xref: /openbmc/linux/arch/arm64/kernel/cpufeature.c (revision 31e67366)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Contains CPU feature definitions
4  *
5  * Copyright (C) 2015 ARM Ltd.
6  *
7  * A note for the weary kernel hacker: the code here is confusing and hard to
8  * follow! That's partly because it's solving a nasty problem, but also because
9  * there's a little bit of over-abstraction that tends to obscure what's going
10  * on behind a maze of helper functions and macros.
11  *
12  * The basic problem is that hardware folks have started gluing together CPUs
13  * with distinct architectural features; in some cases even creating SoCs where
14  * user-visible instructions are available only on a subset of the available
15  * cores. We try to address this by snapshotting the feature registers of the
16  * boot CPU and comparing these with the feature registers of each secondary
17  * CPU when bringing them up. If there is a mismatch, then we update the
18  * snapshot state to indicate the lowest-common denominator of the feature,
19  * known as the "safe" value. This snapshot state can be queried to view the
20  * "sanitised" value of a feature register.
21  *
22  * The sanitised register values are used to decide which capabilities we
23  * have in the system. These may be in the form of traditional "hwcaps"
24  * advertised to userspace or internal "cpucaps" which are used to configure
25  * things like alternative patching and static keys. While a feature mismatch
26  * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27  * may prevent a CPU from being onlined at all.
28  *
29  * Some implementation details worth remembering:
30  *
31  * - Mismatched features are *always* sanitised to a "safe" value, which
32  *   usually indicates that the feature is not supported.
33  *
34  * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35  *   warning when onlining an offending CPU and the kernel will be tainted
36  *   with TAINT_CPU_OUT_OF_SPEC.
37  *
38  * - Features marked as FTR_VISIBLE have their sanitised value visible to
39  *   userspace. FTR_VISIBLE features in registers that are only visible
40  *   to EL0 by trapping *must* have a corresponding HWCAP so that late
41  *   onlining of CPUs cannot lead to features disappearing at runtime.
42  *
43  * - A "feature" is typically a 4-bit register field. A "capability" is the
44  *   high-level description derived from the sanitised field value.
45  *
46  * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47  *   scheme for fields in ID registers") to understand when feature fields
48  *   may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49  *
50  * - KVM exposes its own view of the feature registers to guest operating
51  *   systems regardless of FTR_VISIBLE. This is typically driven from the
52  *   sanitised register values to allow virtual CPUs to be migrated between
53  *   arbitrary physical CPUs, but some features not present on the host are
54  *   also advertised and emulated. Look at sys_reg_descs[] for the gory
55  *   details.
56  *
57  * - If the arm64_ftr_bits[] for a register has a missing field, then this
58  *   field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59  *   This is stronger than FTR_HIDDEN and can be used to hide features from
60  *   KVM guests.
61  */
62 
63 #define pr_fmt(fmt) "CPU features: " fmt
64 
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/sort.h>
69 #include <linux/stop_machine.h>
70 #include <linux/types.h>
71 #include <linux/mm.h>
72 #include <linux/cpu.h>
73 #include <linux/kasan.h>
74 #include <asm/cpu.h>
75 #include <asm/cpufeature.h>
76 #include <asm/cpu_ops.h>
77 #include <asm/fpsimd.h>
78 #include <asm/kvm_host.h>
79 #include <asm/mmu_context.h>
80 #include <asm/mte.h>
81 #include <asm/processor.h>
82 #include <asm/sysreg.h>
83 #include <asm/traps.h>
84 #include <asm/virt.h>
85 
86 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
87 static unsigned long elf_hwcap __read_mostly;
88 
89 #ifdef CONFIG_COMPAT
90 #define COMPAT_ELF_HWCAP_DEFAULT	\
91 				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
92 				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
93 				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
94 				 COMPAT_HWCAP_LPAE)
95 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
96 unsigned int compat_elf_hwcap2 __read_mostly;
97 #endif
98 
99 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
100 EXPORT_SYMBOL(cpu_hwcaps);
101 static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
102 
103 /* Need also bit for ARM64_CB_PATCH */
104 DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
105 
106 bool arm64_use_ng_mappings = false;
107 EXPORT_SYMBOL(arm64_use_ng_mappings);
108 
109 /*
110  * Flag to indicate if we have computed the system wide
111  * capabilities based on the boot time active CPUs. This
112  * will be used to determine if a new booting CPU should
113  * go through the verification process to make sure that it
114  * supports the system capabilities, without using a hotplug
115  * notifier. This is also used to decide if we could use
116  * the fast path for checking constant CPU caps.
117  */
118 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
119 EXPORT_SYMBOL(arm64_const_caps_ready);
120 static inline void finalize_system_capabilities(void)
121 {
122 	static_branch_enable(&arm64_const_caps_ready);
123 }
124 
125 void dump_cpu_features(void)
126 {
127 	/* file-wide pr_fmt adds "CPU features: " prefix */
128 	pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
129 }
130 
131 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
132 EXPORT_SYMBOL(cpu_hwcap_keys);
133 
134 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
135 	{						\
136 		.sign = SIGNED,				\
137 		.visible = VISIBLE,			\
138 		.strict = STRICT,			\
139 		.type = TYPE,				\
140 		.shift = SHIFT,				\
141 		.width = WIDTH,				\
142 		.safe_val = SAFE_VAL,			\
143 	}
144 
145 /* Define a feature with unsigned values */
146 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
147 	__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
148 
149 /* Define a feature with a signed value */
150 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
151 	__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
152 
153 #define ARM64_FTR_END					\
154 	{						\
155 		.width = 0,				\
156 	}
157 
158 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
159 
160 static bool __system_matches_cap(unsigned int n);
161 
162 /*
163  * NOTE: Any changes to the visibility of features should be kept in
164  * sync with the documentation of the CPU feature register ABI.
165  */
166 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
167 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RNDR_SHIFT, 4, 0),
168 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TLB_SHIFT, 4, 0),
169 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
170 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
171 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
172 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
173 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
174 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
175 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
176 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
177 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
178 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
179 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
180 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
181 	ARM64_FTR_END,
182 };
183 
184 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
185 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_I8MM_SHIFT, 4, 0),
186 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DGH_SHIFT, 4, 0),
187 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_BF16_SHIFT, 4, 0),
188 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SPECRES_SHIFT, 4, 0),
189 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SB_SHIFT, 4, 0),
190 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FRINTTS_SHIFT, 4, 0),
191 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
192 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPI_SHIFT, 4, 0),
193 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
194 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPA_SHIFT, 4, 0),
195 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
196 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
197 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
198 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
199 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_API_SHIFT, 4, 0),
200 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
201 		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_APA_SHIFT, 4, 0),
202 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
203 	ARM64_FTR_END,
204 };
205 
206 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
207 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
208 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
209 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
210 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_AMU_SHIFT, 4, 0),
211 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_MPAM_SHIFT, 4, 0),
212 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SEL2_SHIFT, 4, 0),
213 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
214 				   FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
215 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
216 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
217 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
218 	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
219 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
220 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
221 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
222 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
223 	ARM64_FTR_END,
224 };
225 
226 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
227 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MPAMFRAC_SHIFT, 4, 0),
228 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_RASFRAC_SHIFT, 4, 0),
229 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
230 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MTE_SHIFT, 4, ID_AA64PFR1_MTE_NI),
231 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
232 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
233 				    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_BT_SHIFT, 4, 0),
234 	ARM64_FTR_END,
235 };
236 
237 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
238 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
239 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F64MM_SHIFT, 4, 0),
240 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
241 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F32MM_SHIFT, 4, 0),
242 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
243 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_I8MM_SHIFT, 4, 0),
244 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
245 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SM4_SHIFT, 4, 0),
246 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
247 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SHA3_SHIFT, 4, 0),
248 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
249 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BF16_SHIFT, 4, 0),
250 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
251 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BITPERM_SHIFT, 4, 0),
252 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
253 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_AES_SHIFT, 4, 0),
254 	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
255 		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SVEVER_SHIFT, 4, 0),
256 	ARM64_FTR_END,
257 };
258 
259 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
260 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ECV_SHIFT, 4, 0),
261 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_FGT_SHIFT, 4, 0),
262 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EXS_SHIFT, 4, 0),
263 	/*
264 	 * Page size not being supported at Stage-2 is not fatal. You
265 	 * just give up KVM if PAGE_SIZE isn't supported there. Go fix
266 	 * your favourite nesting hypervisor.
267 	 *
268 	 * There is a small corner case where the hypervisor explicitly
269 	 * advertises a given granule size at Stage-2 (value 2) on some
270 	 * vCPUs, and uses the fallback to Stage-1 (value 0) for other
271 	 * vCPUs. Although this is not forbidden by the architecture, it
272 	 * indicates that the hypervisor is being silly (or buggy).
273 	 *
274 	 * We make no effort to cope with this and pretend that if these
275 	 * fields are inconsistent across vCPUs, then it isn't worth
276 	 * trying to bring KVM up.
277 	 */
278 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_2_SHIFT, 4, 1),
279 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_2_SHIFT, 4, 1),
280 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_2_SHIFT, 4, 1),
281 	/*
282 	 * We already refuse to boot CPUs that don't support our configured
283 	 * page size, so we can only detect mismatches for a page size other
284 	 * than the one we're currently using. Unfortunately, SoCs like this
285 	 * exist in the wild so, even though we don't like it, we'll have to go
286 	 * along with it and treat them as non-strict.
287 	 */
288 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
289 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
290 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
291 
292 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
293 	/* Linux shouldn't care about secure memory */
294 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
295 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
296 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
297 	/*
298 	 * Differing PARange is fine as long as all peripherals and memory are mapped
299 	 * within the minimum PARange of all CPUs
300 	 */
301 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
302 	ARM64_FTR_END,
303 };
304 
305 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
306 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_ETS_SHIFT, 4, 0),
307 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_TWED_SHIFT, 4, 0),
308 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_XNX_SHIFT, 4, 0),
309 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_SPECSEI_SHIFT, 4, 0),
310 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
311 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
312 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
313 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
314 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
315 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
316 	ARM64_FTR_END,
317 };
318 
319 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
320 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_E0PD_SHIFT, 4, 0),
321 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EVT_SHIFT, 4, 0),
322 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_BBM_SHIFT, 4, 0),
323 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_TTL_SHIFT, 4, 0),
324 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
325 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IDS_SHIFT, 4, 0),
326 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
327 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_ST_SHIFT, 4, 0),
328 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_NV_SHIFT, 4, 0),
329 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CCIDX_SHIFT, 4, 0),
330 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
331 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
332 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
333 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
334 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
335 	ARM64_FTR_END,
336 };
337 
338 static const struct arm64_ftr_bits ftr_ctr[] = {
339 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
340 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
341 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
342 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_CWG_SHIFT, 4, 0),
343 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_ERG_SHIFT, 4, 0),
344 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
345 	/*
346 	 * Linux can handle differing I-cache policies. Userspace JITs will
347 	 * make use of *minLine.
348 	 * If we have differing I-cache policies, report it as the weakest - VIPT.
349 	 */
350 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_L1IP_SHIFT, 2, ICACHE_POLICY_VIPT),	/* L1Ip */
351 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
352 	ARM64_FTR_END,
353 };
354 
355 static struct arm64_ftr_override __ro_after_init no_override = { };
356 
357 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
358 	.name		= "SYS_CTR_EL0",
359 	.ftr_bits	= ftr_ctr,
360 	.override	= &no_override,
361 };
362 
363 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
364 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_INNERSHR_SHIFT, 4, 0xf),
365 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_FCSE_SHIFT, 4, 0),
366 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_AUXREG_SHIFT, 4, 0),
367 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_TCM_SHIFT, 4, 0),
368 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_SHARELVL_SHIFT, 4, 0),
369 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_OUTERSHR_SHIFT, 4, 0xf),
370 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_PMSA_SHIFT, 4, 0),
371 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_VMSA_SHIFT, 4, 0),
372 	ARM64_FTR_END,
373 };
374 
375 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
376 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_DOUBLELOCK_SHIFT, 4, 0),
377 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
378 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
379 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
380 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
381 	/*
382 	 * We can instantiate multiple PMU instances with different levels
383 	 * of support.
384 	 */
385 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
386 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
387 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
388 	ARM64_FTR_END,
389 };
390 
391 static const struct arm64_ftr_bits ftr_mvfr2[] = {
392 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_FPMISC_SHIFT, 4, 0),
393 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_SIMDMISC_SHIFT, 4, 0),
394 	ARM64_FTR_END,
395 };
396 
397 static const struct arm64_ftr_bits ftr_dczid[] = {
398 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_DZP_SHIFT, 1, 1),
399 	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_BS_SHIFT, 4, 0),
400 	ARM64_FTR_END,
401 };
402 
403 static const struct arm64_ftr_bits ftr_id_isar0[] = {
404 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DIVIDE_SHIFT, 4, 0),
405 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DEBUG_SHIFT, 4, 0),
406 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_COPROC_SHIFT, 4, 0),
407 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_CMPBRANCH_SHIFT, 4, 0),
408 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITFIELD_SHIFT, 4, 0),
409 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITCOUNT_SHIFT, 4, 0),
410 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_SWAP_SHIFT, 4, 0),
411 	ARM64_FTR_END,
412 };
413 
414 static const struct arm64_ftr_bits ftr_id_isar5[] = {
415 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
416 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
417 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
418 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
419 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
420 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
421 	ARM64_FTR_END,
422 };
423 
424 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
425 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EVT_SHIFT, 4, 0),
426 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CCIDX_SHIFT, 4, 0),
427 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_LSM_SHIFT, 4, 0),
428 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_HPDS_SHIFT, 4, 0),
429 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CNP_SHIFT, 4, 0),
430 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_XNX_SHIFT, 4, 0),
431 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_AC2_SHIFT, 4, 0),
432 
433 	/*
434 	 * SpecSEI = 1 indicates that the PE might generate an SError on an
435 	 * external abort on speculative read. It is safe to assume that an
436 	 * SError might be generated than it will not be. Hence it has been
437 	 * classified as FTR_HIGHER_SAFE.
438 	 */
439 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_SPECSEI_SHIFT, 4, 0),
440 	ARM64_FTR_END,
441 };
442 
443 static const struct arm64_ftr_bits ftr_id_isar4[] = {
444 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SWP_FRAC_SHIFT, 4, 0),
445 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_PSR_M_SHIFT, 4, 0),
446 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SYNCH_PRIM_FRAC_SHIFT, 4, 0),
447 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_BARRIER_SHIFT, 4, 0),
448 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SMC_SHIFT, 4, 0),
449 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WRITEBACK_SHIFT, 4, 0),
450 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WITHSHIFTS_SHIFT, 4, 0),
451 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_UNPRIV_SHIFT, 4, 0),
452 	ARM64_FTR_END,
453 };
454 
455 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
456 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_ETS_SHIFT, 4, 0),
457 	ARM64_FTR_END,
458 };
459 
460 static const struct arm64_ftr_bits ftr_id_isar6[] = {
461 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_I8MM_SHIFT, 4, 0),
462 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_BF16_SHIFT, 4, 0),
463 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SPECRES_SHIFT, 4, 0),
464 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SB_SHIFT, 4, 0),
465 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_FHM_SHIFT, 4, 0),
466 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_DP_SHIFT, 4, 0),
467 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_JSCVT_SHIFT, 4, 0),
468 	ARM64_FTR_END,
469 };
470 
471 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
472 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_DIT_SHIFT, 4, 0),
473 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_CSV2_SHIFT, 4, 0),
474 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE3_SHIFT, 4, 0),
475 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE2_SHIFT, 4, 0),
476 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE1_SHIFT, 4, 0),
477 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE0_SHIFT, 4, 0),
478 	ARM64_FTR_END,
479 };
480 
481 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
482 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GIC_SHIFT, 4, 0),
483 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRT_FRAC_SHIFT, 4, 0),
484 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SEC_FRAC_SHIFT, 4, 0),
485 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GENTIMER_SHIFT, 4, 0),
486 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRTUALIZATION_SHIFT, 4, 0),
487 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_MPROGMOD_SHIFT, 4, 0),
488 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SECURITY_SHIFT, 4, 0),
489 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_PROGMOD_SHIFT, 4, 0),
490 	ARM64_FTR_END,
491 };
492 
493 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
494 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_SSBS_SHIFT, 4, 0),
495 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_CSV3_SHIFT, 4, 0),
496 	ARM64_FTR_END,
497 };
498 
499 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
500 	/* [31:28] TraceFilt */
501 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_PERFMON_SHIFT, 4, 0xf),
502 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MPROFDBG_SHIFT, 4, 0),
503 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPTRC_SHIFT, 4, 0),
504 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPTRC_SHIFT, 4, 0),
505 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPDBG_SHIFT, 4, 0),
506 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPSDBG_SHIFT, 4, 0),
507 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPDBG_SHIFT, 4, 0),
508 	ARM64_FTR_END,
509 };
510 
511 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
512 	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_MTPMU_SHIFT, 4, 0),
513 	ARM64_FTR_END,
514 };
515 
516 static const struct arm64_ftr_bits ftr_zcr[] = {
517 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
518 		ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),	/* LEN */
519 	ARM64_FTR_END,
520 };
521 
522 /*
523  * Common ftr bits for a 32bit register with all hidden, strict
524  * attributes, with 4bit feature fields and a default safe value of
525  * 0. Covers the following 32bit registers:
526  * id_isar[1-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
527  */
528 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
529 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
530 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
531 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
532 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
533 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
534 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
535 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
536 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
537 	ARM64_FTR_END,
538 };
539 
540 /* Table for a single 32bit feature value */
541 static const struct arm64_ftr_bits ftr_single32[] = {
542 	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
543 	ARM64_FTR_END,
544 };
545 
546 static const struct arm64_ftr_bits ftr_raz[] = {
547 	ARM64_FTR_END,
548 };
549 
550 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr) {		\
551 		.sys_id = id,					\
552 		.reg = 	&(struct arm64_ftr_reg){		\
553 			.name = #id,				\
554 			.override = (ovr),			\
555 			.ftr_bits = &((table)[0]),		\
556 	}}
557 
558 #define ARM64_FTR_REG(id, table) ARM64_FTR_REG_OVERRIDE(id, table, &no_override)
559 
560 struct arm64_ftr_override __ro_after_init id_aa64mmfr1_override;
561 struct arm64_ftr_override __ro_after_init id_aa64pfr1_override;
562 struct arm64_ftr_override __ro_after_init id_aa64isar1_override;
563 
564 static const struct __ftr_reg_entry {
565 	u32			sys_id;
566 	struct arm64_ftr_reg 	*reg;
567 } arm64_ftr_regs[] = {
568 
569 	/* Op1 = 0, CRn = 0, CRm = 1 */
570 	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
571 	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
572 	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
573 	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
574 	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
575 	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
576 	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
577 
578 	/* Op1 = 0, CRn = 0, CRm = 2 */
579 	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
580 	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
581 	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
582 	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
583 	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
584 	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
585 	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
586 	ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
587 
588 	/* Op1 = 0, CRn = 0, CRm = 3 */
589 	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
590 	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
591 	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
592 	ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
593 	ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
594 	ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
595 
596 	/* Op1 = 0, CRn = 0, CRm = 4 */
597 	ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
598 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
599 			       &id_aa64pfr1_override),
600 	ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0),
601 
602 	/* Op1 = 0, CRn = 0, CRm = 5 */
603 	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
604 	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
605 
606 	/* Op1 = 0, CRn = 0, CRm = 6 */
607 	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
608 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
609 			       &id_aa64isar1_override),
610 
611 	/* Op1 = 0, CRn = 0, CRm = 7 */
612 	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
613 	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
614 			       &id_aa64mmfr1_override),
615 	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
616 
617 	/* Op1 = 0, CRn = 1, CRm = 2 */
618 	ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
619 
620 	/* Op1 = 3, CRn = 0, CRm = 0 */
621 	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
622 	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
623 
624 	/* Op1 = 3, CRn = 14, CRm = 0 */
625 	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
626 };
627 
628 static int search_cmp_ftr_reg(const void *id, const void *regp)
629 {
630 	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
631 }
632 
633 /*
634  * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
635  * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
636  * ascending order of sys_id, we use binary search to find a matching
637  * entry.
638  *
639  * returns - Upon success,  matching ftr_reg entry for id.
640  *         - NULL on failure. It is upto the caller to decide
641  *	     the impact of a failure.
642  */
643 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
644 {
645 	const struct __ftr_reg_entry *ret;
646 
647 	ret = bsearch((const void *)(unsigned long)sys_id,
648 			arm64_ftr_regs,
649 			ARRAY_SIZE(arm64_ftr_regs),
650 			sizeof(arm64_ftr_regs[0]),
651 			search_cmp_ftr_reg);
652 	if (ret)
653 		return ret->reg;
654 	return NULL;
655 }
656 
657 /*
658  * get_arm64_ftr_reg - Looks up a feature register entry using
659  * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
660  *
661  * returns - Upon success,  matching ftr_reg entry for id.
662  *         - NULL on failure but with an WARN_ON().
663  */
664 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
665 {
666 	struct arm64_ftr_reg *reg;
667 
668 	reg = get_arm64_ftr_reg_nowarn(sys_id);
669 
670 	/*
671 	 * Requesting a non-existent register search is an error. Warn
672 	 * and let the caller handle it.
673 	 */
674 	WARN_ON(!reg);
675 	return reg;
676 }
677 
678 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
679 			       s64 ftr_val)
680 {
681 	u64 mask = arm64_ftr_mask(ftrp);
682 
683 	reg &= ~mask;
684 	reg |= (ftr_val << ftrp->shift) & mask;
685 	return reg;
686 }
687 
688 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
689 				s64 cur)
690 {
691 	s64 ret = 0;
692 
693 	switch (ftrp->type) {
694 	case FTR_EXACT:
695 		ret = ftrp->safe_val;
696 		break;
697 	case FTR_LOWER_SAFE:
698 		ret = new < cur ? new : cur;
699 		break;
700 	case FTR_HIGHER_OR_ZERO_SAFE:
701 		if (!cur || !new)
702 			break;
703 		fallthrough;
704 	case FTR_HIGHER_SAFE:
705 		ret = new > cur ? new : cur;
706 		break;
707 	default:
708 		BUG();
709 	}
710 
711 	return ret;
712 }
713 
714 static void __init sort_ftr_regs(void)
715 {
716 	unsigned int i;
717 
718 	for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
719 		const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
720 		const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
721 		unsigned int j = 0;
722 
723 		/*
724 		 * Features here must be sorted in descending order with respect
725 		 * to their shift values and should not overlap with each other.
726 		 */
727 		for (; ftr_bits->width != 0; ftr_bits++, j++) {
728 			unsigned int width = ftr_reg->ftr_bits[j].width;
729 			unsigned int shift = ftr_reg->ftr_bits[j].shift;
730 			unsigned int prev_shift;
731 
732 			WARN((shift  + width) > 64,
733 				"%s has invalid feature at shift %d\n",
734 				ftr_reg->name, shift);
735 
736 			/*
737 			 * Skip the first feature. There is nothing to
738 			 * compare against for now.
739 			 */
740 			if (j == 0)
741 				continue;
742 
743 			prev_shift = ftr_reg->ftr_bits[j - 1].shift;
744 			WARN((shift + width) > prev_shift,
745 				"%s has feature overlap at shift %d\n",
746 				ftr_reg->name, shift);
747 		}
748 
749 		/*
750 		 * Skip the first register. There is nothing to
751 		 * compare against for now.
752 		 */
753 		if (i == 0)
754 			continue;
755 		/*
756 		 * Registers here must be sorted in ascending order with respect
757 		 * to sys_id for subsequent binary search in get_arm64_ftr_reg()
758 		 * to work correctly.
759 		 */
760 		BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
761 	}
762 }
763 
764 /*
765  * Initialise the CPU feature register from Boot CPU values.
766  * Also initiliases the strict_mask for the register.
767  * Any bits that are not covered by an arm64_ftr_bits entry are considered
768  * RES0 for the system-wide value, and must strictly match.
769  */
770 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
771 {
772 	u64 val = 0;
773 	u64 strict_mask = ~0x0ULL;
774 	u64 user_mask = 0;
775 	u64 valid_mask = 0;
776 
777 	const struct arm64_ftr_bits *ftrp;
778 	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
779 
780 	if (!reg)
781 		return;
782 
783 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
784 		u64 ftr_mask = arm64_ftr_mask(ftrp);
785 		s64 ftr_new = arm64_ftr_value(ftrp, new);
786 		s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
787 
788 		if ((ftr_mask & reg->override->mask) == ftr_mask) {
789 			s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
790 			char *str = NULL;
791 
792 			if (ftr_ovr != tmp) {
793 				/* Unsafe, remove the override */
794 				reg->override->mask &= ~ftr_mask;
795 				reg->override->val &= ~ftr_mask;
796 				tmp = ftr_ovr;
797 				str = "ignoring override";
798 			} else if (ftr_new != tmp) {
799 				/* Override was valid */
800 				ftr_new = tmp;
801 				str = "forced";
802 			} else if (ftr_ovr == tmp) {
803 				/* Override was the safe value */
804 				str = "already set";
805 			}
806 
807 			if (str)
808 				pr_warn("%s[%d:%d]: %s to %llx\n",
809 					reg->name,
810 					ftrp->shift + ftrp->width - 1,
811 					ftrp->shift, str, tmp);
812 		}
813 
814 		val = arm64_ftr_set_value(ftrp, val, ftr_new);
815 
816 		valid_mask |= ftr_mask;
817 		if (!ftrp->strict)
818 			strict_mask &= ~ftr_mask;
819 		if (ftrp->visible)
820 			user_mask |= ftr_mask;
821 		else
822 			reg->user_val = arm64_ftr_set_value(ftrp,
823 							    reg->user_val,
824 							    ftrp->safe_val);
825 	}
826 
827 	val &= valid_mask;
828 
829 	reg->sys_val = val;
830 	reg->strict_mask = strict_mask;
831 	reg->user_mask = user_mask;
832 }
833 
834 extern const struct arm64_cpu_capabilities arm64_errata[];
835 static const struct arm64_cpu_capabilities arm64_features[];
836 
837 static void __init
838 init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
839 {
840 	for (; caps->matches; caps++) {
841 		if (WARN(caps->capability >= ARM64_NCAPS,
842 			"Invalid capability %d\n", caps->capability))
843 			continue;
844 		if (WARN(cpu_hwcaps_ptrs[caps->capability],
845 			"Duplicate entry for capability %d\n",
846 			caps->capability))
847 			continue;
848 		cpu_hwcaps_ptrs[caps->capability] = caps;
849 	}
850 }
851 
852 static void __init init_cpu_hwcaps_indirect_list(void)
853 {
854 	init_cpu_hwcaps_indirect_list_from_array(arm64_features);
855 	init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
856 }
857 
858 static void __init setup_boot_cpu_capabilities(void);
859 
860 void __init init_cpu_features(struct cpuinfo_arm64 *info)
861 {
862 	/* Before we start using the tables, make sure it is sorted */
863 	sort_ftr_regs();
864 
865 	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
866 	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
867 	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
868 	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
869 	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
870 	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
871 	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
872 	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
873 	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
874 	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
875 	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
876 	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
877 	init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
878 
879 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
880 		init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
881 		init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
882 		init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
883 		init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
884 		init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
885 		init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
886 		init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
887 		init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
888 		init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
889 		init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
890 		init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
891 		init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
892 		init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
893 		init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
894 		init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
895 		init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
896 		init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
897 		init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
898 		init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
899 		init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
900 		init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
901 	}
902 
903 	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
904 		init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
905 		sve_init_vq_map();
906 	}
907 
908 	/*
909 	 * Initialize the indirect array of CPU hwcaps capabilities pointers
910 	 * before we handle the boot CPU below.
911 	 */
912 	init_cpu_hwcaps_indirect_list();
913 
914 	/*
915 	 * Detect and enable early CPU capabilities based on the boot CPU,
916 	 * after we have initialised the CPU feature infrastructure.
917 	 */
918 	setup_boot_cpu_capabilities();
919 }
920 
921 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
922 {
923 	const struct arm64_ftr_bits *ftrp;
924 
925 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
926 		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
927 		s64 ftr_new = arm64_ftr_value(ftrp, new);
928 
929 		if (ftr_cur == ftr_new)
930 			continue;
931 		/* Find a safe value */
932 		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
933 		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
934 	}
935 
936 }
937 
938 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
939 {
940 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
941 
942 	if (!regp)
943 		return 0;
944 
945 	update_cpu_ftr_reg(regp, val);
946 	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
947 		return 0;
948 	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
949 			regp->name, boot, cpu, val);
950 	return 1;
951 }
952 
953 static void relax_cpu_ftr_reg(u32 sys_id, int field)
954 {
955 	const struct arm64_ftr_bits *ftrp;
956 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
957 
958 	if (!regp)
959 		return;
960 
961 	for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
962 		if (ftrp->shift == field) {
963 			regp->strict_mask &= ~arm64_ftr_mask(ftrp);
964 			break;
965 		}
966 	}
967 
968 	/* Bogus field? */
969 	WARN_ON(!ftrp->width);
970 }
971 
972 static int update_32bit_cpu_features(int cpu, struct cpuinfo_arm64 *info,
973 				     struct cpuinfo_arm64 *boot)
974 {
975 	int taint = 0;
976 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
977 
978 	/*
979 	 * If we don't have AArch32 at all then skip the checks entirely
980 	 * as the register values may be UNKNOWN and we're not going to be
981 	 * using them for anything.
982 	 */
983 	if (!id_aa64pfr0_32bit_el0(pfr0))
984 		return taint;
985 
986 	/*
987 	 * If we don't have AArch32 at EL1, then relax the strictness of
988 	 * EL1-dependent register fields to avoid spurious sanity check fails.
989 	 */
990 	if (!id_aa64pfr0_32bit_el1(pfr0)) {
991 		relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_SMC_SHIFT);
992 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRT_FRAC_SHIFT);
993 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SEC_FRAC_SHIFT);
994 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRTUALIZATION_SHIFT);
995 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SECURITY_SHIFT);
996 		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_PROGMOD_SHIFT);
997 	}
998 
999 	taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1000 				      info->reg_id_dfr0, boot->reg_id_dfr0);
1001 	taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1002 				      info->reg_id_dfr1, boot->reg_id_dfr1);
1003 	taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1004 				      info->reg_id_isar0, boot->reg_id_isar0);
1005 	taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1006 				      info->reg_id_isar1, boot->reg_id_isar1);
1007 	taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1008 				      info->reg_id_isar2, boot->reg_id_isar2);
1009 	taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1010 				      info->reg_id_isar3, boot->reg_id_isar3);
1011 	taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1012 				      info->reg_id_isar4, boot->reg_id_isar4);
1013 	taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1014 				      info->reg_id_isar5, boot->reg_id_isar5);
1015 	taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1016 				      info->reg_id_isar6, boot->reg_id_isar6);
1017 
1018 	/*
1019 	 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1020 	 * ACTLR formats could differ across CPUs and therefore would have to
1021 	 * be trapped for virtualization anyway.
1022 	 */
1023 	taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1024 				      info->reg_id_mmfr0, boot->reg_id_mmfr0);
1025 	taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1026 				      info->reg_id_mmfr1, boot->reg_id_mmfr1);
1027 	taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1028 				      info->reg_id_mmfr2, boot->reg_id_mmfr2);
1029 	taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1030 				      info->reg_id_mmfr3, boot->reg_id_mmfr3);
1031 	taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1032 				      info->reg_id_mmfr4, boot->reg_id_mmfr4);
1033 	taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1034 				      info->reg_id_mmfr5, boot->reg_id_mmfr5);
1035 	taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1036 				      info->reg_id_pfr0, boot->reg_id_pfr0);
1037 	taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1038 				      info->reg_id_pfr1, boot->reg_id_pfr1);
1039 	taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1040 				      info->reg_id_pfr2, boot->reg_id_pfr2);
1041 	taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1042 				      info->reg_mvfr0, boot->reg_mvfr0);
1043 	taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1044 				      info->reg_mvfr1, boot->reg_mvfr1);
1045 	taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1046 				      info->reg_mvfr2, boot->reg_mvfr2);
1047 
1048 	return taint;
1049 }
1050 
1051 /*
1052  * Update system wide CPU feature registers with the values from a
1053  * non-boot CPU. Also performs SANITY checks to make sure that there
1054  * aren't any insane variations from that of the boot CPU.
1055  */
1056 void update_cpu_features(int cpu,
1057 			 struct cpuinfo_arm64 *info,
1058 			 struct cpuinfo_arm64 *boot)
1059 {
1060 	int taint = 0;
1061 
1062 	/*
1063 	 * The kernel can handle differing I-cache policies, but otherwise
1064 	 * caches should look identical. Userspace JITs will make use of
1065 	 * *minLine.
1066 	 */
1067 	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1068 				      info->reg_ctr, boot->reg_ctr);
1069 
1070 	/*
1071 	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
1072 	 * could result in too much or too little memory being zeroed if a
1073 	 * process is preempted and migrated between CPUs.
1074 	 */
1075 	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1076 				      info->reg_dczid, boot->reg_dczid);
1077 
1078 	/* If different, timekeeping will be broken (especially with KVM) */
1079 	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1080 				      info->reg_cntfrq, boot->reg_cntfrq);
1081 
1082 	/*
1083 	 * The kernel uses self-hosted debug features and expects CPUs to
1084 	 * support identical debug features. We presently need CTX_CMPs, WRPs,
1085 	 * and BRPs to be identical.
1086 	 * ID_AA64DFR1 is currently RES0.
1087 	 */
1088 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1089 				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1090 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1091 				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1092 	/*
1093 	 * Even in big.LITTLE, processors should be identical instruction-set
1094 	 * wise.
1095 	 */
1096 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1097 				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1098 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1099 				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1100 
1101 	/*
1102 	 * Differing PARange support is fine as long as all peripherals and
1103 	 * memory are mapped within the minimum PARange of all CPUs.
1104 	 * Linux should not care about secure memory.
1105 	 */
1106 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1107 				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1108 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1109 				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1110 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1111 				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1112 
1113 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1114 				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1115 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1116 				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1117 
1118 	taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1119 				      info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1120 
1121 	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
1122 		taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
1123 					info->reg_zcr, boot->reg_zcr);
1124 
1125 		/* Probe vector lengths, unless we already gave up on SVE */
1126 		if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
1127 		    !system_capabilities_finalized())
1128 			sve_update_vq_map();
1129 	}
1130 
1131 	/*
1132 	 * This relies on a sanitised view of the AArch64 ID registers
1133 	 * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1134 	 */
1135 	taint |= update_32bit_cpu_features(cpu, info, boot);
1136 
1137 	/*
1138 	 * Mismatched CPU features are a recipe for disaster. Don't even
1139 	 * pretend to support them.
1140 	 */
1141 	if (taint) {
1142 		pr_warn_once("Unsupported CPU feature variation detected.\n");
1143 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1144 	}
1145 }
1146 
1147 u64 read_sanitised_ftr_reg(u32 id)
1148 {
1149 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1150 
1151 	if (!regp)
1152 		return 0;
1153 	return regp->sys_val;
1154 }
1155 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1156 
1157 #define read_sysreg_case(r)	\
1158 	case r:		val = read_sysreg_s(r); break;
1159 
1160 /*
1161  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1162  * Read the system register on the current CPU
1163  */
1164 u64 __read_sysreg_by_encoding(u32 sys_id)
1165 {
1166 	struct arm64_ftr_reg *regp;
1167 	u64 val;
1168 
1169 	switch (sys_id) {
1170 	read_sysreg_case(SYS_ID_PFR0_EL1);
1171 	read_sysreg_case(SYS_ID_PFR1_EL1);
1172 	read_sysreg_case(SYS_ID_PFR2_EL1);
1173 	read_sysreg_case(SYS_ID_DFR0_EL1);
1174 	read_sysreg_case(SYS_ID_DFR1_EL1);
1175 	read_sysreg_case(SYS_ID_MMFR0_EL1);
1176 	read_sysreg_case(SYS_ID_MMFR1_EL1);
1177 	read_sysreg_case(SYS_ID_MMFR2_EL1);
1178 	read_sysreg_case(SYS_ID_MMFR3_EL1);
1179 	read_sysreg_case(SYS_ID_MMFR4_EL1);
1180 	read_sysreg_case(SYS_ID_MMFR5_EL1);
1181 	read_sysreg_case(SYS_ID_ISAR0_EL1);
1182 	read_sysreg_case(SYS_ID_ISAR1_EL1);
1183 	read_sysreg_case(SYS_ID_ISAR2_EL1);
1184 	read_sysreg_case(SYS_ID_ISAR3_EL1);
1185 	read_sysreg_case(SYS_ID_ISAR4_EL1);
1186 	read_sysreg_case(SYS_ID_ISAR5_EL1);
1187 	read_sysreg_case(SYS_ID_ISAR6_EL1);
1188 	read_sysreg_case(SYS_MVFR0_EL1);
1189 	read_sysreg_case(SYS_MVFR1_EL1);
1190 	read_sysreg_case(SYS_MVFR2_EL1);
1191 
1192 	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1193 	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1194 	read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1195 	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1196 	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1197 	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1198 	read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1199 	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1200 	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1201 	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1202 
1203 	read_sysreg_case(SYS_CNTFRQ_EL0);
1204 	read_sysreg_case(SYS_CTR_EL0);
1205 	read_sysreg_case(SYS_DCZID_EL0);
1206 
1207 	default:
1208 		BUG();
1209 		return 0;
1210 	}
1211 
1212 	regp  = get_arm64_ftr_reg(sys_id);
1213 	if (regp) {
1214 		val &= ~regp->override->mask;
1215 		val |= (regp->override->val & regp->override->mask);
1216 	}
1217 
1218 	return val;
1219 }
1220 
1221 #include <linux/irqchip/arm-gic-v3.h>
1222 
1223 static bool
1224 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1225 {
1226 	int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
1227 
1228 	return val >= entry->min_field_value;
1229 }
1230 
1231 static bool
1232 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1233 {
1234 	u64 val;
1235 
1236 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1237 	if (scope == SCOPE_SYSTEM)
1238 		val = read_sanitised_ftr_reg(entry->sys_reg);
1239 	else
1240 		val = __read_sysreg_by_encoding(entry->sys_reg);
1241 
1242 	return feature_matches(val, entry);
1243 }
1244 
1245 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1246 {
1247 	bool has_sre;
1248 
1249 	if (!has_cpuid_feature(entry, scope))
1250 		return false;
1251 
1252 	has_sre = gic_enable_sre();
1253 	if (!has_sre)
1254 		pr_warn_once("%s present but disabled by higher exception level\n",
1255 			     entry->desc);
1256 
1257 	return has_sre;
1258 }
1259 
1260 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
1261 {
1262 	u32 midr = read_cpuid_id();
1263 
1264 	/* Cavium ThunderX pass 1.x and 2.x */
1265 	return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
1266 		MIDR_CPU_VAR_REV(0, 0),
1267 		MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
1268 }
1269 
1270 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
1271 {
1272 	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1273 
1274 	return cpuid_feature_extract_signed_field(pfr0,
1275 					ID_AA64PFR0_FP_SHIFT) < 0;
1276 }
1277 
1278 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1279 			  int scope)
1280 {
1281 	u64 ctr;
1282 
1283 	if (scope == SCOPE_SYSTEM)
1284 		ctr = arm64_ftr_reg_ctrel0.sys_val;
1285 	else
1286 		ctr = read_cpuid_effective_cachetype();
1287 
1288 	return ctr & BIT(CTR_IDC_SHIFT);
1289 }
1290 
1291 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1292 {
1293 	/*
1294 	 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1295 	 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1296 	 * to the CTR_EL0 on this CPU and emulate it with the real/safe
1297 	 * value.
1298 	 */
1299 	if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT)))
1300 		sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1301 }
1302 
1303 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1304 			  int scope)
1305 {
1306 	u64 ctr;
1307 
1308 	if (scope == SCOPE_SYSTEM)
1309 		ctr = arm64_ftr_reg_ctrel0.sys_val;
1310 	else
1311 		ctr = read_cpuid_cachetype();
1312 
1313 	return ctr & BIT(CTR_DIC_SHIFT);
1314 }
1315 
1316 static bool __maybe_unused
1317 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1318 {
1319 	/*
1320 	 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1321 	 * may share TLB entries with a CPU stuck in the crashed
1322 	 * kernel.
1323 	 */
1324 	 if (is_kdump_kernel())
1325 		return false;
1326 
1327 	return has_cpuid_feature(entry, scope);
1328 }
1329 
1330 /*
1331  * This check is triggered during the early boot before the cpufeature
1332  * is initialised. Checking the status on the local CPU allows the boot
1333  * CPU to detect the need for non-global mappings and thus avoiding a
1334  * pagetable re-write after all the CPUs are booted. This check will be
1335  * anyway run on individual CPUs, allowing us to get the consistent
1336  * state once the SMP CPUs are up and thus make the switch to non-global
1337  * mappings if required.
1338  */
1339 bool kaslr_requires_kpti(void)
1340 {
1341 	if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
1342 		return false;
1343 
1344 	/*
1345 	 * E0PD does a similar job to KPTI so can be used instead
1346 	 * where available.
1347 	 */
1348 	if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
1349 		u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
1350 		if (cpuid_feature_extract_unsigned_field(mmfr2,
1351 						ID_AA64MMFR2_E0PD_SHIFT))
1352 			return false;
1353 	}
1354 
1355 	/*
1356 	 * Systems affected by Cavium erratum 24756 are incompatible
1357 	 * with KPTI.
1358 	 */
1359 	if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
1360 		extern const struct midr_range cavium_erratum_27456_cpus[];
1361 
1362 		if (is_midr_in_range_list(read_cpuid_id(),
1363 					  cavium_erratum_27456_cpus))
1364 			return false;
1365 	}
1366 
1367 	return kaslr_offset() > 0;
1368 }
1369 
1370 static bool __meltdown_safe = true;
1371 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1372 
1373 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1374 				int scope)
1375 {
1376 	/* List of CPUs that are not vulnerable and don't need KPTI */
1377 	static const struct midr_range kpti_safe_list[] = {
1378 		MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1379 		MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1380 		MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1381 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1382 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1383 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1384 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1385 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1386 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1387 		MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1388 		MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1389 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1390 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1391 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1392 		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1393 		{ /* sentinel */ }
1394 	};
1395 	char const *str = "kpti command line option";
1396 	bool meltdown_safe;
1397 
1398 	meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1399 
1400 	/* Defer to CPU feature registers */
1401 	if (has_cpuid_feature(entry, scope))
1402 		meltdown_safe = true;
1403 
1404 	if (!meltdown_safe)
1405 		__meltdown_safe = false;
1406 
1407 	/*
1408 	 * For reasons that aren't entirely clear, enabling KPTI on Cavium
1409 	 * ThunderX leads to apparent I-cache corruption of kernel text, which
1410 	 * ends as well as you might imagine. Don't even try.
1411 	 */
1412 	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1413 		str = "ARM64_WORKAROUND_CAVIUM_27456";
1414 		__kpti_forced = -1;
1415 	}
1416 
1417 	/* Useful for KASLR robustness */
1418 	if (kaslr_requires_kpti()) {
1419 		if (!__kpti_forced) {
1420 			str = "KASLR";
1421 			__kpti_forced = 1;
1422 		}
1423 	}
1424 
1425 	if (cpu_mitigations_off() && !__kpti_forced) {
1426 		str = "mitigations=off";
1427 		__kpti_forced = -1;
1428 	}
1429 
1430 	if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1431 		pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1432 		return false;
1433 	}
1434 
1435 	/* Forced? */
1436 	if (__kpti_forced) {
1437 		pr_info_once("kernel page table isolation forced %s by %s\n",
1438 			     __kpti_forced > 0 ? "ON" : "OFF", str);
1439 		return __kpti_forced > 0;
1440 	}
1441 
1442 	return !meltdown_safe;
1443 }
1444 
1445 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1446 static void
1447 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1448 {
1449 	typedef void (kpti_remap_fn)(int, int, phys_addr_t);
1450 	extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1451 	kpti_remap_fn *remap_fn;
1452 
1453 	int cpu = smp_processor_id();
1454 
1455 	/*
1456 	 * We don't need to rewrite the page-tables if either we've done
1457 	 * it already or we have KASLR enabled and therefore have not
1458 	 * created any global mappings at all.
1459 	 */
1460 	if (arm64_use_ng_mappings)
1461 		return;
1462 
1463 	remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1464 
1465 	cpu_install_idmap();
1466 	remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
1467 	cpu_uninstall_idmap();
1468 
1469 	if (!cpu)
1470 		arm64_use_ng_mappings = true;
1471 
1472 	return;
1473 }
1474 #else
1475 static void
1476 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1477 {
1478 }
1479 #endif	/* CONFIG_UNMAP_KERNEL_AT_EL0 */
1480 
1481 static int __init parse_kpti(char *str)
1482 {
1483 	bool enabled;
1484 	int ret = strtobool(str, &enabled);
1485 
1486 	if (ret)
1487 		return ret;
1488 
1489 	__kpti_forced = enabled ? 1 : -1;
1490 	return 0;
1491 }
1492 early_param("kpti", parse_kpti);
1493 
1494 #ifdef CONFIG_ARM64_HW_AFDBM
1495 static inline void __cpu_enable_hw_dbm(void)
1496 {
1497 	u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1498 
1499 	write_sysreg(tcr, tcr_el1);
1500 	isb();
1501 	local_flush_tlb_all();
1502 }
1503 
1504 static bool cpu_has_broken_dbm(void)
1505 {
1506 	/* List of CPUs which have broken DBM support. */
1507 	static const struct midr_range cpus[] = {
1508 #ifdef CONFIG_ARM64_ERRATUM_1024718
1509 		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1510 		/* Kryo4xx Silver (rdpe => r1p0) */
1511 		MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
1512 #endif
1513 		{},
1514 	};
1515 
1516 	return is_midr_in_range_list(read_cpuid_id(), cpus);
1517 }
1518 
1519 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1520 {
1521 	return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1522 	       !cpu_has_broken_dbm();
1523 }
1524 
1525 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1526 {
1527 	if (cpu_can_use_dbm(cap))
1528 		__cpu_enable_hw_dbm();
1529 }
1530 
1531 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1532 		       int __unused)
1533 {
1534 	static bool detected = false;
1535 	/*
1536 	 * DBM is a non-conflicting feature. i.e, the kernel can safely
1537 	 * run a mix of CPUs with and without the feature. So, we
1538 	 * unconditionally enable the capability to allow any late CPU
1539 	 * to use the feature. We only enable the control bits on the
1540 	 * CPU, if it actually supports.
1541 	 *
1542 	 * We have to make sure we print the "feature" detection only
1543 	 * when at least one CPU actually uses it. So check if this CPU
1544 	 * can actually use it and print the message exactly once.
1545 	 *
1546 	 * This is safe as all CPUs (including secondary CPUs - due to the
1547 	 * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1548 	 * goes through the "matches" check exactly once. Also if a CPU
1549 	 * matches the criteria, it is guaranteed that the CPU will turn
1550 	 * the DBM on, as the capability is unconditionally enabled.
1551 	 */
1552 	if (!detected && cpu_can_use_dbm(cap)) {
1553 		detected = true;
1554 		pr_info("detected: Hardware dirty bit management\n");
1555 	}
1556 
1557 	return true;
1558 }
1559 
1560 #endif
1561 
1562 #ifdef CONFIG_ARM64_AMU_EXTN
1563 
1564 /*
1565  * The "amu_cpus" cpumask only signals that the CPU implementation for the
1566  * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
1567  * information regarding all the events that it supports. When a CPU bit is
1568  * set in the cpumask, the user of this feature can only rely on the presence
1569  * of the 4 fixed counters for that CPU. But this does not guarantee that the
1570  * counters are enabled or access to these counters is enabled by code
1571  * executed at higher exception levels (firmware).
1572  */
1573 static struct cpumask amu_cpus __read_mostly;
1574 
1575 bool cpu_has_amu_feat(int cpu)
1576 {
1577 	return cpumask_test_cpu(cpu, &amu_cpus);
1578 }
1579 
1580 int get_cpu_with_amu_feat(void)
1581 {
1582 	return cpumask_any(&amu_cpus);
1583 }
1584 
1585 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
1586 {
1587 	if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
1588 		pr_info("detected CPU%d: Activity Monitors Unit (AMU)\n",
1589 			smp_processor_id());
1590 		cpumask_set_cpu(smp_processor_id(), &amu_cpus);
1591 		update_freq_counters_refs();
1592 	}
1593 }
1594 
1595 static bool has_amu(const struct arm64_cpu_capabilities *cap,
1596 		    int __unused)
1597 {
1598 	/*
1599 	 * The AMU extension is a non-conflicting feature: the kernel can
1600 	 * safely run a mix of CPUs with and without support for the
1601 	 * activity monitors extension. Therefore, unconditionally enable
1602 	 * the capability to allow any late CPU to use the feature.
1603 	 *
1604 	 * With this feature unconditionally enabled, the cpu_enable
1605 	 * function will be called for all CPUs that match the criteria,
1606 	 * including secondary and hotplugged, marking this feature as
1607 	 * present on that respective CPU. The enable function will also
1608 	 * print a detection message.
1609 	 */
1610 
1611 	return true;
1612 }
1613 #else
1614 int get_cpu_with_amu_feat(void)
1615 {
1616 	return nr_cpu_ids;
1617 }
1618 #endif
1619 
1620 #ifdef CONFIG_ARM64_VHE
1621 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1622 {
1623 	return is_kernel_in_hyp_mode();
1624 }
1625 
1626 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1627 {
1628 	/*
1629 	 * Copy register values that aren't redirected by hardware.
1630 	 *
1631 	 * Before code patching, we only set tpidr_el1, all CPUs need to copy
1632 	 * this value to tpidr_el2 before we patch the code. Once we've done
1633 	 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1634 	 * do anything here.
1635 	 */
1636 	if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
1637 		write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1638 }
1639 #endif
1640 
1641 static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused)
1642 {
1643 	u64 val = read_sysreg_s(SYS_CLIDR_EL1);
1644 
1645 	/* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
1646 	WARN_ON(val & (7 << 27 | 7 << 21));
1647 }
1648 
1649 #ifdef CONFIG_ARM64_PAN
1650 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
1651 {
1652 	/*
1653 	 * We modify PSTATE. This won't work from irq context as the PSTATE
1654 	 * is discarded once we return from the exception.
1655 	 */
1656 	WARN_ON_ONCE(in_interrupt());
1657 
1658 	sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
1659 	set_pstate_pan(1);
1660 }
1661 #endif /* CONFIG_ARM64_PAN */
1662 
1663 #ifdef CONFIG_ARM64_RAS_EXTN
1664 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1665 {
1666 	/* Firmware may have left a deferred SError in this register. */
1667 	write_sysreg_s(0, SYS_DISR_EL1);
1668 }
1669 #endif /* CONFIG_ARM64_RAS_EXTN */
1670 
1671 #ifdef CONFIG_ARM64_PTR_AUTH
1672 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
1673 {
1674 	int boot_val, sec_val;
1675 
1676 	/* We don't expect to be called with SCOPE_SYSTEM */
1677 	WARN_ON(scope == SCOPE_SYSTEM);
1678 	/*
1679 	 * The ptr-auth feature levels are not intercompatible with lower
1680 	 * levels. Hence we must match ptr-auth feature level of the secondary
1681 	 * CPUs with that of the boot CPU. The level of boot cpu is fetched
1682 	 * from the sanitised register whereas direct register read is done for
1683 	 * the secondary CPUs.
1684 	 * The sanitised feature state is guaranteed to match that of the
1685 	 * boot CPU as a mismatched secondary CPU is parked before it gets
1686 	 * a chance to update the state, with the capability.
1687 	 */
1688 	boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
1689 					       entry->field_pos, entry->sign);
1690 	if (scope & SCOPE_BOOT_CPU)
1691 		return boot_val >= entry->min_field_value;
1692 	/* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
1693 	sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
1694 					      entry->field_pos, entry->sign);
1695 	return sec_val == boot_val;
1696 }
1697 
1698 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
1699 				     int scope)
1700 {
1701 	return has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH], scope) ||
1702 	       has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
1703 }
1704 
1705 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
1706 			     int __unused)
1707 {
1708 	return __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH) ||
1709 	       __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
1710 }
1711 #endif /* CONFIG_ARM64_PTR_AUTH */
1712 
1713 #ifdef CONFIG_ARM64_E0PD
1714 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
1715 {
1716 	if (this_cpu_has_cap(ARM64_HAS_E0PD))
1717 		sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
1718 }
1719 #endif /* CONFIG_ARM64_E0PD */
1720 
1721 #ifdef CONFIG_ARM64_PSEUDO_NMI
1722 static bool enable_pseudo_nmi;
1723 
1724 static int __init early_enable_pseudo_nmi(char *p)
1725 {
1726 	return strtobool(p, &enable_pseudo_nmi);
1727 }
1728 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1729 
1730 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
1731 				   int scope)
1732 {
1733 	return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope);
1734 }
1735 #endif
1736 
1737 #ifdef CONFIG_ARM64_BTI
1738 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
1739 {
1740 	/*
1741 	 * Use of X16/X17 for tail-calls and trampolines that jump to
1742 	 * function entry points using BR is a requirement for
1743 	 * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
1744 	 * So, be strict and forbid other BRs using other registers to
1745 	 * jump onto a PACIxSP instruction:
1746 	 */
1747 	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
1748 	isb();
1749 }
1750 #endif /* CONFIG_ARM64_BTI */
1751 
1752 #ifdef CONFIG_ARM64_MTE
1753 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
1754 {
1755 	/*
1756 	 * Clear the tags in the zero page. This needs to be done via the
1757 	 * linear map which has the Tagged attribute.
1758 	 */
1759 	if (!test_and_set_bit(PG_mte_tagged, &ZERO_PAGE(0)->flags))
1760 		mte_clear_page_tags(lm_alias(empty_zero_page));
1761 
1762 	kasan_init_hw_tags_cpu();
1763 }
1764 #endif /* CONFIG_ARM64_MTE */
1765 
1766 #ifdef CONFIG_KVM
1767 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
1768 {
1769 	if (kvm_get_mode() != KVM_MODE_PROTECTED)
1770 		return false;
1771 
1772 	if (is_kernel_in_hyp_mode()) {
1773 		pr_warn("Protected KVM not available with VHE\n");
1774 		return false;
1775 	}
1776 
1777 	return true;
1778 }
1779 #endif /* CONFIG_KVM */
1780 
1781 /* Internal helper functions to match cpu capability type */
1782 static bool
1783 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
1784 {
1785 	return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
1786 }
1787 
1788 static bool
1789 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
1790 {
1791 	return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
1792 }
1793 
1794 static bool
1795 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
1796 {
1797 	return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
1798 }
1799 
1800 static const struct arm64_cpu_capabilities arm64_features[] = {
1801 	{
1802 		.desc = "GIC system register CPU interface",
1803 		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
1804 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1805 		.matches = has_useable_gicv3_cpuif,
1806 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1807 		.field_pos = ID_AA64PFR0_GIC_SHIFT,
1808 		.sign = FTR_UNSIGNED,
1809 		.min_field_value = 1,
1810 	},
1811 #ifdef CONFIG_ARM64_PAN
1812 	{
1813 		.desc = "Privileged Access Never",
1814 		.capability = ARM64_HAS_PAN,
1815 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1816 		.matches = has_cpuid_feature,
1817 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
1818 		.field_pos = ID_AA64MMFR1_PAN_SHIFT,
1819 		.sign = FTR_UNSIGNED,
1820 		.min_field_value = 1,
1821 		.cpu_enable = cpu_enable_pan,
1822 	},
1823 #endif /* CONFIG_ARM64_PAN */
1824 #ifdef CONFIG_ARM64_LSE_ATOMICS
1825 	{
1826 		.desc = "LSE atomic instructions",
1827 		.capability = ARM64_HAS_LSE_ATOMICS,
1828 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1829 		.matches = has_cpuid_feature,
1830 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
1831 		.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
1832 		.sign = FTR_UNSIGNED,
1833 		.min_field_value = 2,
1834 	},
1835 #endif /* CONFIG_ARM64_LSE_ATOMICS */
1836 	{
1837 		.desc = "Software prefetching using PRFM",
1838 		.capability = ARM64_HAS_NO_HW_PREFETCH,
1839 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1840 		.matches = has_no_hw_prefetch,
1841 	},
1842 #ifdef CONFIG_ARM64_VHE
1843 	{
1844 		.desc = "Virtualization Host Extensions",
1845 		.capability = ARM64_HAS_VIRT_HOST_EXTN,
1846 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1847 		.matches = runs_at_el2,
1848 		.cpu_enable = cpu_copy_el2regs,
1849 	},
1850 #endif	/* CONFIG_ARM64_VHE */
1851 	{
1852 		.desc = "32-bit EL0 Support",
1853 		.capability = ARM64_HAS_32BIT_EL0,
1854 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1855 		.matches = has_cpuid_feature,
1856 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1857 		.sign = FTR_UNSIGNED,
1858 		.field_pos = ID_AA64PFR0_EL0_SHIFT,
1859 		.min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
1860 	},
1861 #ifdef CONFIG_KVM
1862 	{
1863 		.desc = "32-bit EL1 Support",
1864 		.capability = ARM64_HAS_32BIT_EL1,
1865 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1866 		.matches = has_cpuid_feature,
1867 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1868 		.sign = FTR_UNSIGNED,
1869 		.field_pos = ID_AA64PFR0_EL1_SHIFT,
1870 		.min_field_value = ID_AA64PFR0_EL1_32BIT_64BIT,
1871 	},
1872 	{
1873 		.desc = "Protected KVM",
1874 		.capability = ARM64_KVM_PROTECTED_MODE,
1875 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1876 		.matches = is_kvm_protected_mode,
1877 	},
1878 #endif
1879 	{
1880 		.desc = "Kernel page table isolation (KPTI)",
1881 		.capability = ARM64_UNMAP_KERNEL_AT_EL0,
1882 		.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1883 		/*
1884 		 * The ID feature fields below are used to indicate that
1885 		 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
1886 		 * more details.
1887 		 */
1888 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1889 		.field_pos = ID_AA64PFR0_CSV3_SHIFT,
1890 		.min_field_value = 1,
1891 		.matches = unmap_kernel_at_el0,
1892 		.cpu_enable = kpti_install_ng_mappings,
1893 	},
1894 	{
1895 		/* FP/SIMD is not implemented */
1896 		.capability = ARM64_HAS_NO_FPSIMD,
1897 		.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1898 		.min_field_value = 0,
1899 		.matches = has_no_fpsimd,
1900 	},
1901 #ifdef CONFIG_ARM64_PMEM
1902 	{
1903 		.desc = "Data cache clean to Point of Persistence",
1904 		.capability = ARM64_HAS_DCPOP,
1905 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1906 		.matches = has_cpuid_feature,
1907 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
1908 		.field_pos = ID_AA64ISAR1_DPB_SHIFT,
1909 		.min_field_value = 1,
1910 	},
1911 	{
1912 		.desc = "Data cache clean to Point of Deep Persistence",
1913 		.capability = ARM64_HAS_DCPODP,
1914 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1915 		.matches = has_cpuid_feature,
1916 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
1917 		.sign = FTR_UNSIGNED,
1918 		.field_pos = ID_AA64ISAR1_DPB_SHIFT,
1919 		.min_field_value = 2,
1920 	},
1921 #endif
1922 #ifdef CONFIG_ARM64_SVE
1923 	{
1924 		.desc = "Scalable Vector Extension",
1925 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1926 		.capability = ARM64_SVE,
1927 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1928 		.sign = FTR_UNSIGNED,
1929 		.field_pos = ID_AA64PFR0_SVE_SHIFT,
1930 		.min_field_value = ID_AA64PFR0_SVE,
1931 		.matches = has_cpuid_feature,
1932 		.cpu_enable = sve_kernel_enable,
1933 	},
1934 #endif /* CONFIG_ARM64_SVE */
1935 #ifdef CONFIG_ARM64_RAS_EXTN
1936 	{
1937 		.desc = "RAS Extension Support",
1938 		.capability = ARM64_HAS_RAS_EXTN,
1939 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1940 		.matches = has_cpuid_feature,
1941 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1942 		.sign = FTR_UNSIGNED,
1943 		.field_pos = ID_AA64PFR0_RAS_SHIFT,
1944 		.min_field_value = ID_AA64PFR0_RAS_V1,
1945 		.cpu_enable = cpu_clear_disr,
1946 	},
1947 #endif /* CONFIG_ARM64_RAS_EXTN */
1948 #ifdef CONFIG_ARM64_AMU_EXTN
1949 	{
1950 		/*
1951 		 * The feature is enabled by default if CONFIG_ARM64_AMU_EXTN=y.
1952 		 * Therefore, don't provide .desc as we don't want the detection
1953 		 * message to be shown until at least one CPU is detected to
1954 		 * support the feature.
1955 		 */
1956 		.capability = ARM64_HAS_AMU_EXTN,
1957 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1958 		.matches = has_amu,
1959 		.sys_reg = SYS_ID_AA64PFR0_EL1,
1960 		.sign = FTR_UNSIGNED,
1961 		.field_pos = ID_AA64PFR0_AMU_SHIFT,
1962 		.min_field_value = ID_AA64PFR0_AMU,
1963 		.cpu_enable = cpu_amu_enable,
1964 	},
1965 #endif /* CONFIG_ARM64_AMU_EXTN */
1966 	{
1967 		.desc = "Data cache clean to the PoU not required for I/D coherence",
1968 		.capability = ARM64_HAS_CACHE_IDC,
1969 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1970 		.matches = has_cache_idc,
1971 		.cpu_enable = cpu_emulate_effective_ctr,
1972 	},
1973 	{
1974 		.desc = "Instruction cache invalidation not required for I/D coherence",
1975 		.capability = ARM64_HAS_CACHE_DIC,
1976 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1977 		.matches = has_cache_dic,
1978 	},
1979 	{
1980 		.desc = "Stage-2 Force Write-Back",
1981 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1982 		.capability = ARM64_HAS_STAGE2_FWB,
1983 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
1984 		.sign = FTR_UNSIGNED,
1985 		.field_pos = ID_AA64MMFR2_FWB_SHIFT,
1986 		.min_field_value = 1,
1987 		.matches = has_cpuid_feature,
1988 		.cpu_enable = cpu_has_fwb,
1989 	},
1990 	{
1991 		.desc = "ARMv8.4 Translation Table Level",
1992 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1993 		.capability = ARM64_HAS_ARMv8_4_TTL,
1994 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
1995 		.sign = FTR_UNSIGNED,
1996 		.field_pos = ID_AA64MMFR2_TTL_SHIFT,
1997 		.min_field_value = 1,
1998 		.matches = has_cpuid_feature,
1999 	},
2000 	{
2001 		.desc = "TLB range maintenance instructions",
2002 		.capability = ARM64_HAS_TLB_RANGE,
2003 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2004 		.matches = has_cpuid_feature,
2005 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
2006 		.field_pos = ID_AA64ISAR0_TLB_SHIFT,
2007 		.sign = FTR_UNSIGNED,
2008 		.min_field_value = ID_AA64ISAR0_TLB_RANGE,
2009 	},
2010 #ifdef CONFIG_ARM64_HW_AFDBM
2011 	{
2012 		/*
2013 		 * Since we turn this on always, we don't want the user to
2014 		 * think that the feature is available when it may not be.
2015 		 * So hide the description.
2016 		 *
2017 		 * .desc = "Hardware pagetable Dirty Bit Management",
2018 		 *
2019 		 */
2020 		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2021 		.capability = ARM64_HW_DBM,
2022 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
2023 		.sign = FTR_UNSIGNED,
2024 		.field_pos = ID_AA64MMFR1_HADBS_SHIFT,
2025 		.min_field_value = 2,
2026 		.matches = has_hw_dbm,
2027 		.cpu_enable = cpu_enable_hw_dbm,
2028 	},
2029 #endif
2030 	{
2031 		.desc = "CRC32 instructions",
2032 		.capability = ARM64_HAS_CRC32,
2033 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2034 		.matches = has_cpuid_feature,
2035 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
2036 		.field_pos = ID_AA64ISAR0_CRC32_SHIFT,
2037 		.min_field_value = 1,
2038 	},
2039 	{
2040 		.desc = "Speculative Store Bypassing Safe (SSBS)",
2041 		.capability = ARM64_SSBS,
2042 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2043 		.matches = has_cpuid_feature,
2044 		.sys_reg = SYS_ID_AA64PFR1_EL1,
2045 		.field_pos = ID_AA64PFR1_SSBS_SHIFT,
2046 		.sign = FTR_UNSIGNED,
2047 		.min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
2048 	},
2049 #ifdef CONFIG_ARM64_CNP
2050 	{
2051 		.desc = "Common not Private translations",
2052 		.capability = ARM64_HAS_CNP,
2053 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2054 		.matches = has_useable_cnp,
2055 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
2056 		.sign = FTR_UNSIGNED,
2057 		.field_pos = ID_AA64MMFR2_CNP_SHIFT,
2058 		.min_field_value = 1,
2059 		.cpu_enable = cpu_enable_cnp,
2060 	},
2061 #endif
2062 	{
2063 		.desc = "Speculation barrier (SB)",
2064 		.capability = ARM64_HAS_SB,
2065 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2066 		.matches = has_cpuid_feature,
2067 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2068 		.field_pos = ID_AA64ISAR1_SB_SHIFT,
2069 		.sign = FTR_UNSIGNED,
2070 		.min_field_value = 1,
2071 	},
2072 #ifdef CONFIG_ARM64_PTR_AUTH
2073 	{
2074 		.desc = "Address authentication (architected algorithm)",
2075 		.capability = ARM64_HAS_ADDRESS_AUTH_ARCH,
2076 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2077 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2078 		.sign = FTR_UNSIGNED,
2079 		.field_pos = ID_AA64ISAR1_APA_SHIFT,
2080 		.min_field_value = ID_AA64ISAR1_APA_ARCHITECTED,
2081 		.matches = has_address_auth_cpucap,
2082 	},
2083 	{
2084 		.desc = "Address authentication (IMP DEF algorithm)",
2085 		.capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2086 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2087 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2088 		.sign = FTR_UNSIGNED,
2089 		.field_pos = ID_AA64ISAR1_API_SHIFT,
2090 		.min_field_value = ID_AA64ISAR1_API_IMP_DEF,
2091 		.matches = has_address_auth_cpucap,
2092 	},
2093 	{
2094 		.capability = ARM64_HAS_ADDRESS_AUTH,
2095 		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2096 		.matches = has_address_auth_metacap,
2097 	},
2098 	{
2099 		.desc = "Generic authentication (architected algorithm)",
2100 		.capability = ARM64_HAS_GENERIC_AUTH_ARCH,
2101 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2102 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2103 		.sign = FTR_UNSIGNED,
2104 		.field_pos = ID_AA64ISAR1_GPA_SHIFT,
2105 		.min_field_value = ID_AA64ISAR1_GPA_ARCHITECTED,
2106 		.matches = has_cpuid_feature,
2107 	},
2108 	{
2109 		.desc = "Generic authentication (IMP DEF algorithm)",
2110 		.capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2111 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2112 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2113 		.sign = FTR_UNSIGNED,
2114 		.field_pos = ID_AA64ISAR1_GPI_SHIFT,
2115 		.min_field_value = ID_AA64ISAR1_GPI_IMP_DEF,
2116 		.matches = has_cpuid_feature,
2117 	},
2118 	{
2119 		.capability = ARM64_HAS_GENERIC_AUTH,
2120 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2121 		.matches = has_generic_auth,
2122 	},
2123 #endif /* CONFIG_ARM64_PTR_AUTH */
2124 #ifdef CONFIG_ARM64_PSEUDO_NMI
2125 	{
2126 		/*
2127 		 * Depends on having GICv3
2128 		 */
2129 		.desc = "IRQ priority masking",
2130 		.capability = ARM64_HAS_IRQ_PRIO_MASKING,
2131 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2132 		.matches = can_use_gic_priorities,
2133 		.sys_reg = SYS_ID_AA64PFR0_EL1,
2134 		.field_pos = ID_AA64PFR0_GIC_SHIFT,
2135 		.sign = FTR_UNSIGNED,
2136 		.min_field_value = 1,
2137 	},
2138 #endif
2139 #ifdef CONFIG_ARM64_E0PD
2140 	{
2141 		.desc = "E0PD",
2142 		.capability = ARM64_HAS_E0PD,
2143 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2144 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
2145 		.sign = FTR_UNSIGNED,
2146 		.field_pos = ID_AA64MMFR2_E0PD_SHIFT,
2147 		.matches = has_cpuid_feature,
2148 		.min_field_value = 1,
2149 		.cpu_enable = cpu_enable_e0pd,
2150 	},
2151 #endif
2152 #ifdef CONFIG_ARCH_RANDOM
2153 	{
2154 		.desc = "Random Number Generator",
2155 		.capability = ARM64_HAS_RNG,
2156 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2157 		.matches = has_cpuid_feature,
2158 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
2159 		.field_pos = ID_AA64ISAR0_RNDR_SHIFT,
2160 		.sign = FTR_UNSIGNED,
2161 		.min_field_value = 1,
2162 	},
2163 #endif
2164 #ifdef CONFIG_ARM64_BTI
2165 	{
2166 		.desc = "Branch Target Identification",
2167 		.capability = ARM64_BTI,
2168 #ifdef CONFIG_ARM64_BTI_KERNEL
2169 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2170 #else
2171 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2172 #endif
2173 		.matches = has_cpuid_feature,
2174 		.cpu_enable = bti_enable,
2175 		.sys_reg = SYS_ID_AA64PFR1_EL1,
2176 		.field_pos = ID_AA64PFR1_BT_SHIFT,
2177 		.min_field_value = ID_AA64PFR1_BT_BTI,
2178 		.sign = FTR_UNSIGNED,
2179 	},
2180 #endif
2181 #ifdef CONFIG_ARM64_MTE
2182 	{
2183 		.desc = "Memory Tagging Extension",
2184 		.capability = ARM64_MTE,
2185 		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2186 		.matches = has_cpuid_feature,
2187 		.sys_reg = SYS_ID_AA64PFR1_EL1,
2188 		.field_pos = ID_AA64PFR1_MTE_SHIFT,
2189 		.min_field_value = ID_AA64PFR1_MTE,
2190 		.sign = FTR_UNSIGNED,
2191 		.cpu_enable = cpu_enable_mte,
2192 	},
2193 #endif /* CONFIG_ARM64_MTE */
2194 	{
2195 		.desc = "RCpc load-acquire (LDAPR)",
2196 		.capability = ARM64_HAS_LDAPR,
2197 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2198 		.sys_reg = SYS_ID_AA64ISAR1_EL1,
2199 		.sign = FTR_UNSIGNED,
2200 		.field_pos = ID_AA64ISAR1_LRCPC_SHIFT,
2201 		.matches = has_cpuid_feature,
2202 		.min_field_value = 1,
2203 	},
2204 	{},
2205 };
2206 
2207 #define HWCAP_CPUID_MATCH(reg, field, s, min_value)				\
2208 		.matches = has_cpuid_feature,					\
2209 		.sys_reg = reg,							\
2210 		.field_pos = field,						\
2211 		.sign = s,							\
2212 		.min_field_value = min_value,
2213 
2214 #define __HWCAP_CAP(name, cap_type, cap)					\
2215 		.desc = name,							\
2216 		.type = ARM64_CPUCAP_SYSTEM_FEATURE,				\
2217 		.hwcap_type = cap_type,						\
2218 		.hwcap = cap,							\
2219 
2220 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap)			\
2221 	{									\
2222 		__HWCAP_CAP(#cap, cap_type, cap)				\
2223 		HWCAP_CPUID_MATCH(reg, field, s, min_value)			\
2224 	}
2225 
2226 #define HWCAP_MULTI_CAP(list, cap_type, cap)					\
2227 	{									\
2228 		__HWCAP_CAP(#cap, cap_type, cap)				\
2229 		.matches = cpucap_multi_entry_cap_matches,			\
2230 		.match_list = list,						\
2231 	}
2232 
2233 #define HWCAP_CAP_MATCH(match, cap_type, cap)					\
2234 	{									\
2235 		__HWCAP_CAP(#cap, cap_type, cap)				\
2236 		.matches = match,						\
2237 	}
2238 
2239 #ifdef CONFIG_ARM64_PTR_AUTH
2240 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
2241 	{
2242 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_APA_SHIFT,
2243 				  FTR_UNSIGNED, ID_AA64ISAR1_APA_ARCHITECTED)
2244 	},
2245 	{
2246 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_API_SHIFT,
2247 				  FTR_UNSIGNED, ID_AA64ISAR1_API_IMP_DEF)
2248 	},
2249 	{},
2250 };
2251 
2252 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
2253 	{
2254 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPA_SHIFT,
2255 				  FTR_UNSIGNED, ID_AA64ISAR1_GPA_ARCHITECTED)
2256 	},
2257 	{
2258 		HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPI_SHIFT,
2259 				  FTR_UNSIGNED, ID_AA64ISAR1_GPI_IMP_DEF)
2260 	},
2261 	{},
2262 };
2263 #endif
2264 
2265 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
2266 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL),
2267 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES),
2268 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1),
2269 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2),
2270 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512),
2271 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32),
2272 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
2273 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
2274 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3),
2275 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3),
2276 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4),
2277 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
2278 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
2279 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
2280 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
2281 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RNDR_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RNG),
2282 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP),
2283 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP),
2284 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
2285 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
2286 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT),
2287 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
2288 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
2289 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
2290 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA),
2291 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
2292 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
2293 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FRINTTS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT),
2294 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_SB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB),
2295 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_BF16_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_BF16),
2296 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DGH_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DGH),
2297 	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_I8MM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_I8MM),
2298 	HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT),
2299 #ifdef CONFIG_ARM64_SVE
2300 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, KERNEL_HWCAP_SVE),
2301 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SVEVER_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SVEVER_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
2302 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
2303 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES_PMULL, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
2304 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BITPERM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BITPERM, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
2305 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BF16_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BF16, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
2306 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SHA3_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SHA3, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
2307 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SM4_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SM4, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
2308 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_I8MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_I8MM, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
2309 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F32MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F32MM, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
2310 	HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F64MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F64MM, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
2311 #endif
2312 	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, KERNEL_HWCAP_SSBS),
2313 #ifdef CONFIG_ARM64_BTI
2314 	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_BT_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_BT_BTI, CAP_HWCAP, KERNEL_HWCAP_BTI),
2315 #endif
2316 #ifdef CONFIG_ARM64_PTR_AUTH
2317 	HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
2318 	HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
2319 #endif
2320 #ifdef CONFIG_ARM64_MTE
2321 	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_MTE_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_MTE, CAP_HWCAP, KERNEL_HWCAP_MTE),
2322 #endif /* CONFIG_ARM64_MTE */
2323 	{},
2324 };
2325 
2326 #ifdef CONFIG_COMPAT
2327 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
2328 {
2329 	/*
2330 	 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
2331 	 * in line with that of arm32 as in vfp_init(). We make sure that the
2332 	 * check is future proof, by making sure value is non-zero.
2333 	 */
2334 	u32 mvfr1;
2335 
2336 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
2337 	if (scope == SCOPE_SYSTEM)
2338 		mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
2339 	else
2340 		mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
2341 
2342 	return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDSP_SHIFT) &&
2343 		cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDINT_SHIFT) &&
2344 		cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDLS_SHIFT);
2345 }
2346 #endif
2347 
2348 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
2349 #ifdef CONFIG_COMPAT
2350 	HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
2351 	HWCAP_CAP(SYS_MVFR1_EL1, MVFR1_SIMDFMAC_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
2352 	/* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
2353 	HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
2354 	HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
2355 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
2356 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
2357 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
2358 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
2359 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
2360 #endif
2361 	{},
2362 };
2363 
2364 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2365 {
2366 	switch (cap->hwcap_type) {
2367 	case CAP_HWCAP:
2368 		cpu_set_feature(cap->hwcap);
2369 		break;
2370 #ifdef CONFIG_COMPAT
2371 	case CAP_COMPAT_HWCAP:
2372 		compat_elf_hwcap |= (u32)cap->hwcap;
2373 		break;
2374 	case CAP_COMPAT_HWCAP2:
2375 		compat_elf_hwcap2 |= (u32)cap->hwcap;
2376 		break;
2377 #endif
2378 	default:
2379 		WARN_ON(1);
2380 		break;
2381 	}
2382 }
2383 
2384 /* Check if we have a particular HWCAP enabled */
2385 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2386 {
2387 	bool rc;
2388 
2389 	switch (cap->hwcap_type) {
2390 	case CAP_HWCAP:
2391 		rc = cpu_have_feature(cap->hwcap);
2392 		break;
2393 #ifdef CONFIG_COMPAT
2394 	case CAP_COMPAT_HWCAP:
2395 		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
2396 		break;
2397 	case CAP_COMPAT_HWCAP2:
2398 		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
2399 		break;
2400 #endif
2401 	default:
2402 		WARN_ON(1);
2403 		rc = false;
2404 	}
2405 
2406 	return rc;
2407 }
2408 
2409 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
2410 {
2411 	/* We support emulation of accesses to CPU ID feature registers */
2412 	cpu_set_named_feature(CPUID);
2413 	for (; hwcaps->matches; hwcaps++)
2414 		if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
2415 			cap_set_elf_hwcap(hwcaps);
2416 }
2417 
2418 static void update_cpu_capabilities(u16 scope_mask)
2419 {
2420 	int i;
2421 	const struct arm64_cpu_capabilities *caps;
2422 
2423 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2424 	for (i = 0; i < ARM64_NCAPS; i++) {
2425 		caps = cpu_hwcaps_ptrs[i];
2426 		if (!caps || !(caps->type & scope_mask) ||
2427 		    cpus_have_cap(caps->capability) ||
2428 		    !caps->matches(caps, cpucap_default_scope(caps)))
2429 			continue;
2430 
2431 		if (caps->desc)
2432 			pr_info("detected: %s\n", caps->desc);
2433 		cpus_set_cap(caps->capability);
2434 
2435 		if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
2436 			set_bit(caps->capability, boot_capabilities);
2437 	}
2438 }
2439 
2440 /*
2441  * Enable all the available capabilities on this CPU. The capabilities
2442  * with BOOT_CPU scope are handled separately and hence skipped here.
2443  */
2444 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
2445 {
2446 	int i;
2447 	u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
2448 
2449 	for_each_available_cap(i) {
2450 		const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
2451 
2452 		if (WARN_ON(!cap))
2453 			continue;
2454 
2455 		if (!(cap->type & non_boot_scope))
2456 			continue;
2457 
2458 		if (cap->cpu_enable)
2459 			cap->cpu_enable(cap);
2460 	}
2461 	return 0;
2462 }
2463 
2464 /*
2465  * Run through the enabled capabilities and enable() it on all active
2466  * CPUs
2467  */
2468 static void __init enable_cpu_capabilities(u16 scope_mask)
2469 {
2470 	int i;
2471 	const struct arm64_cpu_capabilities *caps;
2472 	bool boot_scope;
2473 
2474 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2475 	boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
2476 
2477 	for (i = 0; i < ARM64_NCAPS; i++) {
2478 		unsigned int num;
2479 
2480 		caps = cpu_hwcaps_ptrs[i];
2481 		if (!caps || !(caps->type & scope_mask))
2482 			continue;
2483 		num = caps->capability;
2484 		if (!cpus_have_cap(num))
2485 			continue;
2486 
2487 		/* Ensure cpus_have_const_cap(num) works */
2488 		static_branch_enable(&cpu_hwcap_keys[num]);
2489 
2490 		if (boot_scope && caps->cpu_enable)
2491 			/*
2492 			 * Capabilities with SCOPE_BOOT_CPU scope are finalised
2493 			 * before any secondary CPU boots. Thus, each secondary
2494 			 * will enable the capability as appropriate via
2495 			 * check_local_cpu_capabilities(). The only exception is
2496 			 * the boot CPU, for which the capability must be
2497 			 * enabled here. This approach avoids costly
2498 			 * stop_machine() calls for this case.
2499 			 */
2500 			caps->cpu_enable(caps);
2501 	}
2502 
2503 	/*
2504 	 * For all non-boot scope capabilities, use stop_machine()
2505 	 * as it schedules the work allowing us to modify PSTATE,
2506 	 * instead of on_each_cpu() which uses an IPI, giving us a
2507 	 * PSTATE that disappears when we return.
2508 	 */
2509 	if (!boot_scope)
2510 		stop_machine(cpu_enable_non_boot_scope_capabilities,
2511 			     NULL, cpu_online_mask);
2512 }
2513 
2514 /*
2515  * Run through the list of capabilities to check for conflicts.
2516  * If the system has already detected a capability, take necessary
2517  * action on this CPU.
2518  */
2519 static void verify_local_cpu_caps(u16 scope_mask)
2520 {
2521 	int i;
2522 	bool cpu_has_cap, system_has_cap;
2523 	const struct arm64_cpu_capabilities *caps;
2524 
2525 	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2526 
2527 	for (i = 0; i < ARM64_NCAPS; i++) {
2528 		caps = cpu_hwcaps_ptrs[i];
2529 		if (!caps || !(caps->type & scope_mask))
2530 			continue;
2531 
2532 		cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
2533 		system_has_cap = cpus_have_cap(caps->capability);
2534 
2535 		if (system_has_cap) {
2536 			/*
2537 			 * Check if the new CPU misses an advertised feature,
2538 			 * which is not safe to miss.
2539 			 */
2540 			if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
2541 				break;
2542 			/*
2543 			 * We have to issue cpu_enable() irrespective of
2544 			 * whether the CPU has it or not, as it is enabeld
2545 			 * system wide. It is upto the call back to take
2546 			 * appropriate action on this CPU.
2547 			 */
2548 			if (caps->cpu_enable)
2549 				caps->cpu_enable(caps);
2550 		} else {
2551 			/*
2552 			 * Check if the CPU has this capability if it isn't
2553 			 * safe to have when the system doesn't.
2554 			 */
2555 			if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
2556 				break;
2557 		}
2558 	}
2559 
2560 	if (i < ARM64_NCAPS) {
2561 		pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
2562 			smp_processor_id(), caps->capability,
2563 			caps->desc, system_has_cap, cpu_has_cap);
2564 
2565 		if (cpucap_panic_on_conflict(caps))
2566 			cpu_panic_kernel();
2567 		else
2568 			cpu_die_early();
2569 	}
2570 }
2571 
2572 /*
2573  * Check for CPU features that are used in early boot
2574  * based on the Boot CPU value.
2575  */
2576 static void check_early_cpu_features(void)
2577 {
2578 	verify_cpu_asid_bits();
2579 
2580 	verify_local_cpu_caps(SCOPE_BOOT_CPU);
2581 }
2582 
2583 static void
2584 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
2585 {
2586 
2587 	for (; caps->matches; caps++)
2588 		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
2589 			pr_crit("CPU%d: missing HWCAP: %s\n",
2590 					smp_processor_id(), caps->desc);
2591 			cpu_die_early();
2592 		}
2593 }
2594 
2595 static void verify_sve_features(void)
2596 {
2597 	u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
2598 	u64 zcr = read_zcr_features();
2599 
2600 	unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
2601 	unsigned int len = zcr & ZCR_ELx_LEN_MASK;
2602 
2603 	if (len < safe_len || sve_verify_vq_map()) {
2604 		pr_crit("CPU%d: SVE: vector length support mismatch\n",
2605 			smp_processor_id());
2606 		cpu_die_early();
2607 	}
2608 
2609 	/* Add checks on other ZCR bits here if necessary */
2610 }
2611 
2612 static void verify_hyp_capabilities(void)
2613 {
2614 	u64 safe_mmfr1, mmfr0, mmfr1;
2615 	int parange, ipa_max;
2616 	unsigned int safe_vmid_bits, vmid_bits;
2617 
2618 	if (!IS_ENABLED(CONFIG_KVM))
2619 		return;
2620 
2621 	safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2622 	mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
2623 	mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
2624 
2625 	/* Verify VMID bits */
2626 	safe_vmid_bits = get_vmid_bits(safe_mmfr1);
2627 	vmid_bits = get_vmid_bits(mmfr1);
2628 	if (vmid_bits < safe_vmid_bits) {
2629 		pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
2630 		cpu_die_early();
2631 	}
2632 
2633 	/* Verify IPA range */
2634 	parange = cpuid_feature_extract_unsigned_field(mmfr0,
2635 				ID_AA64MMFR0_PARANGE_SHIFT);
2636 	ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
2637 	if (ipa_max < get_kvm_ipa_limit()) {
2638 		pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
2639 		cpu_die_early();
2640 	}
2641 }
2642 
2643 /*
2644  * Run through the enabled system capabilities and enable() it on this CPU.
2645  * The capabilities were decided based on the available CPUs at the boot time.
2646  * Any new CPU should match the system wide status of the capability. If the
2647  * new CPU doesn't have a capability which the system now has enabled, we
2648  * cannot do anything to fix it up and could cause unexpected failures. So
2649  * we park the CPU.
2650  */
2651 static void verify_local_cpu_capabilities(void)
2652 {
2653 	/*
2654 	 * The capabilities with SCOPE_BOOT_CPU are checked from
2655 	 * check_early_cpu_features(), as they need to be verified
2656 	 * on all secondary CPUs.
2657 	 */
2658 	verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
2659 
2660 	verify_local_elf_hwcaps(arm64_elf_hwcaps);
2661 
2662 	if (system_supports_32bit_el0())
2663 		verify_local_elf_hwcaps(compat_elf_hwcaps);
2664 
2665 	if (system_supports_sve())
2666 		verify_sve_features();
2667 
2668 	if (is_hyp_mode_available())
2669 		verify_hyp_capabilities();
2670 }
2671 
2672 void check_local_cpu_capabilities(void)
2673 {
2674 	/*
2675 	 * All secondary CPUs should conform to the early CPU features
2676 	 * in use by the kernel based on boot CPU.
2677 	 */
2678 	check_early_cpu_features();
2679 
2680 	/*
2681 	 * If we haven't finalised the system capabilities, this CPU gets
2682 	 * a chance to update the errata work arounds and local features.
2683 	 * Otherwise, this CPU should verify that it has all the system
2684 	 * advertised capabilities.
2685 	 */
2686 	if (!system_capabilities_finalized())
2687 		update_cpu_capabilities(SCOPE_LOCAL_CPU);
2688 	else
2689 		verify_local_cpu_capabilities();
2690 }
2691 
2692 static void __init setup_boot_cpu_capabilities(void)
2693 {
2694 	/* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
2695 	update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
2696 	/* Enable the SCOPE_BOOT_CPU capabilities alone right away */
2697 	enable_cpu_capabilities(SCOPE_BOOT_CPU);
2698 }
2699 
2700 bool this_cpu_has_cap(unsigned int n)
2701 {
2702 	if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
2703 		const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
2704 
2705 		if (cap)
2706 			return cap->matches(cap, SCOPE_LOCAL_CPU);
2707 	}
2708 
2709 	return false;
2710 }
2711 
2712 /*
2713  * This helper function is used in a narrow window when,
2714  * - The system wide safe registers are set with all the SMP CPUs and,
2715  * - The SYSTEM_FEATURE cpu_hwcaps may not have been set.
2716  * In all other cases cpus_have_{const_}cap() should be used.
2717  */
2718 static bool __maybe_unused __system_matches_cap(unsigned int n)
2719 {
2720 	if (n < ARM64_NCAPS) {
2721 		const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
2722 
2723 		if (cap)
2724 			return cap->matches(cap, SCOPE_SYSTEM);
2725 	}
2726 	return false;
2727 }
2728 
2729 void cpu_set_feature(unsigned int num)
2730 {
2731 	WARN_ON(num >= MAX_CPU_FEATURES);
2732 	elf_hwcap |= BIT(num);
2733 }
2734 EXPORT_SYMBOL_GPL(cpu_set_feature);
2735 
2736 bool cpu_have_feature(unsigned int num)
2737 {
2738 	WARN_ON(num >= MAX_CPU_FEATURES);
2739 	return elf_hwcap & BIT(num);
2740 }
2741 EXPORT_SYMBOL_GPL(cpu_have_feature);
2742 
2743 unsigned long cpu_get_elf_hwcap(void)
2744 {
2745 	/*
2746 	 * We currently only populate the first 32 bits of AT_HWCAP. Please
2747 	 * note that for userspace compatibility we guarantee that bits 62
2748 	 * and 63 will always be returned as 0.
2749 	 */
2750 	return lower_32_bits(elf_hwcap);
2751 }
2752 
2753 unsigned long cpu_get_elf_hwcap2(void)
2754 {
2755 	return upper_32_bits(elf_hwcap);
2756 }
2757 
2758 static void __init setup_system_capabilities(void)
2759 {
2760 	/*
2761 	 * We have finalised the system-wide safe feature
2762 	 * registers, finalise the capabilities that depend
2763 	 * on it. Also enable all the available capabilities,
2764 	 * that are not enabled already.
2765 	 */
2766 	update_cpu_capabilities(SCOPE_SYSTEM);
2767 	enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
2768 }
2769 
2770 void __init setup_cpu_features(void)
2771 {
2772 	u32 cwg;
2773 
2774 	setup_system_capabilities();
2775 	setup_elf_hwcaps(arm64_elf_hwcaps);
2776 
2777 	if (system_supports_32bit_el0())
2778 		setup_elf_hwcaps(compat_elf_hwcaps);
2779 
2780 	if (system_uses_ttbr0_pan())
2781 		pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
2782 
2783 	sve_setup();
2784 	minsigstksz_setup();
2785 
2786 	/* Advertise that we have computed the system capabilities */
2787 	finalize_system_capabilities();
2788 
2789 	/*
2790 	 * Check for sane CTR_EL0.CWG value.
2791 	 */
2792 	cwg = cache_type_cwg();
2793 	if (!cwg)
2794 		pr_warn("No Cache Writeback Granule information, assuming %d\n",
2795 			ARCH_DMA_MINALIGN);
2796 }
2797 
2798 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
2799 {
2800 	cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
2801 }
2802 
2803 /*
2804  * We emulate only the following system register space.
2805  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
2806  * See Table C5-6 System instruction encodings for System register accesses,
2807  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
2808  */
2809 static inline bool __attribute_const__ is_emulated(u32 id)
2810 {
2811 	return (sys_reg_Op0(id) == 0x3 &&
2812 		sys_reg_CRn(id) == 0x0 &&
2813 		sys_reg_Op1(id) == 0x0 &&
2814 		(sys_reg_CRm(id) == 0 ||
2815 		 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
2816 }
2817 
2818 /*
2819  * With CRm == 0, reg should be one of :
2820  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
2821  */
2822 static inline int emulate_id_reg(u32 id, u64 *valp)
2823 {
2824 	switch (id) {
2825 	case SYS_MIDR_EL1:
2826 		*valp = read_cpuid_id();
2827 		break;
2828 	case SYS_MPIDR_EL1:
2829 		*valp = SYS_MPIDR_SAFE_VAL;
2830 		break;
2831 	case SYS_REVIDR_EL1:
2832 		/* IMPLEMENTATION DEFINED values are emulated with 0 */
2833 		*valp = 0;
2834 		break;
2835 	default:
2836 		return -EINVAL;
2837 	}
2838 
2839 	return 0;
2840 }
2841 
2842 static int emulate_sys_reg(u32 id, u64 *valp)
2843 {
2844 	struct arm64_ftr_reg *regp;
2845 
2846 	if (!is_emulated(id))
2847 		return -EINVAL;
2848 
2849 	if (sys_reg_CRm(id) == 0)
2850 		return emulate_id_reg(id, valp);
2851 
2852 	regp = get_arm64_ftr_reg_nowarn(id);
2853 	if (regp)
2854 		*valp = arm64_ftr_reg_user_value(regp);
2855 	else
2856 		/*
2857 		 * The untracked registers are either IMPLEMENTATION DEFINED
2858 		 * (e.g, ID_AFR0_EL1) or reserved RAZ.
2859 		 */
2860 		*valp = 0;
2861 	return 0;
2862 }
2863 
2864 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
2865 {
2866 	int rc;
2867 	u64 val;
2868 
2869 	rc = emulate_sys_reg(sys_reg, &val);
2870 	if (!rc) {
2871 		pt_regs_write_reg(regs, rt, val);
2872 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
2873 	}
2874 	return rc;
2875 }
2876 
2877 static int emulate_mrs(struct pt_regs *regs, u32 insn)
2878 {
2879 	u32 sys_reg, rt;
2880 
2881 	/*
2882 	 * sys_reg values are defined as used in mrs/msr instruction.
2883 	 * shift the imm value to get the encoding.
2884 	 */
2885 	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
2886 	rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
2887 	return do_emulate_mrs(regs, sys_reg, rt);
2888 }
2889 
2890 static struct undef_hook mrs_hook = {
2891 	.instr_mask = 0xfff00000,
2892 	.instr_val  = 0xd5300000,
2893 	.pstate_mask = PSR_AA32_MODE_MASK,
2894 	.pstate_val = PSR_MODE_EL0t,
2895 	.fn = emulate_mrs,
2896 };
2897 
2898 static int __init enable_mrs_emulation(void)
2899 {
2900 	register_undef_hook(&mrs_hook);
2901 	return 0;
2902 }
2903 
2904 core_initcall(enable_mrs_emulation);
2905 
2906 enum mitigation_state arm64_get_meltdown_state(void)
2907 {
2908 	if (__meltdown_safe)
2909 		return SPECTRE_UNAFFECTED;
2910 
2911 	if (arm64_kernel_unmapped_at_el0())
2912 		return SPECTRE_MITIGATED;
2913 
2914 	return SPECTRE_VULNERABLE;
2915 }
2916 
2917 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
2918 			  char *buf)
2919 {
2920 	switch (arm64_get_meltdown_state()) {
2921 	case SPECTRE_UNAFFECTED:
2922 		return sprintf(buf, "Not affected\n");
2923 
2924 	case SPECTRE_MITIGATED:
2925 		return sprintf(buf, "Mitigation: PTI\n");
2926 
2927 	default:
2928 		return sprintf(buf, "Vulnerable\n");
2929 	}
2930 }
2931