xref: /openbmc/linux/arch/arm64/kernel/cpufeature.c (revision 458a445deb9c9fb13cec46fe9b179a84d2ff514f)
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #define pr_fmt(fmt) "CPU features: " fmt
20 
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/crash_dump.h>
24 #include <linux/sort.h>
25 #include <linux/stop_machine.h>
26 #include <linux/types.h>
27 #include <linux/mm.h>
28 #include <asm/cpu.h>
29 #include <asm/cpufeature.h>
30 #include <asm/cpu_ops.h>
31 #include <asm/fpsimd.h>
32 #include <asm/mmu_context.h>
33 #include <asm/processor.h>
34 #include <asm/sysreg.h>
35 #include <asm/traps.h>
36 #include <asm/virt.h>
37 
38 unsigned long elf_hwcap __read_mostly;
39 EXPORT_SYMBOL_GPL(elf_hwcap);
40 
41 #ifdef CONFIG_COMPAT
42 #define COMPAT_ELF_HWCAP_DEFAULT	\
43 				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
44 				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
45 				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
46 				 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
47 				 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
48 				 COMPAT_HWCAP_LPAE)
49 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
50 unsigned int compat_elf_hwcap2 __read_mostly;
51 #endif
52 
53 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
54 EXPORT_SYMBOL(cpu_hwcaps);
55 
56 /*
57  * Flag to indicate if we have computed the system wide
58  * capabilities based on the boot time active CPUs. This
59  * will be used to determine if a new booting CPU should
60  * go through the verification process to make sure that it
61  * supports the system capabilities, without using a hotplug
62  * notifier.
63  */
64 static bool sys_caps_initialised;
65 
66 static inline void set_sys_caps_initialised(void)
67 {
68 	sys_caps_initialised = true;
69 }
70 
71 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
72 {
73 	/* file-wide pr_fmt adds "CPU features: " prefix */
74 	pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
75 	return 0;
76 }
77 
78 static struct notifier_block cpu_hwcaps_notifier = {
79 	.notifier_call = dump_cpu_hwcaps
80 };
81 
82 static int __init register_cpu_hwcaps_dumper(void)
83 {
84 	atomic_notifier_chain_register(&panic_notifier_list,
85 				       &cpu_hwcaps_notifier);
86 	return 0;
87 }
88 __initcall(register_cpu_hwcaps_dumper);
89 
90 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
91 EXPORT_SYMBOL(cpu_hwcap_keys);
92 
93 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
94 	{						\
95 		.sign = SIGNED,				\
96 		.visible = VISIBLE,			\
97 		.strict = STRICT,			\
98 		.type = TYPE,				\
99 		.shift = SHIFT,				\
100 		.width = WIDTH,				\
101 		.safe_val = SAFE_VAL,			\
102 	}
103 
104 /* Define a feature with unsigned values */
105 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
106 	__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
107 
108 /* Define a feature with a signed value */
109 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
110 	__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
111 
112 #define ARM64_FTR_END					\
113 	{						\
114 		.width = 0,				\
115 	}
116 
117 /* meta feature for alternatives */
118 static bool __maybe_unused
119 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
120 
121 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
122 
123 /*
124  * NOTE: Any changes to the visibility of features should be kept in
125  * sync with the documentation of the CPU feature register ABI.
126  */
127 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
128 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
129 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
130 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
131 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
132 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
133 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
134 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
135 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
136 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
137 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
138 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
139 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
140 	ARM64_FTR_END,
141 };
142 
143 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
144 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
145 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
146 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
147 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
148 	ARM64_FTR_END,
149 };
150 
151 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
152 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
153 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
154 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
155 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
156 				   FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
157 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
158 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
159 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
160 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
161 	/* Linux doesn't care about the EL3 */
162 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
163 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
164 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
165 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
166 	ARM64_FTR_END,
167 };
168 
169 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
170 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
171 	ARM64_FTR_END,
172 };
173 
174 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
175 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
176 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
177 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
178 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
179 	/* Linux shouldn't care about secure memory */
180 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
181 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
182 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
183 	/*
184 	 * Differing PARange is fine as long as all peripherals and memory are mapped
185 	 * within the minimum PARange of all CPUs
186 	 */
187 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
188 	ARM64_FTR_END,
189 };
190 
191 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
192 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
193 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
194 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
195 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
196 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
197 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
198 	ARM64_FTR_END,
199 };
200 
201 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
202 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
203 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
204 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
205 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
206 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
207 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
208 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
209 	ARM64_FTR_END,
210 };
211 
212 static const struct arm64_ftr_bits ftr_ctr[] = {
213 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
214 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
215 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
216 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, CTR_CWG_SHIFT, 4, 0),
217 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, CTR_ERG_SHIFT, 4, 0),
218 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
219 	/*
220 	 * Linux can handle differing I-cache policies. Userspace JITs will
221 	 * make use of *minLine.
222 	 * If we have differing I-cache policies, report it as the weakest - VIPT.
223 	 */
224 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),	/* L1Ip */
225 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
226 	ARM64_FTR_END,
227 };
228 
229 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
230 	.name		= "SYS_CTR_EL0",
231 	.ftr_bits	= ftr_ctr
232 };
233 
234 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
235 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf),	/* InnerShr */
236 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),	/* FCSE */
237 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* AuxReg */
238 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),	/* TCM */
239 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),	/* ShareLvl */
240 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf),	/* OuterShr */
241 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),	/* PMSA */
242 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* VMSA */
243 	ARM64_FTR_END,
244 };
245 
246 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
247 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
248 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
249 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
250 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
251 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
252 	/*
253 	 * We can instantiate multiple PMU instances with different levels
254 	 * of support.
255 	 */
256 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
257 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
258 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
259 	ARM64_FTR_END,
260 };
261 
262 static const struct arm64_ftr_bits ftr_mvfr2[] = {
263 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),		/* FPMisc */
264 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),		/* SIMDMisc */
265 	ARM64_FTR_END,
266 };
267 
268 static const struct arm64_ftr_bits ftr_dczid[] = {
269 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),		/* DZP */
270 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* BS */
271 	ARM64_FTR_END,
272 };
273 
274 
275 static const struct arm64_ftr_bits ftr_id_isar5[] = {
276 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
277 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
278 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
279 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
280 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
281 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
282 	ARM64_FTR_END,
283 };
284 
285 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
286 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),	/* ac2 */
287 	ARM64_FTR_END,
288 };
289 
290 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
291 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),		/* State3 */
292 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),		/* State2 */
293 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),		/* State1 */
294 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),		/* State0 */
295 	ARM64_FTR_END,
296 };
297 
298 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
299 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
300 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),	/* PerfMon */
301 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
302 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
303 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
304 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
305 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
306 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
307 	ARM64_FTR_END,
308 };
309 
310 static const struct arm64_ftr_bits ftr_zcr[] = {
311 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
312 		ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),	/* LEN */
313 	ARM64_FTR_END,
314 };
315 
316 /*
317  * Common ftr bits for a 32bit register with all hidden, strict
318  * attributes, with 4bit feature fields and a default safe value of
319  * 0. Covers the following 32bit registers:
320  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
321  */
322 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
323 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
324 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
325 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
326 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
327 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
328 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
329 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
330 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
331 	ARM64_FTR_END,
332 };
333 
334 /* Table for a single 32bit feature value */
335 static const struct arm64_ftr_bits ftr_single32[] = {
336 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
337 	ARM64_FTR_END,
338 };
339 
340 static const struct arm64_ftr_bits ftr_raz[] = {
341 	ARM64_FTR_END,
342 };
343 
344 #define ARM64_FTR_REG(id, table) {		\
345 	.sys_id = id,				\
346 	.reg = 	&(struct arm64_ftr_reg){	\
347 		.name = #id,			\
348 		.ftr_bits = &((table)[0]),	\
349 	}}
350 
351 static const struct __ftr_reg_entry {
352 	u32			sys_id;
353 	struct arm64_ftr_reg 	*reg;
354 } arm64_ftr_regs[] = {
355 
356 	/* Op1 = 0, CRn = 0, CRm = 1 */
357 	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
358 	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
359 	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
360 	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
361 	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
362 	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
363 	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
364 
365 	/* Op1 = 0, CRn = 0, CRm = 2 */
366 	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
367 	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
368 	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
369 	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
370 	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
371 	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
372 	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
373 
374 	/* Op1 = 0, CRn = 0, CRm = 3 */
375 	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
376 	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
377 	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
378 
379 	/* Op1 = 0, CRn = 0, CRm = 4 */
380 	ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
381 	ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1),
382 	ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_raz),
383 
384 	/* Op1 = 0, CRn = 0, CRm = 5 */
385 	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
386 	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
387 
388 	/* Op1 = 0, CRn = 0, CRm = 6 */
389 	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
390 	ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
391 
392 	/* Op1 = 0, CRn = 0, CRm = 7 */
393 	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
394 	ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
395 	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
396 
397 	/* Op1 = 0, CRn = 1, CRm = 2 */
398 	ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
399 
400 	/* Op1 = 3, CRn = 0, CRm = 0 */
401 	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
402 	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
403 
404 	/* Op1 = 3, CRn = 14, CRm = 0 */
405 	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
406 };
407 
408 static int search_cmp_ftr_reg(const void *id, const void *regp)
409 {
410 	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
411 }
412 
413 /*
414  * get_arm64_ftr_reg - Lookup a feature register entry using its
415  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
416  * ascending order of sys_id , we use binary search to find a matching
417  * entry.
418  *
419  * returns - Upon success,  matching ftr_reg entry for id.
420  *         - NULL on failure. It is upto the caller to decide
421  *	     the impact of a failure.
422  */
423 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
424 {
425 	const struct __ftr_reg_entry *ret;
426 
427 	ret = bsearch((const void *)(unsigned long)sys_id,
428 			arm64_ftr_regs,
429 			ARRAY_SIZE(arm64_ftr_regs),
430 			sizeof(arm64_ftr_regs[0]),
431 			search_cmp_ftr_reg);
432 	if (ret)
433 		return ret->reg;
434 	return NULL;
435 }
436 
437 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
438 			       s64 ftr_val)
439 {
440 	u64 mask = arm64_ftr_mask(ftrp);
441 
442 	reg &= ~mask;
443 	reg |= (ftr_val << ftrp->shift) & mask;
444 	return reg;
445 }
446 
447 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
448 				s64 cur)
449 {
450 	s64 ret = 0;
451 
452 	switch (ftrp->type) {
453 	case FTR_EXACT:
454 		ret = ftrp->safe_val;
455 		break;
456 	case FTR_LOWER_SAFE:
457 		ret = new < cur ? new : cur;
458 		break;
459 	case FTR_HIGHER_SAFE:
460 		ret = new > cur ? new : cur;
461 		break;
462 	default:
463 		BUG();
464 	}
465 
466 	return ret;
467 }
468 
469 static void __init sort_ftr_regs(void)
470 {
471 	int i;
472 
473 	/* Check that the array is sorted so that we can do the binary search */
474 	for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
475 		BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
476 }
477 
478 /*
479  * Initialise the CPU feature register from Boot CPU values.
480  * Also initiliases the strict_mask for the register.
481  * Any bits that are not covered by an arm64_ftr_bits entry are considered
482  * RES0 for the system-wide value, and must strictly match.
483  */
484 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
485 {
486 	u64 val = 0;
487 	u64 strict_mask = ~0x0ULL;
488 	u64 user_mask = 0;
489 	u64 valid_mask = 0;
490 
491 	const struct arm64_ftr_bits *ftrp;
492 	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
493 
494 	BUG_ON(!reg);
495 
496 	for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
497 		u64 ftr_mask = arm64_ftr_mask(ftrp);
498 		s64 ftr_new = arm64_ftr_value(ftrp, new);
499 
500 		val = arm64_ftr_set_value(ftrp, val, ftr_new);
501 
502 		valid_mask |= ftr_mask;
503 		if (!ftrp->strict)
504 			strict_mask &= ~ftr_mask;
505 		if (ftrp->visible)
506 			user_mask |= ftr_mask;
507 		else
508 			reg->user_val = arm64_ftr_set_value(ftrp,
509 							    reg->user_val,
510 							    ftrp->safe_val);
511 	}
512 
513 	val &= valid_mask;
514 
515 	reg->sys_val = val;
516 	reg->strict_mask = strict_mask;
517 	reg->user_mask = user_mask;
518 }
519 
520 extern const struct arm64_cpu_capabilities arm64_errata[];
521 static void __init setup_boot_cpu_capabilities(void);
522 
523 void __init init_cpu_features(struct cpuinfo_arm64 *info)
524 {
525 	/* Before we start using the tables, make sure it is sorted */
526 	sort_ftr_regs();
527 
528 	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
529 	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
530 	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
531 	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
532 	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
533 	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
534 	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
535 	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
536 	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
537 	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
538 	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
539 	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
540 	init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
541 
542 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
543 		init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
544 		init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
545 		init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
546 		init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
547 		init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
548 		init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
549 		init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
550 		init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
551 		init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
552 		init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
553 		init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
554 		init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
555 		init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
556 		init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
557 		init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
558 		init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
559 	}
560 
561 	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
562 		init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
563 		sve_init_vq_map();
564 	}
565 
566 	/*
567 	 * Detect and enable early CPU capabilities based on the boot CPU,
568 	 * after we have initialised the CPU feature infrastructure.
569 	 */
570 	setup_boot_cpu_capabilities();
571 }
572 
573 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
574 {
575 	const struct arm64_ftr_bits *ftrp;
576 
577 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
578 		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
579 		s64 ftr_new = arm64_ftr_value(ftrp, new);
580 
581 		if (ftr_cur == ftr_new)
582 			continue;
583 		/* Find a safe value */
584 		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
585 		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
586 	}
587 
588 }
589 
590 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
591 {
592 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
593 
594 	BUG_ON(!regp);
595 	update_cpu_ftr_reg(regp, val);
596 	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
597 		return 0;
598 	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
599 			regp->name, boot, cpu, val);
600 	return 1;
601 }
602 
603 /*
604  * Update system wide CPU feature registers with the values from a
605  * non-boot CPU. Also performs SANITY checks to make sure that there
606  * aren't any insane variations from that of the boot CPU.
607  */
608 void update_cpu_features(int cpu,
609 			 struct cpuinfo_arm64 *info,
610 			 struct cpuinfo_arm64 *boot)
611 {
612 	int taint = 0;
613 
614 	/*
615 	 * The kernel can handle differing I-cache policies, but otherwise
616 	 * caches should look identical. Userspace JITs will make use of
617 	 * *minLine.
618 	 */
619 	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
620 				      info->reg_ctr, boot->reg_ctr);
621 
622 	/*
623 	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
624 	 * could result in too much or too little memory being zeroed if a
625 	 * process is preempted and migrated between CPUs.
626 	 */
627 	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
628 				      info->reg_dczid, boot->reg_dczid);
629 
630 	/* If different, timekeeping will be broken (especially with KVM) */
631 	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
632 				      info->reg_cntfrq, boot->reg_cntfrq);
633 
634 	/*
635 	 * The kernel uses self-hosted debug features and expects CPUs to
636 	 * support identical debug features. We presently need CTX_CMPs, WRPs,
637 	 * and BRPs to be identical.
638 	 * ID_AA64DFR1 is currently RES0.
639 	 */
640 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
641 				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
642 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
643 				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
644 	/*
645 	 * Even in big.LITTLE, processors should be identical instruction-set
646 	 * wise.
647 	 */
648 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
649 				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
650 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
651 				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
652 
653 	/*
654 	 * Differing PARange support is fine as long as all peripherals and
655 	 * memory are mapped within the minimum PARange of all CPUs.
656 	 * Linux should not care about secure memory.
657 	 */
658 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
659 				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
660 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
661 				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
662 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
663 				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
664 
665 	/*
666 	 * EL3 is not our concern.
667 	 */
668 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
669 				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
670 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
671 				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
672 
673 	taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
674 				      info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
675 
676 	/*
677 	 * If we have AArch32, we care about 32-bit features for compat.
678 	 * If the system doesn't support AArch32, don't update them.
679 	 */
680 	if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
681 		id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
682 
683 		taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
684 					info->reg_id_dfr0, boot->reg_id_dfr0);
685 		taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
686 					info->reg_id_isar0, boot->reg_id_isar0);
687 		taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
688 					info->reg_id_isar1, boot->reg_id_isar1);
689 		taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
690 					info->reg_id_isar2, boot->reg_id_isar2);
691 		taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
692 					info->reg_id_isar3, boot->reg_id_isar3);
693 		taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
694 					info->reg_id_isar4, boot->reg_id_isar4);
695 		taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
696 					info->reg_id_isar5, boot->reg_id_isar5);
697 
698 		/*
699 		 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
700 		 * ACTLR formats could differ across CPUs and therefore would have to
701 		 * be trapped for virtualization anyway.
702 		 */
703 		taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
704 					info->reg_id_mmfr0, boot->reg_id_mmfr0);
705 		taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
706 					info->reg_id_mmfr1, boot->reg_id_mmfr1);
707 		taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
708 					info->reg_id_mmfr2, boot->reg_id_mmfr2);
709 		taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
710 					info->reg_id_mmfr3, boot->reg_id_mmfr3);
711 		taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
712 					info->reg_id_pfr0, boot->reg_id_pfr0);
713 		taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
714 					info->reg_id_pfr1, boot->reg_id_pfr1);
715 		taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
716 					info->reg_mvfr0, boot->reg_mvfr0);
717 		taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
718 					info->reg_mvfr1, boot->reg_mvfr1);
719 		taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
720 					info->reg_mvfr2, boot->reg_mvfr2);
721 	}
722 
723 	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
724 		taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
725 					info->reg_zcr, boot->reg_zcr);
726 
727 		/* Probe vector lengths, unless we already gave up on SVE */
728 		if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
729 		    !sys_caps_initialised)
730 			sve_update_vq_map();
731 	}
732 
733 	/*
734 	 * Mismatched CPU features are a recipe for disaster. Don't even
735 	 * pretend to support them.
736 	 */
737 	if (taint) {
738 		pr_warn_once("Unsupported CPU feature variation detected.\n");
739 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
740 	}
741 }
742 
743 u64 read_sanitised_ftr_reg(u32 id)
744 {
745 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
746 
747 	/* We shouldn't get a request for an unsupported register */
748 	BUG_ON(!regp);
749 	return regp->sys_val;
750 }
751 
752 #define read_sysreg_case(r)	\
753 	case r:		return read_sysreg_s(r)
754 
755 /*
756  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
757  * Read the system register on the current CPU
758  */
759 static u64 __read_sysreg_by_encoding(u32 sys_id)
760 {
761 	switch (sys_id) {
762 	read_sysreg_case(SYS_ID_PFR0_EL1);
763 	read_sysreg_case(SYS_ID_PFR1_EL1);
764 	read_sysreg_case(SYS_ID_DFR0_EL1);
765 	read_sysreg_case(SYS_ID_MMFR0_EL1);
766 	read_sysreg_case(SYS_ID_MMFR1_EL1);
767 	read_sysreg_case(SYS_ID_MMFR2_EL1);
768 	read_sysreg_case(SYS_ID_MMFR3_EL1);
769 	read_sysreg_case(SYS_ID_ISAR0_EL1);
770 	read_sysreg_case(SYS_ID_ISAR1_EL1);
771 	read_sysreg_case(SYS_ID_ISAR2_EL1);
772 	read_sysreg_case(SYS_ID_ISAR3_EL1);
773 	read_sysreg_case(SYS_ID_ISAR4_EL1);
774 	read_sysreg_case(SYS_ID_ISAR5_EL1);
775 	read_sysreg_case(SYS_MVFR0_EL1);
776 	read_sysreg_case(SYS_MVFR1_EL1);
777 	read_sysreg_case(SYS_MVFR2_EL1);
778 
779 	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
780 	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
781 	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
782 	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
783 	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
784 	read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
785 	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
786 	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
787 	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
788 
789 	read_sysreg_case(SYS_CNTFRQ_EL0);
790 	read_sysreg_case(SYS_CTR_EL0);
791 	read_sysreg_case(SYS_DCZID_EL0);
792 
793 	default:
794 		BUG();
795 		return 0;
796 	}
797 }
798 
799 #include <linux/irqchip/arm-gic-v3.h>
800 
801 static bool
802 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
803 {
804 	int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
805 
806 	return val >= entry->min_field_value;
807 }
808 
809 static bool
810 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
811 {
812 	u64 val;
813 
814 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
815 	if (scope == SCOPE_SYSTEM)
816 		val = read_sanitised_ftr_reg(entry->sys_reg);
817 	else
818 		val = __read_sysreg_by_encoding(entry->sys_reg);
819 
820 	return feature_matches(val, entry);
821 }
822 
823 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
824 {
825 	bool has_sre;
826 
827 	if (!has_cpuid_feature(entry, scope))
828 		return false;
829 
830 	has_sre = gic_enable_sre();
831 	if (!has_sre)
832 		pr_warn_once("%s present but disabled by higher exception level\n",
833 			     entry->desc);
834 
835 	return has_sre;
836 }
837 
838 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
839 {
840 	u32 midr = read_cpuid_id();
841 
842 	/* Cavium ThunderX pass 1.x and 2.x */
843 	return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
844 		MIDR_CPU_VAR_REV(0, 0),
845 		MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
846 }
847 
848 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
849 {
850 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
851 
852 	return cpuid_feature_extract_signed_field(pfr0,
853 					ID_AA64PFR0_FP_SHIFT) < 0;
854 }
855 
856 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
857 			  int scope)
858 {
859 	u64 ctr;
860 
861 	if (scope == SCOPE_SYSTEM)
862 		ctr = arm64_ftr_reg_ctrel0.sys_val;
863 	else
864 		ctr = read_cpuid_effective_cachetype();
865 
866 	return ctr & BIT(CTR_IDC_SHIFT);
867 }
868 
869 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
870 {
871 	/*
872 	 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
873 	 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
874 	 * to the CTR_EL0 on this CPU and emulate it with the real/safe
875 	 * value.
876 	 */
877 	if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT)))
878 		sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
879 }
880 
881 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
882 			  int scope)
883 {
884 	u64 ctr;
885 
886 	if (scope == SCOPE_SYSTEM)
887 		ctr = arm64_ftr_reg_ctrel0.sys_val;
888 	else
889 		ctr = read_cpuid_cachetype();
890 
891 	return ctr & BIT(CTR_DIC_SHIFT);
892 }
893 
894 static bool __maybe_unused
895 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
896 {
897 	/*
898 	 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
899 	 * may share TLB entries with a CPU stuck in the crashed
900 	 * kernel.
901 	 */
902 	 if (is_kdump_kernel())
903 		return false;
904 
905 	return has_cpuid_feature(entry, scope);
906 }
907 
908 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
909 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
910 
911 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
912 				int scope)
913 {
914 	/* List of CPUs that are not vulnerable and don't need KPTI */
915 	static const struct midr_range kpti_safe_list[] = {
916 		MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
917 		MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
918 		{ /* sentinel */ }
919 	};
920 	char const *str = "command line option";
921 
922 	/*
923 	 * For reasons that aren't entirely clear, enabling KPTI on Cavium
924 	 * ThunderX leads to apparent I-cache corruption of kernel text, which
925 	 * ends as well as you might imagine. Don't even try.
926 	 */
927 	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
928 		str = "ARM64_WORKAROUND_CAVIUM_27456";
929 		__kpti_forced = -1;
930 	}
931 
932 	/* Forced? */
933 	if (__kpti_forced) {
934 		pr_info_once("kernel page table isolation forced %s by %s\n",
935 			     __kpti_forced > 0 ? "ON" : "OFF", str);
936 		return __kpti_forced > 0;
937 	}
938 
939 	/* Useful for KASLR robustness */
940 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
941 		return true;
942 
943 	/* Don't force KPTI for CPUs that are not vulnerable */
944 	if (is_midr_in_range_list(read_cpuid_id(), kpti_safe_list))
945 		return false;
946 
947 	/* Defer to CPU feature registers */
948 	return !has_cpuid_feature(entry, scope);
949 }
950 
951 static void
952 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
953 {
954 	typedef void (kpti_remap_fn)(int, int, phys_addr_t);
955 	extern kpti_remap_fn idmap_kpti_install_ng_mappings;
956 	kpti_remap_fn *remap_fn;
957 
958 	static bool kpti_applied = false;
959 	int cpu = smp_processor_id();
960 
961 	if (kpti_applied)
962 		return;
963 
964 	remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
965 
966 	cpu_install_idmap();
967 	remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
968 	cpu_uninstall_idmap();
969 
970 	if (!cpu)
971 		kpti_applied = true;
972 
973 	return;
974 }
975 
976 static int __init parse_kpti(char *str)
977 {
978 	bool enabled;
979 	int ret = strtobool(str, &enabled);
980 
981 	if (ret)
982 		return ret;
983 
984 	__kpti_forced = enabled ? 1 : -1;
985 	return 0;
986 }
987 early_param("kpti", parse_kpti);
988 #endif	/* CONFIG_UNMAP_KERNEL_AT_EL0 */
989 
990 #ifdef CONFIG_ARM64_HW_AFDBM
991 static inline void __cpu_enable_hw_dbm(void)
992 {
993 	u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
994 
995 	write_sysreg(tcr, tcr_el1);
996 	isb();
997 }
998 
999 static bool cpu_has_broken_dbm(void)
1000 {
1001 	/* List of CPUs which have broken DBM support. */
1002 	static const struct midr_range cpus[] = {
1003 #ifdef CONFIG_ARM64_ERRATUM_1024718
1004 		MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0),  // A55 r0p0 -r1p0
1005 #endif
1006 		{},
1007 	};
1008 
1009 	return is_midr_in_range_list(read_cpuid_id(), cpus);
1010 }
1011 
1012 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1013 {
1014 	return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1015 	       !cpu_has_broken_dbm();
1016 }
1017 
1018 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1019 {
1020 	if (cpu_can_use_dbm(cap))
1021 		__cpu_enable_hw_dbm();
1022 }
1023 
1024 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1025 		       int __unused)
1026 {
1027 	static bool detected = false;
1028 	/*
1029 	 * DBM is a non-conflicting feature. i.e, the kernel can safely
1030 	 * run a mix of CPUs with and without the feature. So, we
1031 	 * unconditionally enable the capability to allow any late CPU
1032 	 * to use the feature. We only enable the control bits on the
1033 	 * CPU, if it actually supports.
1034 	 *
1035 	 * We have to make sure we print the "feature" detection only
1036 	 * when at least one CPU actually uses it. So check if this CPU
1037 	 * can actually use it and print the message exactly once.
1038 	 *
1039 	 * This is safe as all CPUs (including secondary CPUs - due to the
1040 	 * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1041 	 * goes through the "matches" check exactly once. Also if a CPU
1042 	 * matches the criteria, it is guaranteed that the CPU will turn
1043 	 * the DBM on, as the capability is unconditionally enabled.
1044 	 */
1045 	if (!detected && cpu_can_use_dbm(cap)) {
1046 		detected = true;
1047 		pr_info("detected: Hardware dirty bit management\n");
1048 	}
1049 
1050 	return true;
1051 }
1052 
1053 #endif
1054 
1055 #ifdef CONFIG_ARM64_VHE
1056 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1057 {
1058 	return is_kernel_in_hyp_mode();
1059 }
1060 
1061 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1062 {
1063 	/*
1064 	 * Copy register values that aren't redirected by hardware.
1065 	 *
1066 	 * Before code patching, we only set tpidr_el1, all CPUs need to copy
1067 	 * this value to tpidr_el2 before we patch the code. Once we've done
1068 	 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1069 	 * do anything here.
1070 	 */
1071 	if (!alternatives_applied)
1072 		write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1073 }
1074 #endif
1075 
1076 static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused)
1077 {
1078 	u64 val = read_sysreg_s(SYS_CLIDR_EL1);
1079 
1080 	/* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
1081 	WARN_ON(val & (7 << 27 | 7 << 21));
1082 }
1083 
1084 #ifdef CONFIG_ARM64_SSBD
1085 static int ssbs_emulation_handler(struct pt_regs *regs, u32 instr)
1086 {
1087 	if (user_mode(regs))
1088 		return 1;
1089 
1090 	if (instr & BIT(PSTATE_Imm_shift))
1091 		regs->pstate |= PSR_SSBS_BIT;
1092 	else
1093 		regs->pstate &= ~PSR_SSBS_BIT;
1094 
1095 	arm64_skip_faulting_instruction(regs, 4);
1096 	return 0;
1097 }
1098 
1099 static struct undef_hook ssbs_emulation_hook = {
1100 	.instr_mask	= ~(1U << PSTATE_Imm_shift),
1101 	.instr_val	= 0xd500401f | PSTATE_SSBS,
1102 	.fn		= ssbs_emulation_handler,
1103 };
1104 
1105 static void cpu_enable_ssbs(const struct arm64_cpu_capabilities *__unused)
1106 {
1107 	static bool undef_hook_registered = false;
1108 	static DEFINE_SPINLOCK(hook_lock);
1109 
1110 	spin_lock(&hook_lock);
1111 	if (!undef_hook_registered) {
1112 		register_undef_hook(&ssbs_emulation_hook);
1113 		undef_hook_registered = true;
1114 	}
1115 	spin_unlock(&hook_lock);
1116 
1117 	if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
1118 		sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_DSSBS);
1119 		arm64_set_ssbd_mitigation(false);
1120 	} else {
1121 		arm64_set_ssbd_mitigation(true);
1122 	}
1123 }
1124 #endif /* CONFIG_ARM64_SSBD */
1125 
1126 #ifdef CONFIG_ARM64_PAN
1127 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
1128 {
1129 	/*
1130 	 * We modify PSTATE. This won't work from irq context as the PSTATE
1131 	 * is discarded once we return from the exception.
1132 	 */
1133 	WARN_ON_ONCE(in_interrupt());
1134 
1135 	sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
1136 	asm(SET_PSTATE_PAN(1));
1137 }
1138 #endif /* CONFIG_ARM64_PAN */
1139 
1140 #ifdef CONFIG_ARM64_RAS_EXTN
1141 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1142 {
1143 	/* Firmware may have left a deferred SError in this register. */
1144 	write_sysreg_s(0, SYS_DISR_EL1);
1145 }
1146 #endif /* CONFIG_ARM64_RAS_EXTN */
1147 
1148 static const struct arm64_cpu_capabilities arm64_features[] = {
1149 	{
1150 		.desc = "GIC system register CPU interface",
1151 		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
1152 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1153 		.matches = has_useable_gicv3_cpuif,
1154 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1155 		.field_pos = ID_AA64PFR0_GIC_SHIFT,
1156 		.sign = FTR_UNSIGNED,
1157 		.min_field_value = 1,
1158 	},
1159 #ifdef CONFIG_ARM64_PAN
1160 	{
1161 		.desc = "Privileged Access Never",
1162 		.capability = ARM64_HAS_PAN,
1163 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1164 		.matches = has_cpuid_feature,
1165 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
1166 		.field_pos = ID_AA64MMFR1_PAN_SHIFT,
1167 		.sign = FTR_UNSIGNED,
1168 		.min_field_value = 1,
1169 		.cpu_enable = cpu_enable_pan,
1170 	},
1171 #endif /* CONFIG_ARM64_PAN */
1172 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
1173 	{
1174 		.desc = "LSE atomic instructions",
1175 		.capability = ARM64_HAS_LSE_ATOMICS,
1176 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1177 		.matches = has_cpuid_feature,
1178 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
1179 		.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
1180 		.sign = FTR_UNSIGNED,
1181 		.min_field_value = 2,
1182 	},
1183 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
1184 	{
1185 		.desc = "Software prefetching using PRFM",
1186 		.capability = ARM64_HAS_NO_HW_PREFETCH,
1187 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1188 		.matches = has_no_hw_prefetch,
1189 	},
1190 #ifdef CONFIG_ARM64_UAO
1191 	{
1192 		.desc = "User Access Override",
1193 		.capability = ARM64_HAS_UAO,
1194 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1195 		.matches = has_cpuid_feature,
1196 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
1197 		.field_pos = ID_AA64MMFR2_UAO_SHIFT,
1198 		.min_field_value = 1,
1199 		/*
1200 		 * We rely on stop_machine() calling uao_thread_switch() to set
1201 		 * UAO immediately after patching.
1202 		 */
1203 	},
1204 #endif /* CONFIG_ARM64_UAO */
1205 #ifdef CONFIG_ARM64_PAN
1206 	{
1207 		.capability = ARM64_ALT_PAN_NOT_UAO,
1208 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1209 		.matches = cpufeature_pan_not_uao,
1210 	},
1211 #endif /* CONFIG_ARM64_PAN */
1212 #ifdef CONFIG_ARM64_VHE
1213 	{
1214 		.desc = "Virtualization Host Extensions",
1215 		.capability = ARM64_HAS_VIRT_HOST_EXTN,
1216 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1217 		.matches = runs_at_el2,
1218 		.cpu_enable = cpu_copy_el2regs,
1219 	},
1220 #endif	/* CONFIG_ARM64_VHE */
1221 	{
1222 		.desc = "32-bit EL0 Support",
1223 		.capability = ARM64_HAS_32BIT_EL0,
1224 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1225 		.matches = has_cpuid_feature,
1226 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1227 		.sign = FTR_UNSIGNED,
1228 		.field_pos = ID_AA64PFR0_EL0_SHIFT,
1229 		.min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
1230 	},
1231 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1232 	{
1233 		.desc = "Kernel page table isolation (KPTI)",
1234 		.capability = ARM64_UNMAP_KERNEL_AT_EL0,
1235 		.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1236 		/*
1237 		 * The ID feature fields below are used to indicate that
1238 		 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
1239 		 * more details.
1240 		 */
1241 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1242 		.field_pos = ID_AA64PFR0_CSV3_SHIFT,
1243 		.min_field_value = 1,
1244 		.matches = unmap_kernel_at_el0,
1245 		.cpu_enable = kpti_install_ng_mappings,
1246 	},
1247 #endif
1248 	{
1249 		/* FP/SIMD is not implemented */
1250 		.capability = ARM64_HAS_NO_FPSIMD,
1251 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1252 		.min_field_value = 0,
1253 		.matches = has_no_fpsimd,
1254 	},
1255 #ifdef CONFIG_ARM64_PMEM
1256 	{
1257 		.desc = "Data cache clean to Point of Persistence",
1258 		.capability = ARM64_HAS_DCPOP,
1259 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1260 		.matches = has_cpuid_feature,
1261 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
1262 		.field_pos = ID_AA64ISAR1_DPB_SHIFT,
1263 		.min_field_value = 1,
1264 	},
1265 #endif
1266 #ifdef CONFIG_ARM64_SVE
1267 	{
1268 		.desc = "Scalable Vector Extension",
1269 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1270 		.capability = ARM64_SVE,
1271 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1272 		.sign = FTR_UNSIGNED,
1273 		.field_pos = ID_AA64PFR0_SVE_SHIFT,
1274 		.min_field_value = ID_AA64PFR0_SVE,
1275 		.matches = has_cpuid_feature,
1276 		.cpu_enable = sve_kernel_enable,
1277 	},
1278 #endif /* CONFIG_ARM64_SVE */
1279 #ifdef CONFIG_ARM64_RAS_EXTN
1280 	{
1281 		.desc = "RAS Extension Support",
1282 		.capability = ARM64_HAS_RAS_EXTN,
1283 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1284 		.matches = has_cpuid_feature,
1285 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1286 		.sign = FTR_UNSIGNED,
1287 		.field_pos = ID_AA64PFR0_RAS_SHIFT,
1288 		.min_field_value = ID_AA64PFR0_RAS_V1,
1289 		.cpu_enable = cpu_clear_disr,
1290 	},
1291 #endif /* CONFIG_ARM64_RAS_EXTN */
1292 	{
1293 		.desc = "Data cache clean to the PoU not required for I/D coherence",
1294 		.capability = ARM64_HAS_CACHE_IDC,
1295 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1296 		.matches = has_cache_idc,
1297 		.cpu_enable = cpu_emulate_effective_ctr,
1298 	},
1299 	{
1300 		.desc = "Instruction cache invalidation not required for I/D coherence",
1301 		.capability = ARM64_HAS_CACHE_DIC,
1302 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1303 		.matches = has_cache_dic,
1304 	},
1305 	{
1306 		.desc = "Stage-2 Force Write-Back",
1307 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1308 		.capability = ARM64_HAS_STAGE2_FWB,
1309 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
1310 		.sign = FTR_UNSIGNED,
1311 		.field_pos = ID_AA64MMFR2_FWB_SHIFT,
1312 		.min_field_value = 1,
1313 		.matches = has_cpuid_feature,
1314 		.cpu_enable = cpu_has_fwb,
1315 	},
1316 #ifdef CONFIG_ARM64_HW_AFDBM
1317 	{
1318 		/*
1319 		 * Since we turn this on always, we don't want the user to
1320 		 * think that the feature is available when it may not be.
1321 		 * So hide the description.
1322 		 *
1323 		 * .desc = "Hardware pagetable Dirty Bit Management",
1324 		 *
1325 		 */
1326 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1327 		.capability = ARM64_HW_DBM,
1328 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
1329 		.sign = FTR_UNSIGNED,
1330 		.field_pos = ID_AA64MMFR1_HADBS_SHIFT,
1331 		.min_field_value = 2,
1332 		.matches = has_hw_dbm,
1333 		.cpu_enable = cpu_enable_hw_dbm,
1334 	},
1335 #endif
1336 	{
1337 		.desc = "CRC32 instructions",
1338 		.capability = ARM64_HAS_CRC32,
1339 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1340 		.matches = has_cpuid_feature,
1341 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
1342 		.field_pos = ID_AA64ISAR0_CRC32_SHIFT,
1343 		.min_field_value = 1,
1344 	},
1345 #ifdef CONFIG_ARM64_SSBD
1346 	{
1347 		.desc = "Speculative Store Bypassing Safe (SSBS)",
1348 		.capability = ARM64_SSBS,
1349 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1350 		.matches = has_cpuid_feature,
1351 		.sys_reg = SYS_ID_AA64PFR1_EL1,
1352 		.field_pos = ID_AA64PFR1_SSBS_SHIFT,
1353 		.sign = FTR_UNSIGNED,
1354 		.min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
1355 		.cpu_enable = cpu_enable_ssbs,
1356 	},
1357 #endif
1358 #ifdef CONFIG_ARM64_CNP
1359 	{
1360 		.desc = "Common not Private translations",
1361 		.capability = ARM64_HAS_CNP,
1362 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1363 		.matches = has_useable_cnp,
1364 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
1365 		.sign = FTR_UNSIGNED,
1366 		.field_pos = ID_AA64MMFR2_CNP_SHIFT,
1367 		.min_field_value = 1,
1368 		.cpu_enable = cpu_enable_cnp,
1369 	},
1370 #endif
1371 	{},
1372 };
1373 
1374 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap)	\
1375 	{							\
1376 		.desc = #cap,					\
1377 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,		\
1378 		.matches = has_cpuid_feature,			\
1379 		.sys_reg = reg,					\
1380 		.field_pos = field,				\
1381 		.sign = s,					\
1382 		.min_field_value = min_value,			\
1383 		.hwcap_type = cap_type,				\
1384 		.hwcap = cap,					\
1385 	}
1386 
1387 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
1388 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
1389 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
1390 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
1391 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
1392 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_SHA512),
1393 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
1394 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
1395 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
1396 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA3),
1397 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM3),
1398 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM4),
1399 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDDP),
1400 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDFHM),
1401 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FLAGM),
1402 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
1403 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
1404 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
1405 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
1406 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_DIT),
1407 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_DCPOP),
1408 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
1409 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
1410 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
1411 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ILRCPC),
1412 	HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_USCAT),
1413 #ifdef CONFIG_ARM64_SVE
1414 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, HWCAP_SVE),
1415 #endif
1416 	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, HWCAP_SSBS),
1417 	{},
1418 };
1419 
1420 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
1421 #ifdef CONFIG_COMPAT
1422 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
1423 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
1424 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
1425 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
1426 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
1427 #endif
1428 	{},
1429 };
1430 
1431 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1432 {
1433 	switch (cap->hwcap_type) {
1434 	case CAP_HWCAP:
1435 		elf_hwcap |= cap->hwcap;
1436 		break;
1437 #ifdef CONFIG_COMPAT
1438 	case CAP_COMPAT_HWCAP:
1439 		compat_elf_hwcap |= (u32)cap->hwcap;
1440 		break;
1441 	case CAP_COMPAT_HWCAP2:
1442 		compat_elf_hwcap2 |= (u32)cap->hwcap;
1443 		break;
1444 #endif
1445 	default:
1446 		WARN_ON(1);
1447 		break;
1448 	}
1449 }
1450 
1451 /* Check if we have a particular HWCAP enabled */
1452 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1453 {
1454 	bool rc;
1455 
1456 	switch (cap->hwcap_type) {
1457 	case CAP_HWCAP:
1458 		rc = (elf_hwcap & cap->hwcap) != 0;
1459 		break;
1460 #ifdef CONFIG_COMPAT
1461 	case CAP_COMPAT_HWCAP:
1462 		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
1463 		break;
1464 	case CAP_COMPAT_HWCAP2:
1465 		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
1466 		break;
1467 #endif
1468 	default:
1469 		WARN_ON(1);
1470 		rc = false;
1471 	}
1472 
1473 	return rc;
1474 }
1475 
1476 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
1477 {
1478 	/* We support emulation of accesses to CPU ID feature registers */
1479 	elf_hwcap |= HWCAP_CPUID;
1480 	for (; hwcaps->matches; hwcaps++)
1481 		if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
1482 			cap_set_elf_hwcap(hwcaps);
1483 }
1484 
1485 /*
1486  * Check if the current CPU has a given feature capability.
1487  * Should be called from non-preemptible context.
1488  */
1489 static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
1490 			       unsigned int cap)
1491 {
1492 	const struct arm64_cpu_capabilities *caps;
1493 
1494 	if (WARN_ON(preemptible()))
1495 		return false;
1496 
1497 	for (caps = cap_array; caps->matches; caps++)
1498 		if (caps->capability == cap)
1499 			return caps->matches(caps, SCOPE_LOCAL_CPU);
1500 
1501 	return false;
1502 }
1503 
1504 static void __update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
1505 				      u16 scope_mask, const char *info)
1506 {
1507 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1508 	for (; caps->matches; caps++) {
1509 		if (!(caps->type & scope_mask) ||
1510 		    !caps->matches(caps, cpucap_default_scope(caps)))
1511 			continue;
1512 
1513 		if (!cpus_have_cap(caps->capability) && caps->desc)
1514 			pr_info("%s %s\n", info, caps->desc);
1515 		cpus_set_cap(caps->capability);
1516 	}
1517 }
1518 
1519 static void update_cpu_capabilities(u16 scope_mask)
1520 {
1521 	__update_cpu_capabilities(arm64_errata, scope_mask,
1522 				  "enabling workaround for");
1523 	__update_cpu_capabilities(arm64_features, scope_mask, "detected:");
1524 }
1525 
1526 static int __enable_cpu_capability(void *arg)
1527 {
1528 	const struct arm64_cpu_capabilities *cap = arg;
1529 
1530 	cap->cpu_enable(cap);
1531 	return 0;
1532 }
1533 
1534 /*
1535  * Run through the enabled capabilities and enable() it on all active
1536  * CPUs
1537  */
1538 static void __init
1539 __enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
1540 			  u16 scope_mask)
1541 {
1542 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1543 	for (; caps->matches; caps++) {
1544 		unsigned int num = caps->capability;
1545 
1546 		if (!(caps->type & scope_mask) || !cpus_have_cap(num))
1547 			continue;
1548 
1549 		/* Ensure cpus_have_const_cap(num) works */
1550 		static_branch_enable(&cpu_hwcap_keys[num]);
1551 
1552 		if (caps->cpu_enable) {
1553 			/*
1554 			 * Capabilities with SCOPE_BOOT_CPU scope are finalised
1555 			 * before any secondary CPU boots. Thus, each secondary
1556 			 * will enable the capability as appropriate via
1557 			 * check_local_cpu_capabilities(). The only exception is
1558 			 * the boot CPU, for which the capability must be
1559 			 * enabled here. This approach avoids costly
1560 			 * stop_machine() calls for this case.
1561 			 *
1562 			 * Otherwise, use stop_machine() as it schedules the
1563 			 * work allowing us to modify PSTATE, instead of
1564 			 * on_each_cpu() which uses an IPI, giving us a PSTATE
1565 			 * that disappears when we return.
1566 			 */
1567 			if (scope_mask & SCOPE_BOOT_CPU)
1568 				caps->cpu_enable(caps);
1569 			else
1570 				stop_machine(__enable_cpu_capability,
1571 					     (void *)caps, cpu_online_mask);
1572 		}
1573 	}
1574 }
1575 
1576 static void __init enable_cpu_capabilities(u16 scope_mask)
1577 {
1578 	__enable_cpu_capabilities(arm64_errata, scope_mask);
1579 	__enable_cpu_capabilities(arm64_features, scope_mask);
1580 }
1581 
1582 /*
1583  * Run through the list of capabilities to check for conflicts.
1584  * If the system has already detected a capability, take necessary
1585  * action on this CPU.
1586  *
1587  * Returns "false" on conflicts.
1588  */
1589 static bool
1590 __verify_local_cpu_caps(const struct arm64_cpu_capabilities *caps,
1591 			u16 scope_mask)
1592 {
1593 	bool cpu_has_cap, system_has_cap;
1594 
1595 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1596 
1597 	for (; caps->matches; caps++) {
1598 		if (!(caps->type & scope_mask))
1599 			continue;
1600 
1601 		cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
1602 		system_has_cap = cpus_have_cap(caps->capability);
1603 
1604 		if (system_has_cap) {
1605 			/*
1606 			 * Check if the new CPU misses an advertised feature,
1607 			 * which is not safe to miss.
1608 			 */
1609 			if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
1610 				break;
1611 			/*
1612 			 * We have to issue cpu_enable() irrespective of
1613 			 * whether the CPU has it or not, as it is enabeld
1614 			 * system wide. It is upto the call back to take
1615 			 * appropriate action on this CPU.
1616 			 */
1617 			if (caps->cpu_enable)
1618 				caps->cpu_enable(caps);
1619 		} else {
1620 			/*
1621 			 * Check if the CPU has this capability if it isn't
1622 			 * safe to have when the system doesn't.
1623 			 */
1624 			if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
1625 				break;
1626 		}
1627 	}
1628 
1629 	if (caps->matches) {
1630 		pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
1631 			smp_processor_id(), caps->capability,
1632 			caps->desc, system_has_cap, cpu_has_cap);
1633 		return false;
1634 	}
1635 
1636 	return true;
1637 }
1638 
1639 static bool verify_local_cpu_caps(u16 scope_mask)
1640 {
1641 	return __verify_local_cpu_caps(arm64_errata, scope_mask) &&
1642 	       __verify_local_cpu_caps(arm64_features, scope_mask);
1643 }
1644 
1645 /*
1646  * Check for CPU features that are used in early boot
1647  * based on the Boot CPU value.
1648  */
1649 static void check_early_cpu_features(void)
1650 {
1651 	verify_cpu_asid_bits();
1652 	/*
1653 	 * Early features are used by the kernel already. If there
1654 	 * is a conflict, we cannot proceed further.
1655 	 */
1656 	if (!verify_local_cpu_caps(SCOPE_BOOT_CPU))
1657 		cpu_panic_kernel();
1658 }
1659 
1660 static void
1661 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1662 {
1663 
1664 	for (; caps->matches; caps++)
1665 		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1666 			pr_crit("CPU%d: missing HWCAP: %s\n",
1667 					smp_processor_id(), caps->desc);
1668 			cpu_die_early();
1669 		}
1670 }
1671 
1672 static void verify_sve_features(void)
1673 {
1674 	u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1675 	u64 zcr = read_zcr_features();
1676 
1677 	unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
1678 	unsigned int len = zcr & ZCR_ELx_LEN_MASK;
1679 
1680 	if (len < safe_len || sve_verify_vq_map()) {
1681 		pr_crit("CPU%d: SVE: required vector length(s) missing\n",
1682 			smp_processor_id());
1683 		cpu_die_early();
1684 	}
1685 
1686 	/* Add checks on other ZCR bits here if necessary */
1687 }
1688 
1689 
1690 /*
1691  * Run through the enabled system capabilities and enable() it on this CPU.
1692  * The capabilities were decided based on the available CPUs at the boot time.
1693  * Any new CPU should match the system wide status of the capability. If the
1694  * new CPU doesn't have a capability which the system now has enabled, we
1695  * cannot do anything to fix it up and could cause unexpected failures. So
1696  * we park the CPU.
1697  */
1698 static void verify_local_cpu_capabilities(void)
1699 {
1700 	/*
1701 	 * The capabilities with SCOPE_BOOT_CPU are checked from
1702 	 * check_early_cpu_features(), as they need to be verified
1703 	 * on all secondary CPUs.
1704 	 */
1705 	if (!verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU))
1706 		cpu_die_early();
1707 
1708 	verify_local_elf_hwcaps(arm64_elf_hwcaps);
1709 
1710 	if (system_supports_32bit_el0())
1711 		verify_local_elf_hwcaps(compat_elf_hwcaps);
1712 
1713 	if (system_supports_sve())
1714 		verify_sve_features();
1715 }
1716 
1717 void check_local_cpu_capabilities(void)
1718 {
1719 	/*
1720 	 * All secondary CPUs should conform to the early CPU features
1721 	 * in use by the kernel based on boot CPU.
1722 	 */
1723 	check_early_cpu_features();
1724 
1725 	/*
1726 	 * If we haven't finalised the system capabilities, this CPU gets
1727 	 * a chance to update the errata work arounds and local features.
1728 	 * Otherwise, this CPU should verify that it has all the system
1729 	 * advertised capabilities.
1730 	 */
1731 	if (!sys_caps_initialised)
1732 		update_cpu_capabilities(SCOPE_LOCAL_CPU);
1733 	else
1734 		verify_local_cpu_capabilities();
1735 }
1736 
1737 static void __init setup_boot_cpu_capabilities(void)
1738 {
1739 	/* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
1740 	update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
1741 	/* Enable the SCOPE_BOOT_CPU capabilities alone right away */
1742 	enable_cpu_capabilities(SCOPE_BOOT_CPU);
1743 }
1744 
1745 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1746 EXPORT_SYMBOL(arm64_const_caps_ready);
1747 
1748 static void __init mark_const_caps_ready(void)
1749 {
1750 	static_branch_enable(&arm64_const_caps_ready);
1751 }
1752 
1753 extern const struct arm64_cpu_capabilities arm64_errata[];
1754 
1755 bool this_cpu_has_cap(unsigned int cap)
1756 {
1757 	return (__this_cpu_has_cap(arm64_features, cap) ||
1758 		__this_cpu_has_cap(arm64_errata, cap));
1759 }
1760 
1761 static void __init setup_system_capabilities(void)
1762 {
1763 	/*
1764 	 * We have finalised the system-wide safe feature
1765 	 * registers, finalise the capabilities that depend
1766 	 * on it. Also enable all the available capabilities,
1767 	 * that are not enabled already.
1768 	 */
1769 	update_cpu_capabilities(SCOPE_SYSTEM);
1770 	enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
1771 }
1772 
1773 void __init setup_cpu_features(void)
1774 {
1775 	u32 cwg;
1776 
1777 	setup_system_capabilities();
1778 	mark_const_caps_ready();
1779 	setup_elf_hwcaps(arm64_elf_hwcaps);
1780 
1781 	if (system_supports_32bit_el0())
1782 		setup_elf_hwcaps(compat_elf_hwcaps);
1783 
1784 	if (system_uses_ttbr0_pan())
1785 		pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
1786 
1787 	sve_setup();
1788 	minsigstksz_setup();
1789 
1790 	/* Advertise that we have computed the system capabilities */
1791 	set_sys_caps_initialised();
1792 
1793 	/*
1794 	 * Check for sane CTR_EL0.CWG value.
1795 	 */
1796 	cwg = cache_type_cwg();
1797 	if (!cwg)
1798 		pr_warn("No Cache Writeback Granule information, assuming %d\n",
1799 			ARCH_DMA_MINALIGN);
1800 }
1801 
1802 static bool __maybe_unused
1803 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1804 {
1805 	return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1806 }
1807 
1808 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
1809 {
1810 	cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
1811 }
1812 
1813 /*
1814  * We emulate only the following system register space.
1815  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1816  * See Table C5-6 System instruction encodings for System register accesses,
1817  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1818  */
1819 static inline bool __attribute_const__ is_emulated(u32 id)
1820 {
1821 	return (sys_reg_Op0(id) == 0x3 &&
1822 		sys_reg_CRn(id) == 0x0 &&
1823 		sys_reg_Op1(id) == 0x0 &&
1824 		(sys_reg_CRm(id) == 0 ||
1825 		 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
1826 }
1827 
1828 /*
1829  * With CRm == 0, reg should be one of :
1830  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1831  */
1832 static inline int emulate_id_reg(u32 id, u64 *valp)
1833 {
1834 	switch (id) {
1835 	case SYS_MIDR_EL1:
1836 		*valp = read_cpuid_id();
1837 		break;
1838 	case SYS_MPIDR_EL1:
1839 		*valp = SYS_MPIDR_SAFE_VAL;
1840 		break;
1841 	case SYS_REVIDR_EL1:
1842 		/* IMPLEMENTATION DEFINED values are emulated with 0 */
1843 		*valp = 0;
1844 		break;
1845 	default:
1846 		return -EINVAL;
1847 	}
1848 
1849 	return 0;
1850 }
1851 
1852 static int emulate_sys_reg(u32 id, u64 *valp)
1853 {
1854 	struct arm64_ftr_reg *regp;
1855 
1856 	if (!is_emulated(id))
1857 		return -EINVAL;
1858 
1859 	if (sys_reg_CRm(id) == 0)
1860 		return emulate_id_reg(id, valp);
1861 
1862 	regp = get_arm64_ftr_reg(id);
1863 	if (regp)
1864 		*valp = arm64_ftr_reg_user_value(regp);
1865 	else
1866 		/*
1867 		 * The untracked registers are either IMPLEMENTATION DEFINED
1868 		 * (e.g, ID_AFR0_EL1) or reserved RAZ.
1869 		 */
1870 		*valp = 0;
1871 	return 0;
1872 }
1873 
1874 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
1875 {
1876 	int rc;
1877 	u64 val;
1878 
1879 	rc = emulate_sys_reg(sys_reg, &val);
1880 	if (!rc) {
1881 		pt_regs_write_reg(regs, rt, val);
1882 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1883 	}
1884 	return rc;
1885 }
1886 
1887 static int emulate_mrs(struct pt_regs *regs, u32 insn)
1888 {
1889 	u32 sys_reg, rt;
1890 
1891 	/*
1892 	 * sys_reg values are defined as used in mrs/msr instruction.
1893 	 * shift the imm value to get the encoding.
1894 	 */
1895 	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
1896 	rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
1897 	return do_emulate_mrs(regs, sys_reg, rt);
1898 }
1899 
1900 static struct undef_hook mrs_hook = {
1901 	.instr_mask = 0xfff00000,
1902 	.instr_val  = 0xd5300000,
1903 	.pstate_mask = PSR_AA32_MODE_MASK,
1904 	.pstate_val = PSR_MODE_EL0t,
1905 	.fn = emulate_mrs,
1906 };
1907 
1908 static int __init enable_mrs_emulation(void)
1909 {
1910 	register_undef_hook(&mrs_hook);
1911 	return 0;
1912 }
1913 
1914 core_initcall(enable_mrs_emulation);
1915