0x0ULL;
481 	u64 user_mask = 0;
482 	u64 valid_mask = 0;
483 
484 	const struct arm64_ftr_bits *ftrp;
485 	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
486 
487 	BUG_ON(!reg);
488 
489 	for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
490 		u64 ftr_mask = arm64_ftr_mask(ftrp);
491 		s64 ftr_new = arm64_ftr_value(ftrp, new);
492 
493 		val = arm64_ftr_set_value(ftrp, val, ftr_new);
494 
495 		valid_mask |= ftr_mask;
496 		if (!ftrp->strict)
497 			strict_mask &= ~ftr_mask;
498 		if (ftrp->visible)
499 			user_mask |= ftr_mask;
500 		else
501 			reg->user_val = arm64_ftr_set_value(ftrp,
502 							    reg->user_val,
503 							    ftrp->safe_val);
504 	}
505 
506 	val &= valid_mask;
507 
508 	reg->sys_val = val;
509 	reg->strict_mask = strict_mask;
510 	reg->user_mask = user_mask;
511 }
512 
513 extern const struct arm64_cpu_capabilities arm64_errata[];
514 static void __init setup_boot_cpu_capabilities(void);
515 
516 void __init init_cpu_features(struct cpuinfo_arm64 *info)
517 {
518 	/* Before we start using the tables, make sure it is sorted */
519 	sort_ftr_regs();
520 
521 	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
522 	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
523 	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
524 	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
525 	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
526 	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
527 	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
528 	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
529 	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
530 	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
531 	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
532 	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
533 	init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
534 
535 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
536 		init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
537 		init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
538 		init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
539 		init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
540 		init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
541 		init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
542 		init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
543 		init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
544 		init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
545 		init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
546 		init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
547 		init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
548 		init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
549 		init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
550 		init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
551 		init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
552 	}
553 
554 	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
555 		init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
556 		sve_init_vq_map();
557 	}
558 
559 	/*
560 	 * Detect and enable early CPU capabilities based on the boot CPU,
561 	 * after we have initialised the CPU feature infrastructure.
562 	 */
563 	setup_boot_cpu_capabilities();
564 }
565 
566 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
567 {
568 	const struct arm64_ftr_bits *ftrp;
569 
570 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
571 		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
572 		s64 ftr_new = arm64_ftr_value(ftrp, new);
573 
574 		if (ftr_cur == ftr_new)
575 			continue;
576 		/* Find a safe value */
577 		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
578 		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
579 	}
580 
581 }
582 
583 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
584 {
585 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
586 
587 	BUG_ON(!regp);
588 	update_cpu_ftr_reg(regp, val);
589 	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
590 		return 0;
591 	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
592 			regp->name, boot, cpu, val);
593 	return 1;
594 }
595 
596 /*
597  * Update system wide CPU feature registers with the values from a
598  * non-boot CPU. Also performs SANITY checks to make sure that there
599  * aren't any insane variations from that of the boot CPU.
600  */
601 void update_cpu_features(int cpu,
602 			 struct cpuinfo_arm64 *info,
603 			 struct cpuinfo_arm64 *boot)
604 {
605 	int taint = 0;
606 
607 	/*
608 	 * The kernel can handle differing I-cache policies, but otherwise
609 	 * caches should look identical. Userspace JITs will make use of
610 	 * *minLine.
611 	 */
612 	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
613 				      info->reg_ctr, boot->reg_ctr);
614 
615 	/*
616 	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
617 	 * could result in too much or too little memory being zeroed if a
618 	 * process is preempted and migrated between CPUs.
619 	 */
620 	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
621 				      info->reg_dczid, boot->reg_dczid);
622 
623 	/* If different, timekeeping will be broken (especially with KVM) */
624 	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
625 				      info->reg_cntfrq, boot->reg_cntfrq);
626 
627 	/*
628 	 * The kernel uses self-hosted debug features and expects CPUs to
629 	 * support identical debug features. We presently need CTX_CMPs, WRPs,
630 	 * and BRPs to be identical.
631 	 * ID_AA64DFR1 is currently RES0.
632 	 */
633 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
634 				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
635 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
636 				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
637 	/*
638 	 * Even in big.LITTLE, processors should be identical instruction-set
639 	 * wise.
640 	 */
641 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
642 				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
643 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
644 				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
645 
646 	/*
647 	 * Differing PARange support is fine as long as all peripherals and
648 	 * memory are mapped within the minimum PARange of all CPUs.
649 	 * Linux should not care about secure memory.
650 	 */
651 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
652 				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
653 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
654 				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
655 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
656 				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
657 
658 	/*
659 	 * EL3 is not our concern.
660 	 * ID_AA64PFR1 is currently RES0.
661 	 */
662 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
663 				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
664 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
665 				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
666 
667 	taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
668 				      info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
669 
670 	/*
671 	 * If we have AArch32, we care about 32-bit features for compat.
672 	 * If the system doesn't support AArch32, don't update them.
673 	 */
674 	if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
675 		id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
676 
677 		taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
678 					info->reg_id_dfr0, boot->reg_id_dfr0);
679 		taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
680 					info->reg_id_isar0, boot->reg_id_isar0);
681 		taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
682 					info->reg_id_isar1, boot->reg_id_isar1);
683 		taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
684 					info->reg_id_isar2, boot->reg_id_isar2);
685 		taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
686 					info->reg_id_isar3, boot->reg_id_isar3);
687 		taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
688 					info->reg_id_isar4, boot->reg_id_isar4);
689 		taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
690 					info->reg_id_isar5, boot->reg_id_isar5);
691 
692 		/*
693 		 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
694 		 * ACTLR formats could differ across CPUs and therefore would have to
695 		 * be trapped for virtualization anyway.
696 		 */
697 		taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
698 					info->reg_id_mmfr0, boot->reg_id_mmfr0);
699 		taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
700 					info->reg_id_mmfr1, boot->reg_id_mmfr1);
701 		taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
702 					info->reg_id_mmfr2, boot->reg_id_mmfr2);
703 		taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
704 					info->reg_id_mmfr3, boot->reg_id_mmfr3);
705 		taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
706 					info->reg_id_pfr0, boot->reg_id_pfr0);
707 		taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
708 					info->reg_id_pfr1, boot->reg_id_pfr1);
709 		taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
710 					info->reg_mvfr0, boot->reg_mvfr0);
711 		taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
712 					info->reg_mvfr1, boot->reg_mvfr1);
713 		taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
714 					info->reg_mvfr2, boot->reg_mvfr2);
715 	}
716 
717 	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
718 		taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
719 					info->reg_zcr, boot->reg_zcr);
720 
721 		/* Probe vector lengths, unless we already gave up on SVE */
722 		if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
723 		    !sys_caps_initialised)
724 			sve_update_vq_map();
725 	}
726 
727 	/*
728 	 * Mismatched CPU features are a recipe for disaster. Don't even
729 	 * pretend to support them.
730 	 */
731 	if (taint) {
732 		pr_warn_once("Unsupported CPU feature variation detected.\n");
733 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
734 	}
735 }
736 
737 u64 read_sanitised_ftr_reg(u32 id)
738 {
739 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
740 
741 	/* We shouldn't get a request for an unsupported register */
742 	BUG_ON(!regp);
743 	return regp->sys_val;
744 }
745 
746 #define read_sysreg_case(r)	\
747 	case r:		return read_sysreg_s(r)
748 
749 /*
750  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
751  * Read the system register on the current CPU
752  */
753 static u64 __read_sysreg_by_encoding(u32 sys_id)
754 {
755 	switch (sys_id) {
756 	read_sysreg_case(SYS_ID_PFR0_EL1);
757 	read_sysreg_case(SYS_ID_PFR1_EL1);
758 	read_sysreg_case(SYS_ID_DFR0_EL1);
759 	read_sysreg_case(SYS_ID_MMFR0_EL1);
760 	read_sysreg_case(SYS_ID_MMFR1_EL1);
761 	read_sysreg_case(SYS_ID_MMFR2_EL1);
762 	read_sysreg_case(SYS_ID_MMFR3_EL1);
763 	read_sysreg_case(SYS_ID_ISAR0_EL1);
764 	read_sysreg_case(SYS_ID_ISAR1_EL1);
765 	read_sysreg_case(SYS_ID_ISAR2_EL1);
766 	read_sysreg_case(SYS_ID_ISAR3_EL1);
767 	read_sysreg_case(SYS_ID_ISAR4_EL1);
768 	read_sysreg_case(SYS_ID_ISAR5_EL1);
769 	read_sysreg_case(SYS_MVFR0_EL1);
770 	read_sysreg_case(SYS_MVFR1_EL1);
771 	read_sysreg_case(SYS_MVFR2_EL1);
772 
773 	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
774 	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
775 	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
776 	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
777 	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
778 	read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
779 	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
780 	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
781 	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
782 
783 	read_sysreg_case(SYS_CNTFRQ_EL0);
784 	read_sysreg_case(SYS_CTR_EL0);
785 	read_sysreg_case(SYS_DCZID_EL0);
786 
787 	default:
788 		BUG();
789 		return 0;
790 	}
791 }
792 
793 #include <linux/irqchip/arm-gic-v3.h>
794 
795 static bool
796 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
797 {
798 	int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
799 
800 	return val >= entry->min_field_value;
801 }
802 
803 static bool
804 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
805 {
806 	u64 val;
807 
808 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
809 	if (scope == SCOPE_SYSTEM)
810 		val = read_sanitised_ftr_reg(entry->sys_reg);
811 	else
812 		val = __read_sysreg_by_encoding(entry->sys_reg);
813 
814 	return feature_matches(val, entry);
815 }
816 
817 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
818 {
819 	bool has_sre;
820 
821 	if (!has_cpuid_feature(entry, scope))
822 		return false;
823 
824 	has_sre = gic_enable_sre();
825 	if (!has_sre)
826 		pr_warn_once("%s present but disabled by higher exception level\n",
827 			     entry->desc);
828 
829 	return has_sre;
830 }
831 
832 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
833 {
834 	u32 midr = read_cpuid_id();
835 
836 	/* Cavium ThunderX pass 1.x and 2.x */
837 	return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
838 		MIDR_CPU_VAR_REV(0, 0),
839 		MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
840 }
841 
842 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
843 {
844 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
845 
846 	return cpuid_feature_extract_signed_field(pfr0,
847 					ID_AA64PFR0_FP_SHIFT) < 0;
848 }
849 
850 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
851 			  int __unused)
852 {
853 	return read_sanitised_ftr_reg(SYS_CTR_EL0) & BIT(CTR_IDC_SHIFT);
854 }
855 
856 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
857 			  int __unused)
858 {
859 	return read_sanitised_ftr_reg(SYS_CTR_EL0) & BIT(CTR_DIC_SHIFT);
860 }
861 
862 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
863 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
864 
865 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
866 				int scope)
867 {
868 	/* List of CPUs that are not vulnerable and don't need KPTI */
869 	static const struct midr_range kpti_safe_list[] = {
870 		MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
871 		MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
872 		{ /* sentinel */ }
873 	};
874 	char const *str = "command line option";
875 
876 	/*
877 	 * For reasons that aren't entirely clear, enabling KPTI on Cavium
878 	 * ThunderX leads to apparent I-cache corruption of kernel text, which
879 	 * ends as well as you might imagine. Don't even try.
880 	 */
881 	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
882 		str = "ARM64_WORKAROUND_CAVIUM_27456";
883 		__kpti_forced = -1;
884 	}
885 
886 	/* Forced? */
887 	if (__kpti_forced) {
888 		pr_info_once("kernel page table isolation forced %s by %s\n",
889 			     __kpti_forced > 0 ? "ON" : "OFF", str);
890 		return __kpti_forced > 0;
891 	}
892 
893 	/* Useful for KASLR robustness */
894 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
895 		return true;
896 
897 	/* Don't force KPTI for CPUs that are not vulnerable */
898 	if (is_midr_in_range_list(read_cpuid_id(), kpti_safe_list))
899 		return false;
900 
901 	/* Defer to CPU feature registers */
902 	return !has_cpuid_feature(entry, scope);
903 }
904 
905 static void
906 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
907 {
908 	typedef void (kpti_remap_fn)(int, int, phys_addr_t);
909 	extern kpti_remap_fn idmap_kpti_install_ng_mappings;
910 	kpti_remap_fn *remap_fn;
911 
912 	static bool kpti_applied = false;
913 	int cpu = smp_processor_id();
914 
915 	if (kpti_applied)
916 		return;
917 
918 	remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
919 
920 	cpu_install_idmap();
921 	remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
922 	cpu_uninstall_idmap();
923 
924 	if (!cpu)
925 		kpti_applied = true;
926 
927 	return;
928 }
929 
930 static int __init parse_kpti(char *str)
931 {
932 	bool enabled;
933 	int ret = strtobool(str, &enabled);
934 
935 	if (ret)
936 		return ret;
937 
938 	__kpti_forced = enabled ? 1 : -1;
939 	return 0;
940 }
941 early_param("kpti", parse_kpti);
942 #endif	/* CONFIG_UNMAP_KERNEL_AT_EL0 */
943 
944 #ifdef CONFIG_ARM64_HW_AFDBM
945 static inline void __cpu_enable_hw_dbm(void)
946 {
947 	u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
948 
949 	write_sysreg(tcr, tcr_el1);
950 	isb();
951 }
952 
953 static bool cpu_has_broken_dbm(void)
954 {
955 	/* List of CPUs which have broken DBM support. */
956 	static const struct midr_range cpus[] = {
957 #ifdef CONFIG_ARM64_ERRATUM_1024718
958 		MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0),  // A55 r0p0 -r1p0
959 #endif
960 		{},
961 	};
962 
963 	return is_midr_in_range_list(read_cpuid_id(), cpus);
964 }
965 
966 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
967 {
968 	return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
969 	       !cpu_has_broken_dbm();
970 }
971 
972 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
973 {
974 	if (cpu_can_use_dbm(cap))
975 		__cpu_enable_hw_dbm();
976 }
977 
978 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
979 		       int __unused)
980 {
981 	static bool detected = false;
982 	/*
983 	 * DBM is a non-conflicting feature. i.e, the kernel can safely
984 	 * run a mix of CPUs with and without the feature. So, we
985 	 * unconditionally enable the capability to allow any late CPU
986 	 * to use the feature. We only enable the control bits on the
987 	 * CPU, if it actually supports.
988 	 *
989 	 * We have to make sure we print the "feature" detection only
990 	 * when at least one CPU actually uses it. So check if this CPU
991 	 * can actually use it and print the message exactly once.
992 	 *
993 	 * This is safe as all CPUs (including secondary CPUs - due to the
994 	 * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
995 	 * goes through the "matches" check exactly once. Also if a CPU
996 	 * matches the criteria, it is guaranteed that the CPU will turn
997 	 * the DBM on, as the capability is unconditionally enabled.
998 	 */
999 	if (!detected && cpu_can_use_dbm(cap)) {
1000 		detected = true;
1001 		pr_info("detected: Hardware dirty bit management\n");
1002 	}
1003 
1004 	return true;
1005 }
1006 
1007 #endif
1008 
1009 #ifdef CONFIG_ARM64_VHE
1010 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1011 {
1012 	return is_kernel_in_hyp_mode();
1013 }
1014 
1015 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1016 {
1017 	/*
1018 	 * Copy register values that aren't redirected by hardware.
1019 	 *
1020 	 * Before code patching, we only set tpidr_el1, all CPUs need to copy
1021 	 * this value to tpidr_el2 before we patch the code. Once we've done
1022 	 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1023 	 * do anything here.
1024 	 */
1025 	if (!alternatives_applied)
1026 		write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1027 }
1028 #endif
1029 
1030 static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused)
1031 {
1032 	u64 val = read_sysreg_s(SYS_CLIDR_EL1);
1033 
1034 	/* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
1035 	WARN_ON(val & (7 << 27 | 7 << 21));
1036 }
1037 
1038 static const struct arm64_cpu_capabilities arm64_features[] = {
1039 	{
1040 		.desc = "GIC system register CPU interface",
1041 		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
1042 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1043 		.matches = has_useable_gicv3_cpuif,
1044 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1045 		.field_pos = ID_AA64PFR0_GIC_SHIFT,
1046 		.sign = FTR_UNSIGNED,
1047 		.min_field_value = 1,
1048 	},
1049 #ifdef CONFIG_ARM64_PAN
1050 	{
1051 		.desc = "Privileged Access Never",
1052 		.capability = ARM64_HAS_PAN,
1053 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1054 		.matches = has_cpuid_feature,
1055 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
1056 		.field_pos = ID_AA64MMFR1_PAN_SHIFT,
1057 		.sign = FTR_UNSIGNED,
1058 		.min_field_value = 1,
1059 		.cpu_enable = cpu_enable_pan,
1060 	},
1061 #endif /* CONFIG_ARM64_PAN */
1062 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
1063 	{
1064 		.desc = "LSE atomic instructions",
1065 		.capability = ARM64_HAS_LSE_ATOMICS,
1066 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1067 		.matches = has_cpuid_feature,
1068 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
1069 		.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
1070 		.sign = FTR_UNSIGNED,
1071 		.min_field_value = 2,
1072 	},
1073 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
1074 	{
1075 		.desc = "Software prefetching using PRFM",
1076 		.capability = ARM64_HAS_NO_HW_PREFETCH,
1077 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1078 		.matches = has_no_hw_prefetch,
1079 	},
1080 #ifdef CONFIG_ARM64_UAO
1081 	{
1082 		.desc = "User Access Override",
1083 		.capability = ARM64_HAS_UAO,
1084 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1085 		.matches = has_cpuid_feature,
1086 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
1087 		.field_pos = ID_AA64MMFR2_UAO_SHIFT,
1088 		.min_field_value = 1,
1089 		/*
1090 		 * We rely on stop_machine() calling uao_thread_switch() to set
1091 		 * UAO immediately after patching.
1092 		 */
1093 	},
1094 #endif /* CONFIG_ARM64_UAO */
1095 #ifdef CONFIG_ARM64_PAN
1096 	{
1097 		.capability = ARM64_ALT_PAN_NOT_UAO,
1098 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1099 		.matches = cpufeature_pan_not_uao,
1100 	},
1101 #endif /* CONFIG_ARM64_PAN */
1102 #ifdef CONFIG_ARM64_VHE
1103 	{
1104 		.desc = "Virtualization Host Extensions",
1105 		.capability = ARM64_HAS_VIRT_HOST_EXTN,
1106 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1107 		.matches = runs_at_el2,
1108 		.cpu_enable = cpu_copy_el2regs,
1109 	},
1110 #endif	/* CONFIG_ARM64_VHE */
1111 	{
1112 		.desc = "32-bit EL0 Support",
1113 		.capability = ARM64_HAS_32BIT_EL0,
1114 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1115 		.matches = has_cpuid_feature,
1116 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1117 		.sign = FTR_UNSIGNED,
1118 		.field_pos = ID_AA64PFR0_EL0_SHIFT,
1119 		.min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
1120 	},
1121 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1122 	{
1123 		.desc = "Kernel page table isolation (KPTI)",
1124 		.capability = ARM64_UNMAP_KERNEL_AT_EL0,
1125 		.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1126 		/*
1127 		 * The ID feature fields below are used to indicate that
1128 		 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
1129 		 * more details.
1130 		 */
1131 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1132 		.field_pos = ID_AA64PFR0_CSV3_SHIFT,
1133 		.min_field_value = 1,
1134 		.matches = unmap_kernel_at_el0,
1135 		.cpu_enable = kpti_install_ng_mappings,
1136 	},
1137 #endif
1138 	{
1139 		/* FP/SIMD is not implemented */
1140 		.capability = ARM64_HAS_NO_FPSIMD,
1141 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1142 		.min_field_value = 0,
1143 		.matches = has_no_fpsimd,
1144 	},
1145 #ifdef CONFIG_ARM64_PMEM
1146 	{
1147 		.desc = "Data cache clean to Point of Persistence",
1148 		.capability = ARM64_HAS_DCPOP,
1149 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1150 		.matches = has_cpuid_feature,
1151 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
1152 		.field_pos = ID_AA64ISAR1_DPB_SHIFT,
1153 		.min_field_value = 1,
1154 	},
1155 #endif
1156 #ifdef CONFIG_ARM64_SVE
1157 	{
1158 		.desc = "Scalable Vector Extension",
1159 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1160 		.capability = ARM64_SVE,
1161 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1162 		.sign = FTR_UNSIGNED,
1163 		.field_pos = ID_AA64PFR0_SVE_SHIFT,
1164 		.min_field_value = ID_AA64PFR0_SVE,
1165 		.matches = has_cpuid_feature,
1166 		.cpu_enable = sve_kernel_enable,
1167 	},
1168 #endif /* CONFIG_ARM64_SVE */
1169 #ifdef CONFIG_ARM64_RAS_EXTN
1170 	{
1171 		.desc = "RAS Extension Support",
1172 		.capability = ARM64_HAS_RAS_EXTN,
1173 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1174 		.matches = has_cpuid_feature,
1175 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1176 		.sign = FTR_UNSIGNED,
1177 		.field_pos = ID_AA64PFR0_RAS_SHIFT,
1178 		.min_field_value = ID_AA64PFR0_RAS_V1,
1179 		.cpu_enable = cpu_clear_disr,
1180 	},
1181 #endif /* CONFIG_ARM64_RAS_EXTN */
1182 	{
1183 		.desc = "Data cache clean to the PoU not required for I/D coherence",
1184 		.capability = ARM64_HAS_CACHE_IDC,
1185 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1186 		.matches = has_cache_idc,
1187 	},
1188 	{
1189 		.desc = "Instruction cache invalidation not required for I/D coherence",
1190 		.capability = ARM64_HAS_CACHE_DIC,
1191 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1192 		.matches = has_cache_dic,
1193 	},
1194 	{
1195 		.desc = "Stage-2 Force Write-Back",
1196 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1197 		.capability = ARM64_HAS_STAGE2_FWB,
1198 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
1199 		.sign = FTR_UNSIGNED,
1200 		.field_pos = ID_AA64MMFR2_FWB_SHIFT,
1201 		.min_field_value = 1,
1202 		.matches = has_cpuid_feature,
1203 		.cpu_enable = cpu_has_fwb,
1204 	},
1205 #ifdef CONFIG_ARM64_HW_AFDBM
1206 	{
1207 		/*
1208 		 * Since we turn this on always, we don't want the user to
1209 		 * think that the feature is available when it may not be.
1210 		 * So hide the description.
1211 		 *
1212 		 * .desc = "Hardware pagetable Dirty Bit Management",
1213 		 *
1214 		 */
1215 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1216 		.capability = ARM64_HW_DBM,
1217 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
1218 		.sign = FTR_UNSIGNED,
1219 		.field_pos = ID_AA64MMFR1_HADBS_SHIFT,
1220 		.min_field_value = 2,
1221 		.matches = has_hw_dbm,
1222 		.cpu_enable = cpu_enable_hw_dbm,
1223 	},
1224 #endif
1225 	{},
1226 };
1227 
1228 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap)	\
1229 	{							\
1230 		.desc = #cap,					\
1231 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,		\
1232 		.matches = has_cpuid_feature,			\
1233 		.sys_reg = reg,					\
1234 		.field_pos = field,				\
1235 		.sign = s,					\
1236 		.min_field_value = min_value,			\
1237 		.hwcap_type = cap_type,				\
1238 		.hwcap = cap,					\
1239 	}
1240 
1241 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
1242 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
1243 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
1244 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
1245 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
1246 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_SHA512),
1247 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
1248 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
1249 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
1250 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA3),
1251 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM3),
1252 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM4),
1253 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDDP),
1254 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDFHM),
1255 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FLAGM),
1256 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
1257 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
1258 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
1259 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
1260 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_DIT),
1261 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_DCPOP),
1262 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
1263 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
1264 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
1265 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ILRCPC),
1266 	HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_USCAT),
1267 #ifdef CONFIG_ARM64_SVE
1268 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, HWCAP_SVE),
1269 #endif
1270 	{},
1271 };
1272 
1273 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
1274 #ifdef CONFIG_COMPAT
1275 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
1276 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
1277 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
1278 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
1279 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
1280 #endif
1281 	{},
1282 };
1283 
1284 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1285 {
1286 	switch (cap->hwcap_type) {
1287 	case CAP_HWCAP:
1288 		elf_hwcap |= cap->hwcap;
1289 		break;
1290 #ifdef CONFIG_COMPAT
1291 	case CAP_COMPAT_HWCAP:
1292 		compat_elf_hwcap |= (u32)cap->hwcap;
1293 		break;
1294 	case CAP_COMPAT_HWCAP2:
1295 		compat_elf_hwcap2 |= (u32)cap->hwcap;
1296 		break;
1297 #endif
1298 	default:
1299 		WARN_ON(1);
1300 		break;
1301 	}
1302 }
1303 
1304 /* Check if we have a particular HWCAP enabled */
1305 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1306 {
1307 	bool rc;
1308 
1309 	switch (cap->hwcap_type) {
1310 	case CAP_HWCAP:
1311 		rc = (elf_hwcap & cap->hwcap) != 0;
1312 		break;
1313 #ifdef CONFIG_COMPAT
1314 	case CAP_COMPAT_HWCAP:
1315 		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
1316 		break;
1317 	case CAP_COMPAT_HWCAP2:
1318 		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
1319 		break;
1320 #endif
1321 	default:
1322 		WARN_ON(1);
1323 		rc = false;
1324 	}
1325 
1326 	return rc;
1327 }
1328 
1329 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
1330 {
1331 	/* We support emulation of accesses to CPU ID feature registers */
1332 	elf_hwcap |= HWCAP_CPUID;
1333 	for (; hwcaps->matches; hwcaps++)
1334 		if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
1335 			cap_set_elf_hwcap(hwcaps);
1336 }
1337 
1338 /*
1339  * Check if the current CPU has a given feature capability.
1340  * Should be called from non-preemptible context.
1341  */
1342 static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
1343 			       unsigned int cap)
1344 {
1345 	const struct arm64_cpu_capabilities *caps;
1346 
1347 	if (WARN_ON(preemptible()))
1348 		return false;
1349 
1350 	for (caps = cap_array; caps->matches; caps++)
1351 		if (caps->capability == cap)
1352 			return caps->matches(caps, SCOPE_LOCAL_CPU);
1353 
1354 	return false;
1355 }
1356 
1357 static void __update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
1358 				      u16 scope_mask, const char *info)
1359 {
1360 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1361 	for (; caps->matches; caps++) {
1362 		if (!(caps->type & scope_mask) ||
1363 		    !caps->matches(caps, cpucap_default_scope(caps)))
1364 			continue;
1365 
1366 		if (!cpus_have_cap(caps->capability) && caps->desc)
1367 			pr_info("%s %s\n", info, caps->desc);
1368 		cpus_set_cap(caps->capability);
1369 	}
1370 }
1371 
1372 static void update_cpu_capabilities(u16 scope_mask)
1373 {
1374 	__update_cpu_capabilities(arm64_errata, scope_mask,
1375 				  "enabling workaround for");
1376 	__update_cpu_capabilities(arm64_features, scope_mask, "detected:");
1377 }
1378 
1379 static int __enable_cpu_capability(void *arg)
1380 {
1381 	const struct arm64_cpu_capabilities *cap = arg;
1382 
1383 	cap->cpu_enable(cap);
1384 	return 0;
1385 }
1386 
1387 /*
1388  * Run through the enabled capabilities and enable() it on all active
1389  * CPUs
1390  */
1391 static void __init
1392 __enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
1393 			  u16 scope_mask)
1394 {
1395 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1396 	for (; caps->matches; caps++) {
1397 		unsigned int num = caps->capability;
1398 
1399 		if (!(caps->type & scope_mask) || !cpus_have_cap(num))
1400 			continue;
1401 
1402 		/* Ensure cpus_have_const_cap(num) works */
1403 		static_branch_enable(&cpu_hwcap_keys[num]);
1404 
1405 		if (caps->cpu_enable) {
1406 			/*
1407 			 * Capabilities with SCOPE_BOOT_CPU scope are finalised
1408 			 * before any secondary CPU boots. Thus, each secondary
1409 			 * will enable the capability as appropriate via
1410 			 * check_local_cpu_capabilities(). The only exception is
1411 			 * the boot CPU, for which the capability must be
1412 			 * enabled here. This approach avoids costly
1413 			 * stop_machine() calls for this case.
1414 			 *
1415 			 * Otherwise, use stop_machine() as it schedules the
1416 			 * work allowing us to modify PSTATE, instead of
1417 			 * on_each_cpu() which uses an IPI, giving us a PSTATE
1418 			 * that disappears when we return.
1419 			 */
1420 			if (scope_mask & SCOPE_BOOT_CPU)
1421 				caps->cpu_enable(caps);
1422 			else
1423 				stop_machine(__enable_cpu_capability,
1424 					     (void *)caps, cpu_online_mask);
1425 		}
1426 	}
1427 }
1428 
1429 static void __init enable_cpu_capabilities(u16 scope_mask)
1430 {
1431 	__enable_cpu_capabilities(arm64_errata, scope_mask);
1432 	__enable_cpu_capabilities(arm64_features, scope_mask);
1433 }
1434 
1435 /*
1436  * Run through the list of capabilities to check for conflicts.
1437  * If the system has already detected a capability, take necessary
1438  * action on this CPU.
1439  *
1440  * Returns "false" on conflicts.
1441  */
1442 static bool
1443 __verify_local_cpu_caps(const struct arm64_cpu_capabilities *caps,
1444 			u16 scope_mask)
1445 {
1446 	bool cpu_has_cap, system_has_cap;
1447 
1448 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1449 
1450 	for (; caps->matches; caps++) {
1451 		if (!(caps->type & scope_mask))
1452 			continue;
1453 
1454 		cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
1455 		system_has_cap = cpus_have_cap(caps->capability);
1456 
1457 		if (system_has_cap) {
1458 			/*
1459 			 * Check if the new CPU misses an advertised feature,
1460 			 * which is not safe to miss.
1461 			 */
1462 			if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
1463 				break;
1464 			/*
1465 			 * We have to issue cpu_enable() irrespective of
1466 			 * whether the CPU has it or not, as it is enabeld
1467 			 * system wide. It is upto the call back to take
1468 			 * appropriate action on this CPU.
1469 			 */
1470 			if (caps->cpu_enable)
1471 				caps->cpu_enable(caps);
1472 		} else {
1473 			/*
1474 			 * Check if the CPU has this capability if it isn't
1475 			 * safe to have when the system doesn't.
1476 			 */
1477 			if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
1478 				break;
1479 		}
1480 	}
1481 
1482 	if (caps->matches) {
1483 		pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
1484 			smp_processor_id(), caps->capability,
1485 			caps->desc, system_has_cap, cpu_has_cap);
1486 		return false;
1487 	}
1488 
1489 	return true;
1490 }
1491 
1492 static bool verify_local_cpu_caps(u16 scope_mask)
1493 {
1494 	return __verify_local_cpu_caps(arm64_errata, scope_mask) &&
1495 	       __verify_local_cpu_caps(arm64_features, scope_mask);
1496 }
1497 
1498 /*
1499  * Check for CPU features that are used in early boot
1500  * based on the Boot CPU value.
1501  */
1502 static void check_early_cpu_features(void)
1503 {
1504 	verify_cpu_asid_bits();
1505 	/*
1506 	 * Early features are used by the kernel already. If there
1507 	 * is a conflict, we cannot proceed further.
1508 	 */
1509 	if (!verify_local_cpu_caps(SCOPE_BOOT_CPU))
1510 		cpu_panic_kernel();
1511 }
1512 
1513 static void
1514 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1515 {
1516 
1517 	for (; caps->matches; caps++)
1518 		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1519 			pr_crit("CPU%d: missing HWCAP: %s\n",
1520 					smp_processor_id(), caps->desc);
1521 			cpu_die_early();
1522 		}
1523 }
1524 
1525 static void verify_sve_features(void)
1526 {
1527 	u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1528 	u64 zcr = read_zcr_features();
1529 
1530 	unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
1531 	unsigned int len = zcr & ZCR_ELx_LEN_MASK;
1532 
1533 	if (len < safe_len || sve_verify_vq_map()) {
1534 		pr_crit("CPU%d: SVE: required vector length(s) missing\n",
1535 			smp_processor_id());
1536 		cpu_die_early();
1537 	}
1538 
1539 	/* Add checks on other ZCR bits here if necessary */
1540 }
1541 
1542 
1543 /*
1544  * Run through the enabled system capabilities and enable() it on this CPU.
1545  * The capabilities were decided based on the available CPUs at the boot time.
1546  * Any new CPU should match the system wide status of the capability. If the
1547  * new CPU doesn't have a capability which the system now has enabled, we
1548  * cannot do anything to fix it up and could cause unexpected failures. So
1549  * we park the CPU.
1550  */
1551 static void verify_local_cpu_capabilities(void)
1552 {
1553 	/*
1554 	 * The capabilities with SCOPE_BOOT_CPU are checked from
1555 	 * check_early_cpu_features(), as they need to be verified
1556 	 * on all secondary CPUs.
1557 	 */
1558 	if (!verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU))
1559 		cpu_die_early();
1560 
1561 	verify_local_elf_hwcaps(arm64_elf_hwcaps);
1562 
1563 	if (system_supports_32bit_el0())
1564 		verify_local_elf_hwcaps(compat_elf_hwcaps);
1565 
1566 	if (system_supports_sve())
1567 		verify_sve_features();
1568 }
1569 
1570 void check_local_cpu_capabilities(void)
1571 {
1572 	/*
1573 	 * All secondary CPUs should conform to the early CPU features
1574 	 * in use by the kernel based on boot CPU.
1575 	 */
1576 	check_early_cpu_features();
1577 
1578 	/*
1579 	 * If we haven't finalised the system capabilities, this CPU gets
1580 	 * a chance to update the errata work arounds and local features.
1581 	 * Otherwise, this CPU should verify that it has all the system
1582 	 * advertised capabilities.
1583 	 */
1584 	if (!sys_caps_initialised)
1585 		update_cpu_capabilities(SCOPE_LOCAL_CPU);
1586 	else
1587 		verify_local_cpu_capabilities();
1588 }
1589 
1590 static void __init setup_boot_cpu_capabilities(void)
1591 {
1592 	/* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
1593 	update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
1594 	/* Enable the SCOPE_BOOT_CPU capabilities alone right away */
1595 	enable_cpu_capabilities(SCOPE_BOOT_CPU);
1596 }
1597 
1598 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1599 EXPORT_SYMBOL(arm64_const_caps_ready);
1600 
1601 static void __init mark_const_caps_ready(void)
1602 {
1603 	static_branch_enable(&arm64_const_caps_ready);
1604 }
1605 
1606 extern const struct arm64_cpu_capabilities arm64_errata[];
1607 
1608 bool this_cpu_has_cap(unsigned int cap)
1609 {
1610 	return (__this_cpu_has_cap(arm64_features, cap) ||
1611 		__this_cpu_has_cap(arm64_errata, cap));
1612 }
1613 
1614 static void __init setup_system_capabilities(void)
1615 {
1616 	/*
1617 	 * We have finalised the system-wide safe feature
1618 	 * registers, finalise the capabilities that depend
1619 	 * on it. Also enable all the available capabilities,
1620 	 * that are not enabled already.
1621 	 */
1622 	update_cpu_capabilities(SCOPE_SYSTEM);
1623 	enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
1624 }
1625 
1626 void __init setup_cpu_features(void)
1627 {
1628 	u32 cwg;
1629 
1630 	setup_system_capabilities();
1631 	mark_const_caps_ready();
1632 	setup_elf_hwcaps(arm64_elf_hwcaps);
1633 
1634 	if (system_supports_32bit_el0())
1635 		setup_elf_hwcaps(compat_elf_hwcaps);
1636 
1637 	if (system_uses_ttbr0_pan())
1638 		pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
1639 
1640 	sve_setup();
1641 	minsigstksz_setup();
1642 
1643 	/* Advertise that we have computed the system capabilities */
1644 	set_sys_caps_initialised();
1645 
1646 	/*
1647 	 * Check for sane CTR_EL0.CWG value.
1648 	 */
1649 	cwg = cache_type_cwg();
1650 	if (!cwg)
1651 		pr_warn("No Cache Writeback Granule information, assuming %d\n",
1652 			ARCH_DMA_MINALIGN);
1653 }
1654 
1655 static bool __maybe_unused
1656 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1657 {
1658 	return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1659 }
1660 
1661 /*
1662  * We emulate only the following system register space.
1663  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1664  * See Table C5-6 System instruction encodings for System register accesses,
1665  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1666  */
1667 static inline bool __attribute_const__ is_emulated(u32 id)
1668 {
1669 	return (sys_reg_Op0(id) == 0x3 &&
1670 		sys_reg_CRn(id) == 0x0 &&
1671 		sys_reg_Op1(id) == 0x0 &&
1672 		(sys_reg_CRm(id) == 0 ||
1673 		 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
1674 }
1675 
1676 /*
1677  * With CRm == 0, reg should be one of :
1678  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1679  */
1680 static inline int emulate_id_reg(u32 id, u64 *valp)
1681 {
1682 	switch (id) {
1683 	case SYS_MIDR_EL1:
1684 		*valp = read_cpuid_id();
1685 		break;
1686 	case SYS_MPIDR_EL1:
1687 		*valp = SYS_MPIDR_SAFE_VAL;
1688 		break;
1689 	case SYS_REVIDR_EL1:
1690 		/* IMPLEMENTATION DEFINED values are emulated with 0 */
1691 		*valp = 0;
1692 		break;
1693 	default:
1694 		return -EINVAL;
1695 	}
1696 
1697 	return 0;
1698 }
1699 
1700 static int emulate_sys_reg(u32 id, u64 *valp)
1701 {
1702 	struct arm64_ftr_reg *regp;
1703 
1704 	if (!is_emulated(id))
1705 		return -EINVAL;
1706 
1707 	if (sys_reg_CRm(id) == 0)
1708 		return emulate_id_reg(id, valp);
1709 
1710 	regp = get_arm64_ftr_reg(id);
1711 	if (regp)
1712 		*valp = arm64_ftr_reg_user_value(regp);
1713 	else
1714 		/*
1715 		 * The untracked registers are either IMPLEMENTATION DEFINED
1716 		 * (e.g, ID_AFR0_EL1) or reserved RAZ.
1717 		 */
1718 		*valp = 0;
1719 	return 0;
1720 }
1721 
1722 static int emulate_mrs(struct pt_regs *regs, u32 insn)
1723 {
1724 	int rc;
1725 	u32 sys_reg, dst;
1726 	u64 val;
1727 
1728 	/*
1729 	 * sys_reg values are defined as used in mrs/msr instruction.
1730 	 * shift the imm value to get the encoding.
1731 	 */
1732 	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
1733 	rc = emulate_sys_reg(sys_reg, &val);
1734 	if (!rc) {
1735 		dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
1736 		pt_regs_write_reg(regs, dst, val);
1737 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1738 	}
1739 
1740 	return rc;
1741 }
1742 
1743 static struct undef_hook mrs_hook = {
1744 	.instr_mask = 0xfff00000,
1745 	.instr_val  = 0xd5300000,
1746 	.pstate_mask = PSR_AA32_MODE_MASK,
1747 	.pstate_val = PSR_MODE_EL0t,
1748 	.fn = emulate_mrs,
1749 };
1750 
1751 static int __init enable_mrs_emulation(void)
1752 {
1753 	register_undef_hook(&mrs_hook);
1754 	return 0;
1755 }
1756 
1757 core_initcall(enable_mrs_emulation);
1758 
1759 void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1760 {
1761 	/* Firmware may have left a deferred SError in this register. */
1762 	write_sysreg_s(0, SYS_DISR_EL1);
1763 }
1764