xref: /openbmc/linux/arch/arm64/kernel/cpufeature.c (revision 293d5b43)
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #define pr_fmt(fmt) "CPU features: " fmt
20 
21 #include <linux/bsearch.h>
22 #include <linux/sort.h>
23 #include <linux/types.h>
24 #include <asm/cpu.h>
25 #include <asm/cpufeature.h>
26 #include <asm/cpu_ops.h>
27 #include <asm/mmu_context.h>
28 #include <asm/processor.h>
29 #include <asm/sysreg.h>
30 #include <asm/virt.h>
31 
32 unsigned long elf_hwcap __read_mostly;
33 EXPORT_SYMBOL_GPL(elf_hwcap);
34 
35 #ifdef CONFIG_COMPAT
36 #define COMPAT_ELF_HWCAP_DEFAULT	\
37 				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
38 				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
39 				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
40 				 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
41 				 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
42 				 COMPAT_HWCAP_LPAE)
43 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
44 unsigned int compat_elf_hwcap2 __read_mostly;
45 #endif
46 
47 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
48 
49 #define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
50 	{						\
51 		.sign = SIGNED,				\
52 		.strict = STRICT,			\
53 		.type = TYPE,				\
54 		.shift = SHIFT,				\
55 		.width = WIDTH,				\
56 		.safe_val = SAFE_VAL,			\
57 	}
58 
59 /* Define a feature with unsigned values */
60 #define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
61 	__ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
62 
63 /* Define a feature with a signed value */
64 #define S_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
65 	__ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
66 
67 #define ARM64_FTR_END					\
68 	{						\
69 		.width = 0,				\
70 	}
71 
72 /* meta feature for alternatives */
73 static bool __maybe_unused
74 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
75 
76 
77 static struct arm64_ftr_bits ftr_id_aa64isar0[] = {
78 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
79 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
80 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
81 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
82 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
83 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
84 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
85 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
86 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),	/* RAZ */
87 	ARM64_FTR_END,
88 };
89 
90 static struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
91 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
92 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
93 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
94 	S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
95 	S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
96 	/* Linux doesn't care about the EL3 */
97 	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
98 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
99 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
100 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
101 	ARM64_FTR_END,
102 };
103 
104 static struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
105 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
106 	S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
107 	S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
108 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
109 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
110 	/* Linux shouldn't care about secure memory */
111 	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
112 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
113 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
114 	/*
115 	 * Differing PARange is fine as long as all peripherals and memory are mapped
116 	 * within the minimum PARange of all CPUs
117 	 */
118 	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
119 	ARM64_FTR_END,
120 };
121 
122 static struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
123 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
124 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
125 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
126 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
127 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
128 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
129 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
130 	ARM64_FTR_END,
131 };
132 
133 static struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
134 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
135 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
136 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
137 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
138 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
139 	ARM64_FTR_END,
140 };
141 
142 static struct arm64_ftr_bits ftr_ctr[] = {
143 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1),	/* RAO */
144 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
145 	ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),	/* CWG */
146 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* ERG */
147 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1),	/* DminLine */
148 	/*
149 	 * Linux can handle differing I-cache policies. Userspace JITs will
150 	 * make use of *minLine
151 	 */
152 	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, 0),	/* L1Ip */
153 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0),	/* RAZ */
154 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* IminLine */
155 	ARM64_FTR_END,
156 };
157 
158 static struct arm64_ftr_bits ftr_id_mmfr0[] = {
159 	S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0xf),	/* InnerShr */
160 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),	/* FCSE */
161 	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* AuxReg */
162 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0),	/* TCM */
163 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),	/* ShareLvl */
164 	S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0xf),	/* OuterShr */
165 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),	/* PMSA */
166 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),	/* VMSA */
167 	ARM64_FTR_END,
168 };
169 
170 static struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
171 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
172 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
173 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
174 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
175 	S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
176 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
177 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
178 	ARM64_FTR_END,
179 };
180 
181 static struct arm64_ftr_bits ftr_mvfr2[] = {
182 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),	/* RAZ */
183 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* FPMisc */
184 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* SIMDMisc */
185 	ARM64_FTR_END,
186 };
187 
188 static struct arm64_ftr_bits ftr_dczid[] = {
189 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0),	/* RAZ */
190 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1),		/* DZP */
191 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* BS */
192 	ARM64_FTR_END,
193 };
194 
195 
196 static struct arm64_ftr_bits ftr_id_isar5[] = {
197 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
198 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0),	/* RAZ */
199 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
200 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
201 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
202 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
203 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
204 	ARM64_FTR_END,
205 };
206 
207 static struct arm64_ftr_bits ftr_id_mmfr4[] = {
208 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),	/* RAZ */
209 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* ac2 */
210 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* RAZ */
211 	ARM64_FTR_END,
212 };
213 
214 static struct arm64_ftr_bits ftr_id_pfr0[] = {
215 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0),	/* RAZ */
216 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),	/* State3 */
217 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0),		/* State2 */
218 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* State1 */
219 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* State0 */
220 	ARM64_FTR_END,
221 };
222 
223 static struct arm64_ftr_bits ftr_id_dfr0[] = {
224 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
225 	S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),	/* PerfMon */
226 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
227 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
228 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
229 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
230 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
231 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
232 	ARM64_FTR_END,
233 };
234 
235 /*
236  * Common ftr bits for a 32bit register with all hidden, strict
237  * attributes, with 4bit feature fields and a default safe value of
238  * 0. Covers the following 32bit registers:
239  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
240  */
241 static struct arm64_ftr_bits ftr_generic_32bits[] = {
242 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
243 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
244 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
245 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
246 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
247 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
248 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
249 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
250 	ARM64_FTR_END,
251 };
252 
253 static struct arm64_ftr_bits ftr_generic[] = {
254 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
255 	ARM64_FTR_END,
256 };
257 
258 static struct arm64_ftr_bits ftr_generic32[] = {
259 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
260 	ARM64_FTR_END,
261 };
262 
263 static struct arm64_ftr_bits ftr_aa64raz[] = {
264 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
265 	ARM64_FTR_END,
266 };
267 
268 #define ARM64_FTR_REG(id, table)		\
269 	{					\
270 		.sys_id = id,			\
271 		.name = #id,			\
272 		.ftr_bits = &((table)[0]),	\
273 	}
274 
275 static struct arm64_ftr_reg arm64_ftr_regs[] = {
276 
277 	/* Op1 = 0, CRn = 0, CRm = 1 */
278 	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
279 	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
280 	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
281 	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
282 	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
283 	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
284 	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
285 
286 	/* Op1 = 0, CRn = 0, CRm = 2 */
287 	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
288 	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
289 	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
290 	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
291 	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
292 	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
293 	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
294 
295 	/* Op1 = 0, CRn = 0, CRm = 3 */
296 	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
297 	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
298 	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
299 
300 	/* Op1 = 0, CRn = 0, CRm = 4 */
301 	ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
302 	ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),
303 
304 	/* Op1 = 0, CRn = 0, CRm = 5 */
305 	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
306 	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),
307 
308 	/* Op1 = 0, CRn = 0, CRm = 6 */
309 	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
310 	ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),
311 
312 	/* Op1 = 0, CRn = 0, CRm = 7 */
313 	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
314 	ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
315 	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
316 
317 	/* Op1 = 3, CRn = 0, CRm = 0 */
318 	ARM64_FTR_REG(SYS_CTR_EL0, ftr_ctr),
319 	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
320 
321 	/* Op1 = 3, CRn = 14, CRm = 0 */
322 	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
323 };
324 
325 static int search_cmp_ftr_reg(const void *id, const void *regp)
326 {
327 	return (int)(unsigned long)id - (int)((const struct arm64_ftr_reg *)regp)->sys_id;
328 }
329 
330 /*
331  * get_arm64_ftr_reg - Lookup a feature register entry using its
332  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
333  * ascending order of sys_id , we use binary search to find a matching
334  * entry.
335  *
336  * returns - Upon success,  matching ftr_reg entry for id.
337  *         - NULL on failure. It is upto the caller to decide
338  *	     the impact of a failure.
339  */
340 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
341 {
342 	return bsearch((const void *)(unsigned long)sys_id,
343 			arm64_ftr_regs,
344 			ARRAY_SIZE(arm64_ftr_regs),
345 			sizeof(arm64_ftr_regs[0]),
346 			search_cmp_ftr_reg);
347 }
348 
349 static u64 arm64_ftr_set_value(struct arm64_ftr_bits *ftrp, s64 reg, s64 ftr_val)
350 {
351 	u64 mask = arm64_ftr_mask(ftrp);
352 
353 	reg &= ~mask;
354 	reg |= (ftr_val << ftrp->shift) & mask;
355 	return reg;
356 }
357 
358 static s64 arm64_ftr_safe_value(struct arm64_ftr_bits *ftrp, s64 new, s64 cur)
359 {
360 	s64 ret = 0;
361 
362 	switch (ftrp->type) {
363 	case FTR_EXACT:
364 		ret = ftrp->safe_val;
365 		break;
366 	case FTR_LOWER_SAFE:
367 		ret = new < cur ? new : cur;
368 		break;
369 	case FTR_HIGHER_SAFE:
370 		ret = new > cur ? new : cur;
371 		break;
372 	default:
373 		BUG();
374 	}
375 
376 	return ret;
377 }
378 
379 static int __init sort_cmp_ftr_regs(const void *a, const void *b)
380 {
381 	return ((const struct arm64_ftr_reg *)a)->sys_id -
382 		 ((const struct arm64_ftr_reg *)b)->sys_id;
383 }
384 
385 static void __init swap_ftr_regs(void *a, void *b, int size)
386 {
387 	struct arm64_ftr_reg tmp = *(struct arm64_ftr_reg *)a;
388 	*(struct arm64_ftr_reg *)a = *(struct arm64_ftr_reg *)b;
389 	*(struct arm64_ftr_reg *)b = tmp;
390 }
391 
392 static void __init sort_ftr_regs(void)
393 {
394 	/* Keep the array sorted so that we can do the binary search */
395 	sort(arm64_ftr_regs,
396 		ARRAY_SIZE(arm64_ftr_regs),
397 		sizeof(arm64_ftr_regs[0]),
398 		sort_cmp_ftr_regs,
399 		swap_ftr_regs);
400 }
401 
402 /*
403  * Initialise the CPU feature register from Boot CPU values.
404  * Also initiliases the strict_mask for the register.
405  */
406 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
407 {
408 	u64 val = 0;
409 	u64 strict_mask = ~0x0ULL;
410 	struct arm64_ftr_bits *ftrp;
411 	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
412 
413 	BUG_ON(!reg);
414 
415 	for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
416 		s64 ftr_new = arm64_ftr_value(ftrp, new);
417 
418 		val = arm64_ftr_set_value(ftrp, val, ftr_new);
419 		if (!ftrp->strict)
420 			strict_mask &= ~arm64_ftr_mask(ftrp);
421 	}
422 	reg->sys_val = val;
423 	reg->strict_mask = strict_mask;
424 }
425 
426 void __init init_cpu_features(struct cpuinfo_arm64 *info)
427 {
428 	/* Before we start using the tables, make sure it is sorted */
429 	sort_ftr_regs();
430 
431 	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
432 	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
433 	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
434 	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
435 	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
436 	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
437 	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
438 	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
439 	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
440 	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
441 	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
442 	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
443 
444 	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
445 		init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
446 		init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
447 		init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
448 		init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
449 		init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
450 		init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
451 		init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
452 		init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
453 		init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
454 		init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
455 		init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
456 		init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
457 		init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
458 		init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
459 		init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
460 		init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
461 	}
462 
463 }
464 
465 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
466 {
467 	struct arm64_ftr_bits *ftrp;
468 
469 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
470 		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
471 		s64 ftr_new = arm64_ftr_value(ftrp, new);
472 
473 		if (ftr_cur == ftr_new)
474 			continue;
475 		/* Find a safe value */
476 		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
477 		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
478 	}
479 
480 }
481 
482 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
483 {
484 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
485 
486 	BUG_ON(!regp);
487 	update_cpu_ftr_reg(regp, val);
488 	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
489 		return 0;
490 	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
491 			regp->name, boot, cpu, val);
492 	return 1;
493 }
494 
495 /*
496  * Update system wide CPU feature registers with the values from a
497  * non-boot CPU. Also performs SANITY checks to make sure that there
498  * aren't any insane variations from that of the boot CPU.
499  */
500 void update_cpu_features(int cpu,
501 			 struct cpuinfo_arm64 *info,
502 			 struct cpuinfo_arm64 *boot)
503 {
504 	int taint = 0;
505 
506 	/*
507 	 * The kernel can handle differing I-cache policies, but otherwise
508 	 * caches should look identical. Userspace JITs will make use of
509 	 * *minLine.
510 	 */
511 	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
512 				      info->reg_ctr, boot->reg_ctr);
513 
514 	/*
515 	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
516 	 * could result in too much or too little memory being zeroed if a
517 	 * process is preempted and migrated between CPUs.
518 	 */
519 	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
520 				      info->reg_dczid, boot->reg_dczid);
521 
522 	/* If different, timekeeping will be broken (especially with KVM) */
523 	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
524 				      info->reg_cntfrq, boot->reg_cntfrq);
525 
526 	/*
527 	 * The kernel uses self-hosted debug features and expects CPUs to
528 	 * support identical debug features. We presently need CTX_CMPs, WRPs,
529 	 * and BRPs to be identical.
530 	 * ID_AA64DFR1 is currently RES0.
531 	 */
532 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
533 				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
534 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
535 				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
536 	/*
537 	 * Even in big.LITTLE, processors should be identical instruction-set
538 	 * wise.
539 	 */
540 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
541 				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
542 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
543 				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
544 
545 	/*
546 	 * Differing PARange support is fine as long as all peripherals and
547 	 * memory are mapped within the minimum PARange of all CPUs.
548 	 * Linux should not care about secure memory.
549 	 */
550 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
551 				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
552 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
553 				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
554 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
555 				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
556 
557 	/*
558 	 * EL3 is not our concern.
559 	 * ID_AA64PFR1 is currently RES0.
560 	 */
561 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
562 				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
563 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
564 				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
565 
566 	/*
567 	 * If we have AArch32, we care about 32-bit features for compat.
568 	 * If the system doesn't support AArch32, don't update them.
569 	 */
570 	if (id_aa64pfr0_32bit_el0(read_system_reg(SYS_ID_AA64PFR0_EL1)) &&
571 		id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
572 
573 		taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
574 					info->reg_id_dfr0, boot->reg_id_dfr0);
575 		taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
576 					info->reg_id_isar0, boot->reg_id_isar0);
577 		taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
578 					info->reg_id_isar1, boot->reg_id_isar1);
579 		taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
580 					info->reg_id_isar2, boot->reg_id_isar2);
581 		taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
582 					info->reg_id_isar3, boot->reg_id_isar3);
583 		taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
584 					info->reg_id_isar4, boot->reg_id_isar4);
585 		taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
586 					info->reg_id_isar5, boot->reg_id_isar5);
587 
588 		/*
589 		 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
590 		 * ACTLR formats could differ across CPUs and therefore would have to
591 		 * be trapped for virtualization anyway.
592 		 */
593 		taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
594 					info->reg_id_mmfr0, boot->reg_id_mmfr0);
595 		taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
596 					info->reg_id_mmfr1, boot->reg_id_mmfr1);
597 		taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
598 					info->reg_id_mmfr2, boot->reg_id_mmfr2);
599 		taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
600 					info->reg_id_mmfr3, boot->reg_id_mmfr3);
601 		taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
602 					info->reg_id_pfr0, boot->reg_id_pfr0);
603 		taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
604 					info->reg_id_pfr1, boot->reg_id_pfr1);
605 		taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
606 					info->reg_mvfr0, boot->reg_mvfr0);
607 		taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
608 					info->reg_mvfr1, boot->reg_mvfr1);
609 		taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
610 					info->reg_mvfr2, boot->reg_mvfr2);
611 	}
612 
613 	/*
614 	 * Mismatched CPU features are a recipe for disaster. Don't even
615 	 * pretend to support them.
616 	 */
617 	WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
618 			"Unsupported CPU feature variation.\n");
619 }
620 
621 u64 read_system_reg(u32 id)
622 {
623 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
624 
625 	/* We shouldn't get a request for an unsupported register */
626 	BUG_ON(!regp);
627 	return regp->sys_val;
628 }
629 
630 /*
631  * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
632  * Read the system register on the current CPU
633  */
634 static u64 __raw_read_system_reg(u32 sys_id)
635 {
636 	switch (sys_id) {
637 	case SYS_ID_PFR0_EL1:		return read_cpuid(ID_PFR0_EL1);
638 	case SYS_ID_PFR1_EL1:		return read_cpuid(ID_PFR1_EL1);
639 	case SYS_ID_DFR0_EL1:		return read_cpuid(ID_DFR0_EL1);
640 	case SYS_ID_MMFR0_EL1:		return read_cpuid(ID_MMFR0_EL1);
641 	case SYS_ID_MMFR1_EL1:		return read_cpuid(ID_MMFR1_EL1);
642 	case SYS_ID_MMFR2_EL1:		return read_cpuid(ID_MMFR2_EL1);
643 	case SYS_ID_MMFR3_EL1:		return read_cpuid(ID_MMFR3_EL1);
644 	case SYS_ID_ISAR0_EL1:		return read_cpuid(ID_ISAR0_EL1);
645 	case SYS_ID_ISAR1_EL1:		return read_cpuid(ID_ISAR1_EL1);
646 	case SYS_ID_ISAR2_EL1:		return read_cpuid(ID_ISAR2_EL1);
647 	case SYS_ID_ISAR3_EL1:		return read_cpuid(ID_ISAR3_EL1);
648 	case SYS_ID_ISAR4_EL1:		return read_cpuid(ID_ISAR4_EL1);
649 	case SYS_ID_ISAR5_EL1:		return read_cpuid(ID_ISAR4_EL1);
650 	case SYS_MVFR0_EL1:		return read_cpuid(MVFR0_EL1);
651 	case SYS_MVFR1_EL1:		return read_cpuid(MVFR1_EL1);
652 	case SYS_MVFR2_EL1:		return read_cpuid(MVFR2_EL1);
653 
654 	case SYS_ID_AA64PFR0_EL1:	return read_cpuid(ID_AA64PFR0_EL1);
655 	case SYS_ID_AA64PFR1_EL1:	return read_cpuid(ID_AA64PFR0_EL1);
656 	case SYS_ID_AA64DFR0_EL1:	return read_cpuid(ID_AA64DFR0_EL1);
657 	case SYS_ID_AA64DFR1_EL1:	return read_cpuid(ID_AA64DFR0_EL1);
658 	case SYS_ID_AA64MMFR0_EL1:	return read_cpuid(ID_AA64MMFR0_EL1);
659 	case SYS_ID_AA64MMFR1_EL1:	return read_cpuid(ID_AA64MMFR1_EL1);
660 	case SYS_ID_AA64MMFR2_EL1:	return read_cpuid(ID_AA64MMFR2_EL1);
661 	case SYS_ID_AA64ISAR0_EL1:	return read_cpuid(ID_AA64ISAR0_EL1);
662 	case SYS_ID_AA64ISAR1_EL1:	return read_cpuid(ID_AA64ISAR1_EL1);
663 
664 	case SYS_CNTFRQ_EL0:		return read_cpuid(CNTFRQ_EL0);
665 	case SYS_CTR_EL0:		return read_cpuid(CTR_EL0);
666 	case SYS_DCZID_EL0:		return read_cpuid(DCZID_EL0);
667 	default:
668 		BUG();
669 		return 0;
670 	}
671 }
672 
673 #include <linux/irqchip/arm-gic-v3.h>
674 
675 static bool
676 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
677 {
678 	int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
679 
680 	return val >= entry->min_field_value;
681 }
682 
683 static bool
684 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
685 {
686 	u64 val;
687 
688 	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
689 	if (scope == SCOPE_SYSTEM)
690 		val = read_system_reg(entry->sys_reg);
691 	else
692 		val = __raw_read_system_reg(entry->sys_reg);
693 
694 	return feature_matches(val, entry);
695 }
696 
697 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
698 {
699 	bool has_sre;
700 
701 	if (!has_cpuid_feature(entry, scope))
702 		return false;
703 
704 	has_sre = gic_enable_sre();
705 	if (!has_sre)
706 		pr_warn_once("%s present but disabled by higher exception level\n",
707 			     entry->desc);
708 
709 	return has_sre;
710 }
711 
712 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
713 {
714 	u32 midr = read_cpuid_id();
715 	u32 rv_min, rv_max;
716 
717 	/* Cavium ThunderX pass 1.x and 2.x */
718 	rv_min = 0;
719 	rv_max = (1 << MIDR_VARIANT_SHIFT) | MIDR_REVISION_MASK;
720 
721 	return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX, rv_min, rv_max);
722 }
723 
724 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
725 {
726 	return is_kernel_in_hyp_mode();
727 }
728 
729 static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
730 			   int __unused)
731 {
732 	phys_addr_t idmap_addr = virt_to_phys(__hyp_idmap_text_start);
733 
734 	/*
735 	 * Activate the lower HYP offset only if:
736 	 * - the idmap doesn't clash with it,
737 	 * - the kernel is not running at EL2.
738 	 */
739 	return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
740 }
741 
742 static const struct arm64_cpu_capabilities arm64_features[] = {
743 	{
744 		.desc = "GIC system register CPU interface",
745 		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
746 		.def_scope = SCOPE_SYSTEM,
747 		.matches = has_useable_gicv3_cpuif,
748 		.sys_reg = SYS_ID_AA64PFR0_EL1,
749 		.field_pos = ID_AA64PFR0_GIC_SHIFT,
750 		.sign = FTR_UNSIGNED,
751 		.min_field_value = 1,
752 	},
753 #ifdef CONFIG_ARM64_PAN
754 	{
755 		.desc = "Privileged Access Never",
756 		.capability = ARM64_HAS_PAN,
757 		.def_scope = SCOPE_SYSTEM,
758 		.matches = has_cpuid_feature,
759 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
760 		.field_pos = ID_AA64MMFR1_PAN_SHIFT,
761 		.sign = FTR_UNSIGNED,
762 		.min_field_value = 1,
763 		.enable = cpu_enable_pan,
764 	},
765 #endif /* CONFIG_ARM64_PAN */
766 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
767 	{
768 		.desc = "LSE atomic instructions",
769 		.capability = ARM64_HAS_LSE_ATOMICS,
770 		.def_scope = SCOPE_SYSTEM,
771 		.matches = has_cpuid_feature,
772 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
773 		.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
774 		.sign = FTR_UNSIGNED,
775 		.min_field_value = 2,
776 	},
777 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
778 	{
779 		.desc = "Software prefetching using PRFM",
780 		.capability = ARM64_HAS_NO_HW_PREFETCH,
781 		.def_scope = SCOPE_SYSTEM,
782 		.matches = has_no_hw_prefetch,
783 	},
784 #ifdef CONFIG_ARM64_UAO
785 	{
786 		.desc = "User Access Override",
787 		.capability = ARM64_HAS_UAO,
788 		.def_scope = SCOPE_SYSTEM,
789 		.matches = has_cpuid_feature,
790 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
791 		.field_pos = ID_AA64MMFR2_UAO_SHIFT,
792 		.min_field_value = 1,
793 		.enable = cpu_enable_uao,
794 	},
795 #endif /* CONFIG_ARM64_UAO */
796 #ifdef CONFIG_ARM64_PAN
797 	{
798 		.capability = ARM64_ALT_PAN_NOT_UAO,
799 		.def_scope = SCOPE_SYSTEM,
800 		.matches = cpufeature_pan_not_uao,
801 	},
802 #endif /* CONFIG_ARM64_PAN */
803 	{
804 		.desc = "Virtualization Host Extensions",
805 		.capability = ARM64_HAS_VIRT_HOST_EXTN,
806 		.def_scope = SCOPE_SYSTEM,
807 		.matches = runs_at_el2,
808 	},
809 	{
810 		.desc = "32-bit EL0 Support",
811 		.capability = ARM64_HAS_32BIT_EL0,
812 		.def_scope = SCOPE_SYSTEM,
813 		.matches = has_cpuid_feature,
814 		.sys_reg = SYS_ID_AA64PFR0_EL1,
815 		.sign = FTR_UNSIGNED,
816 		.field_pos = ID_AA64PFR0_EL0_SHIFT,
817 		.min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
818 	},
819 	{
820 		.desc = "Reduced HYP mapping offset",
821 		.capability = ARM64_HYP_OFFSET_LOW,
822 		.def_scope = SCOPE_SYSTEM,
823 		.matches = hyp_offset_low,
824 	},
825 	{},
826 };
827 
828 #define HWCAP_CAP(reg, field, s, min_value, type, cap)	\
829 	{							\
830 		.desc = #cap,					\
831 		.def_scope = SCOPE_SYSTEM,			\
832 		.matches = has_cpuid_feature,			\
833 		.sys_reg = reg,					\
834 		.field_pos = field,				\
835 		.sign = s,					\
836 		.min_field_value = min_value,			\
837 		.hwcap_type = type,				\
838 		.hwcap = cap,					\
839 	}
840 
841 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
842 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
843 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
844 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
845 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
846 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
847 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
848 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
849 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
850 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
851 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
852 	{},
853 };
854 
855 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
856 #ifdef CONFIG_COMPAT
857 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
858 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
859 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
860 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
861 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
862 #endif
863 	{},
864 };
865 
866 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
867 {
868 	switch (cap->hwcap_type) {
869 	case CAP_HWCAP:
870 		elf_hwcap |= cap->hwcap;
871 		break;
872 #ifdef CONFIG_COMPAT
873 	case CAP_COMPAT_HWCAP:
874 		compat_elf_hwcap |= (u32)cap->hwcap;
875 		break;
876 	case CAP_COMPAT_HWCAP2:
877 		compat_elf_hwcap2 |= (u32)cap->hwcap;
878 		break;
879 #endif
880 	default:
881 		WARN_ON(1);
882 		break;
883 	}
884 }
885 
886 /* Check if we have a particular HWCAP enabled */
887 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
888 {
889 	bool rc;
890 
891 	switch (cap->hwcap_type) {
892 	case CAP_HWCAP:
893 		rc = (elf_hwcap & cap->hwcap) != 0;
894 		break;
895 #ifdef CONFIG_COMPAT
896 	case CAP_COMPAT_HWCAP:
897 		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
898 		break;
899 	case CAP_COMPAT_HWCAP2:
900 		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
901 		break;
902 #endif
903 	default:
904 		WARN_ON(1);
905 		rc = false;
906 	}
907 
908 	return rc;
909 }
910 
911 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
912 {
913 	for (; hwcaps->matches; hwcaps++)
914 		if (hwcaps->matches(hwcaps, hwcaps->def_scope))
915 			cap_set_elf_hwcap(hwcaps);
916 }
917 
918 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
919 			    const char *info)
920 {
921 	for (; caps->matches; caps++) {
922 		if (!caps->matches(caps, caps->def_scope))
923 			continue;
924 
925 		if (!cpus_have_cap(caps->capability) && caps->desc)
926 			pr_info("%s %s\n", info, caps->desc);
927 		cpus_set_cap(caps->capability);
928 	}
929 }
930 
931 /*
932  * Run through the enabled capabilities and enable() it on all active
933  * CPUs
934  */
935 void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
936 {
937 	for (; caps->matches; caps++)
938 		if (caps->enable && cpus_have_cap(caps->capability))
939 			on_each_cpu(caps->enable, NULL, true);
940 }
941 
942 /*
943  * Flag to indicate if we have computed the system wide
944  * capabilities based on the boot time active CPUs. This
945  * will be used to determine if a new booting CPU should
946  * go through the verification process to make sure that it
947  * supports the system capabilities, without using a hotplug
948  * notifier.
949  */
950 static bool sys_caps_initialised;
951 
952 static inline void set_sys_caps_initialised(void)
953 {
954 	sys_caps_initialised = true;
955 }
956 
957 /*
958  * Check for CPU features that are used in early boot
959  * based on the Boot CPU value.
960  */
961 static void check_early_cpu_features(void)
962 {
963 	verify_cpu_run_el();
964 	verify_cpu_asid_bits();
965 }
966 
967 static void
968 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
969 {
970 
971 	for (; caps->matches; caps++)
972 		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
973 			pr_crit("CPU%d: missing HWCAP: %s\n",
974 					smp_processor_id(), caps->desc);
975 			cpu_die_early();
976 		}
977 }
978 
979 static void
980 verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
981 {
982 	for (; caps->matches; caps++) {
983 		if (!cpus_have_cap(caps->capability))
984 			continue;
985 		/*
986 		 * If the new CPU misses an advertised feature, we cannot proceed
987 		 * further, park the cpu.
988 		 */
989 		if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
990 			pr_crit("CPU%d: missing feature: %s\n",
991 					smp_processor_id(), caps->desc);
992 			cpu_die_early();
993 		}
994 		if (caps->enable)
995 			caps->enable(NULL);
996 	}
997 }
998 
999 /*
1000  * Run through the enabled system capabilities and enable() it on this CPU.
1001  * The capabilities were decided based on the available CPUs at the boot time.
1002  * Any new CPU should match the system wide status of the capability. If the
1003  * new CPU doesn't have a capability which the system now has enabled, we
1004  * cannot do anything to fix it up and could cause unexpected failures. So
1005  * we park the CPU.
1006  */
1007 void verify_local_cpu_capabilities(void)
1008 {
1009 
1010 	check_early_cpu_features();
1011 
1012 	/*
1013 	 * If we haven't computed the system capabilities, there is nothing
1014 	 * to verify.
1015 	 */
1016 	if (!sys_caps_initialised)
1017 		return;
1018 
1019 	verify_local_cpu_errata();
1020 	verify_local_cpu_features(arm64_features);
1021 	verify_local_elf_hwcaps(arm64_elf_hwcaps);
1022 	if (system_supports_32bit_el0())
1023 		verify_local_elf_hwcaps(compat_elf_hwcaps);
1024 }
1025 
1026 static void __init setup_feature_capabilities(void)
1027 {
1028 	update_cpu_capabilities(arm64_features, "detected feature:");
1029 	enable_cpu_capabilities(arm64_features);
1030 }
1031 
1032 /*
1033  * Check if the current CPU has a given feature capability.
1034  * Should be called from non-preemptible context.
1035  */
1036 bool this_cpu_has_cap(unsigned int cap)
1037 {
1038 	const struct arm64_cpu_capabilities *caps;
1039 
1040 	if (WARN_ON(preemptible()))
1041 		return false;
1042 
1043 	for (caps = arm64_features; caps->desc; caps++)
1044 		if (caps->capability == cap && caps->matches)
1045 			return caps->matches(caps, SCOPE_LOCAL_CPU);
1046 
1047 	return false;
1048 }
1049 
1050 void __init setup_cpu_features(void)
1051 {
1052 	u32 cwg;
1053 	int cls;
1054 
1055 	/* Set the CPU feature capabilies */
1056 	setup_feature_capabilities();
1057 	enable_errata_workarounds();
1058 	setup_elf_hwcaps(arm64_elf_hwcaps);
1059 
1060 	if (system_supports_32bit_el0())
1061 		setup_elf_hwcaps(compat_elf_hwcaps);
1062 
1063 	/* Advertise that we have computed the system capabilities */
1064 	set_sys_caps_initialised();
1065 
1066 	/*
1067 	 * Check for sane CTR_EL0.CWG value.
1068 	 */
1069 	cwg = cache_type_cwg();
1070 	cls = cache_line_size();
1071 	if (!cwg)
1072 		pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1073 			cls);
1074 	if (L1_CACHE_BYTES < cls)
1075 		pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1076 			L1_CACHE_BYTES, cls);
1077 }
1078 
1079 static bool __maybe_unused
1080 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1081 {
1082 	return (cpus_have_cap(ARM64_HAS_PAN) && !cpus_have_cap(ARM64_HAS_UAO));
1083 }
1084