1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Contains CPU feature definitions 4 * 5 * Copyright (C) 2015 ARM Ltd. 6 * 7 * A note for the weary kernel hacker: the code here is confusing and hard to 8 * follow! That's partly because it's solving a nasty problem, but also because 9 * there's a little bit of over-abstraction that tends to obscure what's going 10 * on behind a maze of helper functions and macros. 11 * 12 * The basic problem is that hardware folks have started gluing together CPUs 13 * with distinct architectural features; in some cases even creating SoCs where 14 * user-visible instructions are available only on a subset of the available 15 * cores. We try to address this by snapshotting the feature registers of the 16 * boot CPU and comparing these with the feature registers of each secondary 17 * CPU when bringing them up. If there is a mismatch, then we update the 18 * snapshot state to indicate the lowest-common denominator of the feature, 19 * known as the "safe" value. This snapshot state can be queried to view the 20 * "sanitised" value of a feature register. 21 * 22 * The sanitised register values are used to decide which capabilities we 23 * have in the system. These may be in the form of traditional "hwcaps" 24 * advertised to userspace or internal "cpucaps" which are used to configure 25 * things like alternative patching and static keys. While a feature mismatch 26 * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch 27 * may prevent a CPU from being onlined at all. 28 * 29 * Some implementation details worth remembering: 30 * 31 * - Mismatched features are *always* sanitised to a "safe" value, which 32 * usually indicates that the feature is not supported. 33 * 34 * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK" 35 * warning when onlining an offending CPU and the kernel will be tainted 36 * with TAINT_CPU_OUT_OF_SPEC. 37 * 38 * - Features marked as FTR_VISIBLE have their sanitised value visible to 39 * userspace. FTR_VISIBLE features in registers that are only visible 40 * to EL0 by trapping *must* have a corresponding HWCAP so that late 41 * onlining of CPUs cannot lead to features disappearing at runtime. 42 * 43 * - A "feature" is typically a 4-bit register field. A "capability" is the 44 * high-level description derived from the sanitised field value. 45 * 46 * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID 47 * scheme for fields in ID registers") to understand when feature fields 48 * may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly). 49 * 50 * - KVM exposes its own view of the feature registers to guest operating 51 * systems regardless of FTR_VISIBLE. This is typically driven from the 52 * sanitised register values to allow virtual CPUs to be migrated between 53 * arbitrary physical CPUs, but some features not present on the host are 54 * also advertised and emulated. Look at sys_reg_descs[] for the gory 55 * details. 56 * 57 * - If the arm64_ftr_bits[] for a register has a missing field, then this 58 * field is treated as STRICT RES0, including for read_sanitised_ftr_reg(). 59 * This is stronger than FTR_HIDDEN and can be used to hide features from 60 * KVM guests. 61 */ 62 63 #define pr_fmt(fmt) "CPU features: " fmt 64 65 #include <linux/bsearch.h> 66 #include <linux/cpumask.h> 67 #include <linux/crash_dump.h> 68 #include <linux/sort.h> 69 #include <linux/stop_machine.h> 70 #include <linux/types.h> 71 #include <linux/mm.h> 72 #include <linux/cpu.h> 73 #include <asm/cpu.h> 74 #include <asm/cpufeature.h> 75 #include <asm/cpu_ops.h> 76 #include <asm/fpsimd.h> 77 #include <asm/mmu_context.h> 78 #include <asm/mte.h> 79 #include <asm/processor.h> 80 #include <asm/sysreg.h> 81 #include <asm/traps.h> 82 #include <asm/virt.h> 83 84 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */ 85 static unsigned long elf_hwcap __read_mostly; 86 87 #ifdef CONFIG_COMPAT 88 #define COMPAT_ELF_HWCAP_DEFAULT \ 89 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\ 90 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\ 91 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\ 92 COMPAT_HWCAP_LPAE) 93 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT; 94 unsigned int compat_elf_hwcap2 __read_mostly; 95 #endif 96 97 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS); 98 EXPORT_SYMBOL(cpu_hwcaps); 99 static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS]; 100 101 /* Need also bit for ARM64_CB_PATCH */ 102 DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE); 103 104 bool arm64_use_ng_mappings = false; 105 EXPORT_SYMBOL(arm64_use_ng_mappings); 106 107 /* 108 * Flag to indicate if we have computed the system wide 109 * capabilities based on the boot time active CPUs. This 110 * will be used to determine if a new booting CPU should 111 * go through the verification process to make sure that it 112 * supports the system capabilities, without using a hotplug 113 * notifier. This is also used to decide if we could use 114 * the fast path for checking constant CPU caps. 115 */ 116 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready); 117 EXPORT_SYMBOL(arm64_const_caps_ready); 118 static inline void finalize_system_capabilities(void) 119 { 120 static_branch_enable(&arm64_const_caps_ready); 121 } 122 123 void dump_cpu_features(void) 124 { 125 /* file-wide pr_fmt adds "CPU features: " prefix */ 126 pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps); 127 } 128 129 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS); 130 EXPORT_SYMBOL(cpu_hwcap_keys); 131 132 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \ 133 { \ 134 .sign = SIGNED, \ 135 .visible = VISIBLE, \ 136 .strict = STRICT, \ 137 .type = TYPE, \ 138 .shift = SHIFT, \ 139 .width = WIDTH, \ 140 .safe_val = SAFE_VAL, \ 141 } 142 143 /* Define a feature with unsigned values */ 144 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \ 145 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) 146 147 /* Define a feature with a signed value */ 148 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \ 149 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) 150 151 #define ARM64_FTR_END \ 152 { \ 153 .width = 0, \ 154 } 155 156 /* meta feature for alternatives */ 157 static bool __maybe_unused 158 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused); 159 160 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap); 161 162 static bool __system_matches_cap(unsigned int n); 163 164 /* 165 * NOTE: Any changes to the visibility of features should be kept in 166 * sync with the documentation of the CPU feature register ABI. 167 */ 168 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = { 169 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RNDR_SHIFT, 4, 0), 170 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TLB_SHIFT, 4, 0), 171 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0), 172 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0), 173 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0), 174 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0), 175 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0), 176 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0), 177 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0), 178 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0), 179 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0), 180 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0), 181 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0), 182 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0), 183 ARM64_FTR_END, 184 }; 185 186 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = { 187 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_I8MM_SHIFT, 4, 0), 188 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DGH_SHIFT, 4, 0), 189 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_BF16_SHIFT, 4, 0), 190 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SPECRES_SHIFT, 4, 0), 191 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SB_SHIFT, 4, 0), 192 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FRINTTS_SHIFT, 4, 0), 193 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), 194 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPI_SHIFT, 4, 0), 195 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), 196 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPA_SHIFT, 4, 0), 197 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0), 198 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0), 199 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0), 200 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), 201 FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_API_SHIFT, 4, 0), 202 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), 203 FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_APA_SHIFT, 4, 0), 204 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0), 205 ARM64_FTR_END, 206 }; 207 208 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = { 209 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0), 210 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0), 211 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0), 212 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_AMU_SHIFT, 4, 0), 213 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_MPAM_SHIFT, 4, 0), 214 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SEL2_SHIFT, 4, 0), 215 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), 216 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0), 217 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0), 218 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0), 219 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI), 220 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI), 221 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0), 222 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0), 223 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY), 224 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY), 225 ARM64_FTR_END, 226 }; 227 228 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = { 229 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MPAMFRAC_SHIFT, 4, 0), 230 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_RASFRAC_SHIFT, 4, 0), 231 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE), 232 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MTE_SHIFT, 4, ID_AA64PFR1_MTE_NI), 233 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI), 234 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI), 235 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_BT_SHIFT, 4, 0), 236 ARM64_FTR_END, 237 }; 238 239 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = { 240 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), 241 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F64MM_SHIFT, 4, 0), 242 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), 243 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F32MM_SHIFT, 4, 0), 244 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), 245 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_I8MM_SHIFT, 4, 0), 246 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), 247 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SM4_SHIFT, 4, 0), 248 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), 249 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SHA3_SHIFT, 4, 0), 250 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), 251 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BF16_SHIFT, 4, 0), 252 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), 253 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BITPERM_SHIFT, 4, 0), 254 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), 255 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_AES_SHIFT, 4, 0), 256 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), 257 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SVEVER_SHIFT, 4, 0), 258 ARM64_FTR_END, 259 }; 260 261 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = { 262 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ECV_SHIFT, 4, 0), 263 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_FGT_SHIFT, 4, 0), 264 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EXS_SHIFT, 4, 0), 265 /* 266 * Page size not being supported at Stage-2 is not fatal. You 267 * just give up KVM if PAGE_SIZE isn't supported there. Go fix 268 * your favourite nesting hypervisor. 269 * 270 * There is a small corner case where the hypervisor explicitly 271 * advertises a given granule size at Stage-2 (value 2) on some 272 * vCPUs, and uses the fallback to Stage-1 (value 0) for other 273 * vCPUs. Although this is not forbidden by the architecture, it 274 * indicates that the hypervisor is being silly (or buggy). 275 * 276 * We make no effort to cope with this and pretend that if these 277 * fields are inconsistent across vCPUs, then it isn't worth 278 * trying to bring KVM up. 279 */ 280 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_2_SHIFT, 4, 1), 281 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_2_SHIFT, 4, 1), 282 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_2_SHIFT, 4, 1), 283 /* 284 * We already refuse to boot CPUs that don't support our configured 285 * page size, so we can only detect mismatches for a page size other 286 * than the one we're currently using. Unfortunately, SoCs like this 287 * exist in the wild so, even though we don't like it, we'll have to go 288 * along with it and treat them as non-strict. 289 */ 290 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI), 291 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI), 292 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI), 293 294 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0), 295 /* Linux shouldn't care about secure memory */ 296 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0), 297 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0), 298 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0), 299 /* 300 * Differing PARange is fine as long as all peripherals and memory are mapped 301 * within the minimum PARange of all CPUs 302 */ 303 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0), 304 ARM64_FTR_END, 305 }; 306 307 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = { 308 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_ETS_SHIFT, 4, 0), 309 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_TWED_SHIFT, 4, 0), 310 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_XNX_SHIFT, 4, 0), 311 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_SPECSEI_SHIFT, 4, 0), 312 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0), 313 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0), 314 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0), 315 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0), 316 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0), 317 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0), 318 ARM64_FTR_END, 319 }; 320 321 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = { 322 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_E0PD_SHIFT, 4, 0), 323 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EVT_SHIFT, 4, 0), 324 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_BBM_SHIFT, 4, 0), 325 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_TTL_SHIFT, 4, 0), 326 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0), 327 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IDS_SHIFT, 4, 0), 328 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0), 329 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_ST_SHIFT, 4, 0), 330 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_NV_SHIFT, 4, 0), 331 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CCIDX_SHIFT, 4, 0), 332 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0), 333 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0), 334 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0), 335 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0), 336 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0), 337 ARM64_FTR_END, 338 }; 339 340 static const struct arm64_ftr_bits ftr_ctr[] = { 341 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */ 342 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1), 343 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1), 344 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_CWG_SHIFT, 4, 0), 345 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_ERG_SHIFT, 4, 0), 346 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1), 347 /* 348 * Linux can handle differing I-cache policies. Userspace JITs will 349 * make use of *minLine. 350 * If we have differing I-cache policies, report it as the weakest - VIPT. 351 */ 352 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_L1IP_SHIFT, 2, ICACHE_POLICY_VIPT), /* L1Ip */ 353 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0), 354 ARM64_FTR_END, 355 }; 356 357 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = { 358 .name = "SYS_CTR_EL0", 359 .ftr_bits = ftr_ctr 360 }; 361 362 static const struct arm64_ftr_bits ftr_id_mmfr0[] = { 363 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_INNERSHR_SHIFT, 4, 0xf), 364 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_FCSE_SHIFT, 4, 0), 365 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_AUXREG_SHIFT, 4, 0), 366 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_TCM_SHIFT, 4, 0), 367 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_SHARELVL_SHIFT, 4, 0), 368 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_OUTERSHR_SHIFT, 4, 0xf), 369 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_PMSA_SHIFT, 4, 0), 370 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_VMSA_SHIFT, 4, 0), 371 ARM64_FTR_END, 372 }; 373 374 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = { 375 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_DOUBLELOCK_SHIFT, 4, 0), 376 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0), 377 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0), 378 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0), 379 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0), 380 /* 381 * We can instantiate multiple PMU instances with different levels 382 * of support. 383 */ 384 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0), 385 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0), 386 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6), 387 ARM64_FTR_END, 388 }; 389 390 static const struct arm64_ftr_bits ftr_mvfr2[] = { 391 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_FPMISC_SHIFT, 4, 0), 392 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_SIMDMISC_SHIFT, 4, 0), 393 ARM64_FTR_END, 394 }; 395 396 static const struct arm64_ftr_bits ftr_dczid[] = { 397 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_DZP_SHIFT, 1, 1), 398 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_BS_SHIFT, 4, 0), 399 ARM64_FTR_END, 400 }; 401 402 static const struct arm64_ftr_bits ftr_id_isar0[] = { 403 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DIVIDE_SHIFT, 4, 0), 404 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DEBUG_SHIFT, 4, 0), 405 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_COPROC_SHIFT, 4, 0), 406 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_CMPBRANCH_SHIFT, 4, 0), 407 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITFIELD_SHIFT, 4, 0), 408 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITCOUNT_SHIFT, 4, 0), 409 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_SWAP_SHIFT, 4, 0), 410 ARM64_FTR_END, 411 }; 412 413 static const struct arm64_ftr_bits ftr_id_isar5[] = { 414 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0), 415 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0), 416 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0), 417 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0), 418 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0), 419 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0), 420 ARM64_FTR_END, 421 }; 422 423 static const struct arm64_ftr_bits ftr_id_mmfr4[] = { 424 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EVT_SHIFT, 4, 0), 425 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CCIDX_SHIFT, 4, 0), 426 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_LSM_SHIFT, 4, 0), 427 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_HPDS_SHIFT, 4, 0), 428 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CNP_SHIFT, 4, 0), 429 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_XNX_SHIFT, 4, 0), 430 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_AC2_SHIFT, 4, 0), 431 432 /* 433 * SpecSEI = 1 indicates that the PE might generate an SError on an 434 * external abort on speculative read. It is safe to assume that an 435 * SError might be generated than it will not be. Hence it has been 436 * classified as FTR_HIGHER_SAFE. 437 */ 438 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_SPECSEI_SHIFT, 4, 0), 439 ARM64_FTR_END, 440 }; 441 442 static const struct arm64_ftr_bits ftr_id_isar4[] = { 443 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SWP_FRAC_SHIFT, 4, 0), 444 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_PSR_M_SHIFT, 4, 0), 445 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SYNCH_PRIM_FRAC_SHIFT, 4, 0), 446 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_BARRIER_SHIFT, 4, 0), 447 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SMC_SHIFT, 4, 0), 448 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WRITEBACK_SHIFT, 4, 0), 449 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WITHSHIFTS_SHIFT, 4, 0), 450 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_UNPRIV_SHIFT, 4, 0), 451 ARM64_FTR_END, 452 }; 453 454 static const struct arm64_ftr_bits ftr_id_mmfr5[] = { 455 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_ETS_SHIFT, 4, 0), 456 ARM64_FTR_END, 457 }; 458 459 static const struct arm64_ftr_bits ftr_id_isar6[] = { 460 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_I8MM_SHIFT, 4, 0), 461 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_BF16_SHIFT, 4, 0), 462 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SPECRES_SHIFT, 4, 0), 463 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SB_SHIFT, 4, 0), 464 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_FHM_SHIFT, 4, 0), 465 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_DP_SHIFT, 4, 0), 466 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_JSCVT_SHIFT, 4, 0), 467 ARM64_FTR_END, 468 }; 469 470 static const struct arm64_ftr_bits ftr_id_pfr0[] = { 471 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_DIT_SHIFT, 4, 0), 472 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_CSV2_SHIFT, 4, 0), 473 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE3_SHIFT, 4, 0), 474 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE2_SHIFT, 4, 0), 475 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE1_SHIFT, 4, 0), 476 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE0_SHIFT, 4, 0), 477 ARM64_FTR_END, 478 }; 479 480 static const struct arm64_ftr_bits ftr_id_pfr1[] = { 481 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GIC_SHIFT, 4, 0), 482 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRT_FRAC_SHIFT, 4, 0), 483 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SEC_FRAC_SHIFT, 4, 0), 484 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GENTIMER_SHIFT, 4, 0), 485 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRTUALIZATION_SHIFT, 4, 0), 486 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_MPROGMOD_SHIFT, 4, 0), 487 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SECURITY_SHIFT, 4, 0), 488 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_PROGMOD_SHIFT, 4, 0), 489 ARM64_FTR_END, 490 }; 491 492 static const struct arm64_ftr_bits ftr_id_pfr2[] = { 493 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_SSBS_SHIFT, 4, 0), 494 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_CSV3_SHIFT, 4, 0), 495 ARM64_FTR_END, 496 }; 497 498 static const struct arm64_ftr_bits ftr_id_dfr0[] = { 499 /* [31:28] TraceFilt */ 500 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_PERFMON_SHIFT, 4, 0xf), 501 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MPROFDBG_SHIFT, 4, 0), 502 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPTRC_SHIFT, 4, 0), 503 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPTRC_SHIFT, 4, 0), 504 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPDBG_SHIFT, 4, 0), 505 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPSDBG_SHIFT, 4, 0), 506 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPDBG_SHIFT, 4, 0), 507 ARM64_FTR_END, 508 }; 509 510 static const struct arm64_ftr_bits ftr_id_dfr1[] = { 511 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_MTPMU_SHIFT, 4, 0), 512 ARM64_FTR_END, 513 }; 514 515 static const struct arm64_ftr_bits ftr_zcr[] = { 516 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 517 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0), /* LEN */ 518 ARM64_FTR_END, 519 }; 520 521 /* 522 * Common ftr bits for a 32bit register with all hidden, strict 523 * attributes, with 4bit feature fields and a default safe value of 524 * 0. Covers the following 32bit registers: 525 * id_isar[1-4], id_mmfr[1-3], id_pfr1, mvfr[0-1] 526 */ 527 static const struct arm64_ftr_bits ftr_generic_32bits[] = { 528 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0), 529 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0), 530 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), 531 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0), 532 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), 533 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0), 534 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), 535 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), 536 ARM64_FTR_END, 537 }; 538 539 /* Table for a single 32bit feature value */ 540 static const struct arm64_ftr_bits ftr_single32[] = { 541 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0), 542 ARM64_FTR_END, 543 }; 544 545 static const struct arm64_ftr_bits ftr_raz[] = { 546 ARM64_FTR_END, 547 }; 548 549 #define ARM64_FTR_REG(id, table) { \ 550 .sys_id = id, \ 551 .reg = &(struct arm64_ftr_reg){ \ 552 .name = #id, \ 553 .ftr_bits = &((table)[0]), \ 554 }} 555 556 static const struct __ftr_reg_entry { 557 u32 sys_id; 558 struct arm64_ftr_reg *reg; 559 } arm64_ftr_regs[] = { 560 561 /* Op1 = 0, CRn = 0, CRm = 1 */ 562 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0), 563 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1), 564 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0), 565 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0), 566 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits), 567 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits), 568 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits), 569 570 /* Op1 = 0, CRn = 0, CRm = 2 */ 571 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0), 572 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits), 573 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits), 574 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits), 575 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4), 576 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5), 577 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4), 578 ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6), 579 580 /* Op1 = 0, CRn = 0, CRm = 3 */ 581 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits), 582 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits), 583 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2), 584 ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2), 585 ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1), 586 ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5), 587 588 /* Op1 = 0, CRn = 0, CRm = 4 */ 589 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0), 590 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1), 591 ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0), 592 593 /* Op1 = 0, CRn = 0, CRm = 5 */ 594 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0), 595 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz), 596 597 /* Op1 = 0, CRn = 0, CRm = 6 */ 598 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0), 599 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1), 600 601 /* Op1 = 0, CRn = 0, CRm = 7 */ 602 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0), 603 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1), 604 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2), 605 606 /* Op1 = 0, CRn = 1, CRm = 2 */ 607 ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr), 608 609 /* Op1 = 3, CRn = 0, CRm = 0 */ 610 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 }, 611 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid), 612 613 /* Op1 = 3, CRn = 14, CRm = 0 */ 614 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32), 615 }; 616 617 static int search_cmp_ftr_reg(const void *id, const void *regp) 618 { 619 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id; 620 } 621 622 /* 623 * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using 624 * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the 625 * ascending order of sys_id, we use binary search to find a matching 626 * entry. 627 * 628 * returns - Upon success, matching ftr_reg entry for id. 629 * - NULL on failure. It is upto the caller to decide 630 * the impact of a failure. 631 */ 632 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id) 633 { 634 const struct __ftr_reg_entry *ret; 635 636 ret = bsearch((const void *)(unsigned long)sys_id, 637 arm64_ftr_regs, 638 ARRAY_SIZE(arm64_ftr_regs), 639 sizeof(arm64_ftr_regs[0]), 640 search_cmp_ftr_reg); 641 if (ret) 642 return ret->reg; 643 return NULL; 644 } 645 646 /* 647 * get_arm64_ftr_reg - Looks up a feature register entry using 648 * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn(). 649 * 650 * returns - Upon success, matching ftr_reg entry for id. 651 * - NULL on failure but with an WARN_ON(). 652 */ 653 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id) 654 { 655 struct arm64_ftr_reg *reg; 656 657 reg = get_arm64_ftr_reg_nowarn(sys_id); 658 659 /* 660 * Requesting a non-existent register search is an error. Warn 661 * and let the caller handle it. 662 */ 663 WARN_ON(!reg); 664 return reg; 665 } 666 667 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg, 668 s64 ftr_val) 669 { 670 u64 mask = arm64_ftr_mask(ftrp); 671 672 reg &= ~mask; 673 reg |= (ftr_val << ftrp->shift) & mask; 674 return reg; 675 } 676 677 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new, 678 s64 cur) 679 { 680 s64 ret = 0; 681 682 switch (ftrp->type) { 683 case FTR_EXACT: 684 ret = ftrp->safe_val; 685 break; 686 case FTR_LOWER_SAFE: 687 ret = new < cur ? new : cur; 688 break; 689 case FTR_HIGHER_OR_ZERO_SAFE: 690 if (!cur || !new) 691 break; 692 fallthrough; 693 case FTR_HIGHER_SAFE: 694 ret = new > cur ? new : cur; 695 break; 696 default: 697 BUG(); 698 } 699 700 return ret; 701 } 702 703 static void __init sort_ftr_regs(void) 704 { 705 unsigned int i; 706 707 for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) { 708 const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg; 709 const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits; 710 unsigned int j = 0; 711 712 /* 713 * Features here must be sorted in descending order with respect 714 * to their shift values and should not overlap with each other. 715 */ 716 for (; ftr_bits->width != 0; ftr_bits++, j++) { 717 unsigned int width = ftr_reg->ftr_bits[j].width; 718 unsigned int shift = ftr_reg->ftr_bits[j].shift; 719 unsigned int prev_shift; 720 721 WARN((shift + width) > 64, 722 "%s has invalid feature at shift %d\n", 723 ftr_reg->name, shift); 724 725 /* 726 * Skip the first feature. There is nothing to 727 * compare against for now. 728 */ 729 if (j == 0) 730 continue; 731 732 prev_shift = ftr_reg->ftr_bits[j - 1].shift; 733 WARN((shift + width) > prev_shift, 734 "%s has feature overlap at shift %d\n", 735 ftr_reg->name, shift); 736 } 737 738 /* 739 * Skip the first register. There is nothing to 740 * compare against for now. 741 */ 742 if (i == 0) 743 continue; 744 /* 745 * Registers here must be sorted in ascending order with respect 746 * to sys_id for subsequent binary search in get_arm64_ftr_reg() 747 * to work correctly. 748 */ 749 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id); 750 } 751 } 752 753 /* 754 * Initialise the CPU feature register from Boot CPU values. 755 * Also initiliases the strict_mask for the register. 756 * Any bits that are not covered by an arm64_ftr_bits entry are considered 757 * RES0 for the system-wide value, and must strictly match. 758 */ 759 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new) 760 { 761 u64 val = 0; 762 u64 strict_mask = ~0x0ULL; 763 u64 user_mask = 0; 764 u64 valid_mask = 0; 765 766 const struct arm64_ftr_bits *ftrp; 767 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg); 768 769 if (!reg) 770 return; 771 772 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) { 773 u64 ftr_mask = arm64_ftr_mask(ftrp); 774 s64 ftr_new = arm64_ftr_value(ftrp, new); 775 776 val = arm64_ftr_set_value(ftrp, val, ftr_new); 777 778 valid_mask |= ftr_mask; 779 if (!ftrp->strict) 780 strict_mask &= ~ftr_mask; 781 if (ftrp->visible) 782 user_mask |= ftr_mask; 783 else 784 reg->user_val = arm64_ftr_set_value(ftrp, 785 reg->user_val, 786 ftrp->safe_val); 787 } 788 789 val &= valid_mask; 790 791 reg->sys_val = val; 792 reg->strict_mask = strict_mask; 793 reg->user_mask = user_mask; 794 } 795 796 extern const struct arm64_cpu_capabilities arm64_errata[]; 797 static const struct arm64_cpu_capabilities arm64_features[]; 798 799 static void __init 800 init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps) 801 { 802 for (; caps->matches; caps++) { 803 if (WARN(caps->capability >= ARM64_NCAPS, 804 "Invalid capability %d\n", caps->capability)) 805 continue; 806 if (WARN(cpu_hwcaps_ptrs[caps->capability], 807 "Duplicate entry for capability %d\n", 808 caps->capability)) 809 continue; 810 cpu_hwcaps_ptrs[caps->capability] = caps; 811 } 812 } 813 814 static void __init init_cpu_hwcaps_indirect_list(void) 815 { 816 init_cpu_hwcaps_indirect_list_from_array(arm64_features); 817 init_cpu_hwcaps_indirect_list_from_array(arm64_errata); 818 } 819 820 static void __init setup_boot_cpu_capabilities(void); 821 822 void __init init_cpu_features(struct cpuinfo_arm64 *info) 823 { 824 /* Before we start using the tables, make sure it is sorted */ 825 sort_ftr_regs(); 826 827 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr); 828 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid); 829 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq); 830 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0); 831 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1); 832 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0); 833 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1); 834 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0); 835 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1); 836 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2); 837 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0); 838 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1); 839 init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0); 840 841 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) { 842 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0); 843 init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1); 844 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0); 845 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1); 846 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2); 847 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3); 848 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4); 849 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5); 850 init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6); 851 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0); 852 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1); 853 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2); 854 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3); 855 init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4); 856 init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5); 857 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0); 858 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1); 859 init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2); 860 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0); 861 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1); 862 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2); 863 } 864 865 if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) { 866 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr); 867 sve_init_vq_map(); 868 } 869 870 /* 871 * Initialize the indirect array of CPU hwcaps capabilities pointers 872 * before we handle the boot CPU below. 873 */ 874 init_cpu_hwcaps_indirect_list(); 875 876 /* 877 * Detect and enable early CPU capabilities based on the boot CPU, 878 * after we have initialised the CPU feature infrastructure. 879 */ 880 setup_boot_cpu_capabilities(); 881 } 882 883 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new) 884 { 885 const struct arm64_ftr_bits *ftrp; 886 887 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) { 888 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val); 889 s64 ftr_new = arm64_ftr_value(ftrp, new); 890 891 if (ftr_cur == ftr_new) 892 continue; 893 /* Find a safe value */ 894 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur); 895 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new); 896 } 897 898 } 899 900 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot) 901 { 902 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id); 903 904 if (!regp) 905 return 0; 906 907 update_cpu_ftr_reg(regp, val); 908 if ((boot & regp->strict_mask) == (val & regp->strict_mask)) 909 return 0; 910 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n", 911 regp->name, boot, cpu, val); 912 return 1; 913 } 914 915 static void relax_cpu_ftr_reg(u32 sys_id, int field) 916 { 917 const struct arm64_ftr_bits *ftrp; 918 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id); 919 920 if (!regp) 921 return; 922 923 for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) { 924 if (ftrp->shift == field) { 925 regp->strict_mask &= ~arm64_ftr_mask(ftrp); 926 break; 927 } 928 } 929 930 /* Bogus field? */ 931 WARN_ON(!ftrp->width); 932 } 933 934 static int update_32bit_cpu_features(int cpu, struct cpuinfo_arm64 *info, 935 struct cpuinfo_arm64 *boot) 936 { 937 int taint = 0; 938 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); 939 940 /* 941 * If we don't have AArch32 at all then skip the checks entirely 942 * as the register values may be UNKNOWN and we're not going to be 943 * using them for anything. 944 */ 945 if (!id_aa64pfr0_32bit_el0(pfr0)) 946 return taint; 947 948 /* 949 * If we don't have AArch32 at EL1, then relax the strictness of 950 * EL1-dependent register fields to avoid spurious sanity check fails. 951 */ 952 if (!id_aa64pfr0_32bit_el1(pfr0)) { 953 relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_SMC_SHIFT); 954 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRT_FRAC_SHIFT); 955 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SEC_FRAC_SHIFT); 956 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRTUALIZATION_SHIFT); 957 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SECURITY_SHIFT); 958 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_PROGMOD_SHIFT); 959 } 960 961 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu, 962 info->reg_id_dfr0, boot->reg_id_dfr0); 963 taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu, 964 info->reg_id_dfr1, boot->reg_id_dfr1); 965 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu, 966 info->reg_id_isar0, boot->reg_id_isar0); 967 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu, 968 info->reg_id_isar1, boot->reg_id_isar1); 969 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu, 970 info->reg_id_isar2, boot->reg_id_isar2); 971 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu, 972 info->reg_id_isar3, boot->reg_id_isar3); 973 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu, 974 info->reg_id_isar4, boot->reg_id_isar4); 975 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu, 976 info->reg_id_isar5, boot->reg_id_isar5); 977 taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu, 978 info->reg_id_isar6, boot->reg_id_isar6); 979 980 /* 981 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and 982 * ACTLR formats could differ across CPUs and therefore would have to 983 * be trapped for virtualization anyway. 984 */ 985 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu, 986 info->reg_id_mmfr0, boot->reg_id_mmfr0); 987 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu, 988 info->reg_id_mmfr1, boot->reg_id_mmfr1); 989 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu, 990 info->reg_id_mmfr2, boot->reg_id_mmfr2); 991 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu, 992 info->reg_id_mmfr3, boot->reg_id_mmfr3); 993 taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu, 994 info->reg_id_mmfr4, boot->reg_id_mmfr4); 995 taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu, 996 info->reg_id_mmfr5, boot->reg_id_mmfr5); 997 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu, 998 info->reg_id_pfr0, boot->reg_id_pfr0); 999 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu, 1000 info->reg_id_pfr1, boot->reg_id_pfr1); 1001 taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu, 1002 info->reg_id_pfr2, boot->reg_id_pfr2); 1003 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu, 1004 info->reg_mvfr0, boot->reg_mvfr0); 1005 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu, 1006 info->reg_mvfr1, boot->reg_mvfr1); 1007 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu, 1008 info->reg_mvfr2, boot->reg_mvfr2); 1009 1010 return taint; 1011 } 1012 1013 /* 1014 * Update system wide CPU feature registers with the values from a 1015 * non-boot CPU. Also performs SANITY checks to make sure that there 1016 * aren't any insane variations from that of the boot CPU. 1017 */ 1018 void update_cpu_features(int cpu, 1019 struct cpuinfo_arm64 *info, 1020 struct cpuinfo_arm64 *boot) 1021 { 1022 int taint = 0; 1023 1024 /* 1025 * The kernel can handle differing I-cache policies, but otherwise 1026 * caches should look identical. Userspace JITs will make use of 1027 * *minLine. 1028 */ 1029 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu, 1030 info->reg_ctr, boot->reg_ctr); 1031 1032 /* 1033 * Userspace may perform DC ZVA instructions. Mismatched block sizes 1034 * could result in too much or too little memory being zeroed if a 1035 * process is preempted and migrated between CPUs. 1036 */ 1037 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu, 1038 info->reg_dczid, boot->reg_dczid); 1039 1040 /* If different, timekeeping will be broken (especially with KVM) */ 1041 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu, 1042 info->reg_cntfrq, boot->reg_cntfrq); 1043 1044 /* 1045 * The kernel uses self-hosted debug features and expects CPUs to 1046 * support identical debug features. We presently need CTX_CMPs, WRPs, 1047 * and BRPs to be identical. 1048 * ID_AA64DFR1 is currently RES0. 1049 */ 1050 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu, 1051 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0); 1052 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu, 1053 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1); 1054 /* 1055 * Even in big.LITTLE, processors should be identical instruction-set 1056 * wise. 1057 */ 1058 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu, 1059 info->reg_id_aa64isar0, boot->reg_id_aa64isar0); 1060 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu, 1061 info->reg_id_aa64isar1, boot->reg_id_aa64isar1); 1062 1063 /* 1064 * Differing PARange support is fine as long as all peripherals and 1065 * memory are mapped within the minimum PARange of all CPUs. 1066 * Linux should not care about secure memory. 1067 */ 1068 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu, 1069 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0); 1070 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu, 1071 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1); 1072 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu, 1073 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2); 1074 1075 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu, 1076 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0); 1077 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu, 1078 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1); 1079 1080 taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu, 1081 info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0); 1082 1083 if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) { 1084 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu, 1085 info->reg_zcr, boot->reg_zcr); 1086 1087 /* Probe vector lengths, unless we already gave up on SVE */ 1088 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) && 1089 !system_capabilities_finalized()) 1090 sve_update_vq_map(); 1091 } 1092 1093 /* 1094 * This relies on a sanitised view of the AArch64 ID registers 1095 * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last. 1096 */ 1097 taint |= update_32bit_cpu_features(cpu, info, boot); 1098 1099 /* 1100 * Mismatched CPU features are a recipe for disaster. Don't even 1101 * pretend to support them. 1102 */ 1103 if (taint) { 1104 pr_warn_once("Unsupported CPU feature variation detected.\n"); 1105 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); 1106 } 1107 } 1108 1109 u64 read_sanitised_ftr_reg(u32 id) 1110 { 1111 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id); 1112 1113 if (!regp) 1114 return 0; 1115 return regp->sys_val; 1116 } 1117 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg); 1118 1119 #define read_sysreg_case(r) \ 1120 case r: return read_sysreg_s(r) 1121 1122 /* 1123 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated. 1124 * Read the system register on the current CPU 1125 */ 1126 static u64 __read_sysreg_by_encoding(u32 sys_id) 1127 { 1128 switch (sys_id) { 1129 read_sysreg_case(SYS_ID_PFR0_EL1); 1130 read_sysreg_case(SYS_ID_PFR1_EL1); 1131 read_sysreg_case(SYS_ID_PFR2_EL1); 1132 read_sysreg_case(SYS_ID_DFR0_EL1); 1133 read_sysreg_case(SYS_ID_DFR1_EL1); 1134 read_sysreg_case(SYS_ID_MMFR0_EL1); 1135 read_sysreg_case(SYS_ID_MMFR1_EL1); 1136 read_sysreg_case(SYS_ID_MMFR2_EL1); 1137 read_sysreg_case(SYS_ID_MMFR3_EL1); 1138 read_sysreg_case(SYS_ID_MMFR4_EL1); 1139 read_sysreg_case(SYS_ID_MMFR5_EL1); 1140 read_sysreg_case(SYS_ID_ISAR0_EL1); 1141 read_sysreg_case(SYS_ID_ISAR1_EL1); 1142 read_sysreg_case(SYS_ID_ISAR2_EL1); 1143 read_sysreg_case(SYS_ID_ISAR3_EL1); 1144 read_sysreg_case(SYS_ID_ISAR4_EL1); 1145 read_sysreg_case(SYS_ID_ISAR5_EL1); 1146 read_sysreg_case(SYS_ID_ISAR6_EL1); 1147 read_sysreg_case(SYS_MVFR0_EL1); 1148 read_sysreg_case(SYS_MVFR1_EL1); 1149 read_sysreg_case(SYS_MVFR2_EL1); 1150 1151 read_sysreg_case(SYS_ID_AA64PFR0_EL1); 1152 read_sysreg_case(SYS_ID_AA64PFR1_EL1); 1153 read_sysreg_case(SYS_ID_AA64ZFR0_EL1); 1154 read_sysreg_case(SYS_ID_AA64DFR0_EL1); 1155 read_sysreg_case(SYS_ID_AA64DFR1_EL1); 1156 read_sysreg_case(SYS_ID_AA64MMFR0_EL1); 1157 read_sysreg_case(SYS_ID_AA64MMFR1_EL1); 1158 read_sysreg_case(SYS_ID_AA64MMFR2_EL1); 1159 read_sysreg_case(SYS_ID_AA64ISAR0_EL1); 1160 read_sysreg_case(SYS_ID_AA64ISAR1_EL1); 1161 1162 read_sysreg_case(SYS_CNTFRQ_EL0); 1163 read_sysreg_case(SYS_CTR_EL0); 1164 read_sysreg_case(SYS_DCZID_EL0); 1165 1166 default: 1167 BUG(); 1168 return 0; 1169 } 1170 } 1171 1172 #include <linux/irqchip/arm-gic-v3.h> 1173 1174 static bool 1175 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry) 1176 { 1177 int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign); 1178 1179 return val >= entry->min_field_value; 1180 } 1181 1182 static bool 1183 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope) 1184 { 1185 u64 val; 1186 1187 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible()); 1188 if (scope == SCOPE_SYSTEM) 1189 val = read_sanitised_ftr_reg(entry->sys_reg); 1190 else 1191 val = __read_sysreg_by_encoding(entry->sys_reg); 1192 1193 return feature_matches(val, entry); 1194 } 1195 1196 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope) 1197 { 1198 bool has_sre; 1199 1200 if (!has_cpuid_feature(entry, scope)) 1201 return false; 1202 1203 has_sre = gic_enable_sre(); 1204 if (!has_sre) 1205 pr_warn_once("%s present but disabled by higher exception level\n", 1206 entry->desc); 1207 1208 return has_sre; 1209 } 1210 1211 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused) 1212 { 1213 u32 midr = read_cpuid_id(); 1214 1215 /* Cavium ThunderX pass 1.x and 2.x */ 1216 return midr_is_cpu_model_range(midr, MIDR_THUNDERX, 1217 MIDR_CPU_VAR_REV(0, 0), 1218 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK)); 1219 } 1220 1221 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused) 1222 { 1223 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); 1224 1225 return cpuid_feature_extract_signed_field(pfr0, 1226 ID_AA64PFR0_FP_SHIFT) < 0; 1227 } 1228 1229 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry, 1230 int scope) 1231 { 1232 u64 ctr; 1233 1234 if (scope == SCOPE_SYSTEM) 1235 ctr = arm64_ftr_reg_ctrel0.sys_val; 1236 else 1237 ctr = read_cpuid_effective_cachetype(); 1238 1239 return ctr & BIT(CTR_IDC_SHIFT); 1240 } 1241 1242 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused) 1243 { 1244 /* 1245 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively 1246 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses 1247 * to the CTR_EL0 on this CPU and emulate it with the real/safe 1248 * value. 1249 */ 1250 if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT))) 1251 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0); 1252 } 1253 1254 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry, 1255 int scope) 1256 { 1257 u64 ctr; 1258 1259 if (scope == SCOPE_SYSTEM) 1260 ctr = arm64_ftr_reg_ctrel0.sys_val; 1261 else 1262 ctr = read_cpuid_cachetype(); 1263 1264 return ctr & BIT(CTR_DIC_SHIFT); 1265 } 1266 1267 static bool __maybe_unused 1268 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope) 1269 { 1270 /* 1271 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP 1272 * may share TLB entries with a CPU stuck in the crashed 1273 * kernel. 1274 */ 1275 if (is_kdump_kernel()) 1276 return false; 1277 1278 return has_cpuid_feature(entry, scope); 1279 } 1280 1281 /* 1282 * This check is triggered during the early boot before the cpufeature 1283 * is initialised. Checking the status on the local CPU allows the boot 1284 * CPU to detect the need for non-global mappings and thus avoiding a 1285 * pagetable re-write after all the CPUs are booted. This check will be 1286 * anyway run on individual CPUs, allowing us to get the consistent 1287 * state once the SMP CPUs are up and thus make the switch to non-global 1288 * mappings if required. 1289 */ 1290 bool kaslr_requires_kpti(void) 1291 { 1292 if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE)) 1293 return false; 1294 1295 /* 1296 * E0PD does a similar job to KPTI so can be used instead 1297 * where available. 1298 */ 1299 if (IS_ENABLED(CONFIG_ARM64_E0PD)) { 1300 u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1); 1301 if (cpuid_feature_extract_unsigned_field(mmfr2, 1302 ID_AA64MMFR2_E0PD_SHIFT)) 1303 return false; 1304 } 1305 1306 /* 1307 * Systems affected by Cavium erratum 24756 are incompatible 1308 * with KPTI. 1309 */ 1310 if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) { 1311 extern const struct midr_range cavium_erratum_27456_cpus[]; 1312 1313 if (is_midr_in_range_list(read_cpuid_id(), 1314 cavium_erratum_27456_cpus)) 1315 return false; 1316 } 1317 1318 return kaslr_offset() > 0; 1319 } 1320 1321 static bool __meltdown_safe = true; 1322 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */ 1323 1324 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry, 1325 int scope) 1326 { 1327 /* List of CPUs that are not vulnerable and don't need KPTI */ 1328 static const struct midr_range kpti_safe_list[] = { 1329 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2), 1330 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN), 1331 MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53), 1332 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35), 1333 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53), 1334 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55), 1335 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57), 1336 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72), 1337 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73), 1338 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110), 1339 MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL), 1340 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD), 1341 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER), 1342 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER), 1343 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER), 1344 { /* sentinel */ } 1345 }; 1346 char const *str = "kpti command line option"; 1347 bool meltdown_safe; 1348 1349 meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list); 1350 1351 /* Defer to CPU feature registers */ 1352 if (has_cpuid_feature(entry, scope)) 1353 meltdown_safe = true; 1354 1355 if (!meltdown_safe) 1356 __meltdown_safe = false; 1357 1358 /* 1359 * For reasons that aren't entirely clear, enabling KPTI on Cavium 1360 * ThunderX leads to apparent I-cache corruption of kernel text, which 1361 * ends as well as you might imagine. Don't even try. 1362 */ 1363 if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) { 1364 str = "ARM64_WORKAROUND_CAVIUM_27456"; 1365 __kpti_forced = -1; 1366 } 1367 1368 /* Useful for KASLR robustness */ 1369 if (kaslr_requires_kpti()) { 1370 if (!__kpti_forced) { 1371 str = "KASLR"; 1372 __kpti_forced = 1; 1373 } 1374 } 1375 1376 if (cpu_mitigations_off() && !__kpti_forced) { 1377 str = "mitigations=off"; 1378 __kpti_forced = -1; 1379 } 1380 1381 if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) { 1382 pr_info_once("kernel page table isolation disabled by kernel configuration\n"); 1383 return false; 1384 } 1385 1386 /* Forced? */ 1387 if (__kpti_forced) { 1388 pr_info_once("kernel page table isolation forced %s by %s\n", 1389 __kpti_forced > 0 ? "ON" : "OFF", str); 1390 return __kpti_forced > 0; 1391 } 1392 1393 return !meltdown_safe; 1394 } 1395 1396 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0 1397 static void 1398 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused) 1399 { 1400 typedef void (kpti_remap_fn)(int, int, phys_addr_t); 1401 extern kpti_remap_fn idmap_kpti_install_ng_mappings; 1402 kpti_remap_fn *remap_fn; 1403 1404 int cpu = smp_processor_id(); 1405 1406 /* 1407 * We don't need to rewrite the page-tables if either we've done 1408 * it already or we have KASLR enabled and therefore have not 1409 * created any global mappings at all. 1410 */ 1411 if (arm64_use_ng_mappings) 1412 return; 1413 1414 remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings); 1415 1416 cpu_install_idmap(); 1417 remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir)); 1418 cpu_uninstall_idmap(); 1419 1420 if (!cpu) 1421 arm64_use_ng_mappings = true; 1422 1423 return; 1424 } 1425 #else 1426 static void 1427 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused) 1428 { 1429 } 1430 #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */ 1431 1432 static int __init parse_kpti(char *str) 1433 { 1434 bool enabled; 1435 int ret = strtobool(str, &enabled); 1436 1437 if (ret) 1438 return ret; 1439 1440 __kpti_forced = enabled ? 1 : -1; 1441 return 0; 1442 } 1443 early_param("kpti", parse_kpti); 1444 1445 #ifdef CONFIG_ARM64_HW_AFDBM 1446 static inline void __cpu_enable_hw_dbm(void) 1447 { 1448 u64 tcr = read_sysreg(tcr_el1) | TCR_HD; 1449 1450 write_sysreg(tcr, tcr_el1); 1451 isb(); 1452 local_flush_tlb_all(); 1453 } 1454 1455 static bool cpu_has_broken_dbm(void) 1456 { 1457 /* List of CPUs which have broken DBM support. */ 1458 static const struct midr_range cpus[] = { 1459 #ifdef CONFIG_ARM64_ERRATUM_1024718 1460 MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0), // A55 r0p0 -r1p0 1461 /* Kryo4xx Silver (rdpe => r1p0) */ 1462 MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe), 1463 #endif 1464 {}, 1465 }; 1466 1467 return is_midr_in_range_list(read_cpuid_id(), cpus); 1468 } 1469 1470 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap) 1471 { 1472 return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) && 1473 !cpu_has_broken_dbm(); 1474 } 1475 1476 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap) 1477 { 1478 if (cpu_can_use_dbm(cap)) 1479 __cpu_enable_hw_dbm(); 1480 } 1481 1482 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap, 1483 int __unused) 1484 { 1485 static bool detected = false; 1486 /* 1487 * DBM is a non-conflicting feature. i.e, the kernel can safely 1488 * run a mix of CPUs with and without the feature. So, we 1489 * unconditionally enable the capability to allow any late CPU 1490 * to use the feature. We only enable the control bits on the 1491 * CPU, if it actually supports. 1492 * 1493 * We have to make sure we print the "feature" detection only 1494 * when at least one CPU actually uses it. So check if this CPU 1495 * can actually use it and print the message exactly once. 1496 * 1497 * This is safe as all CPUs (including secondary CPUs - due to the 1498 * LOCAL_CPU scope - and the hotplugged CPUs - via verification) 1499 * goes through the "matches" check exactly once. Also if a CPU 1500 * matches the criteria, it is guaranteed that the CPU will turn 1501 * the DBM on, as the capability is unconditionally enabled. 1502 */ 1503 if (!detected && cpu_can_use_dbm(cap)) { 1504 detected = true; 1505 pr_info("detected: Hardware dirty bit management\n"); 1506 } 1507 1508 return true; 1509 } 1510 1511 #endif 1512 1513 #ifdef CONFIG_ARM64_AMU_EXTN 1514 1515 /* 1516 * The "amu_cpus" cpumask only signals that the CPU implementation for the 1517 * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide 1518 * information regarding all the events that it supports. When a CPU bit is 1519 * set in the cpumask, the user of this feature can only rely on the presence 1520 * of the 4 fixed counters for that CPU. But this does not guarantee that the 1521 * counters are enabled or access to these counters is enabled by code 1522 * executed at higher exception levels (firmware). 1523 */ 1524 static struct cpumask amu_cpus __read_mostly; 1525 1526 bool cpu_has_amu_feat(int cpu) 1527 { 1528 return cpumask_test_cpu(cpu, &amu_cpus); 1529 } 1530 1531 /* Initialize the use of AMU counters for frequency invariance */ 1532 extern void init_cpu_freq_invariance_counters(void); 1533 1534 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap) 1535 { 1536 if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) { 1537 pr_info("detected CPU%d: Activity Monitors Unit (AMU)\n", 1538 smp_processor_id()); 1539 cpumask_set_cpu(smp_processor_id(), &amu_cpus); 1540 init_cpu_freq_invariance_counters(); 1541 } 1542 } 1543 1544 static bool has_amu(const struct arm64_cpu_capabilities *cap, 1545 int __unused) 1546 { 1547 /* 1548 * The AMU extension is a non-conflicting feature: the kernel can 1549 * safely run a mix of CPUs with and without support for the 1550 * activity monitors extension. Therefore, unconditionally enable 1551 * the capability to allow any late CPU to use the feature. 1552 * 1553 * With this feature unconditionally enabled, the cpu_enable 1554 * function will be called for all CPUs that match the criteria, 1555 * including secondary and hotplugged, marking this feature as 1556 * present on that respective CPU. The enable function will also 1557 * print a detection message. 1558 */ 1559 1560 return true; 1561 } 1562 #endif 1563 1564 #ifdef CONFIG_ARM64_VHE 1565 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused) 1566 { 1567 return is_kernel_in_hyp_mode(); 1568 } 1569 1570 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused) 1571 { 1572 /* 1573 * Copy register values that aren't redirected by hardware. 1574 * 1575 * Before code patching, we only set tpidr_el1, all CPUs need to copy 1576 * this value to tpidr_el2 before we patch the code. Once we've done 1577 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to 1578 * do anything here. 1579 */ 1580 if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN)) 1581 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2); 1582 } 1583 #endif 1584 1585 static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused) 1586 { 1587 u64 val = read_sysreg_s(SYS_CLIDR_EL1); 1588 1589 /* Check that CLIDR_EL1.LOU{U,IS} are both 0 */ 1590 WARN_ON(val & (7 << 27 | 7 << 21)); 1591 } 1592 1593 #ifdef CONFIG_ARM64_PAN 1594 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused) 1595 { 1596 /* 1597 * We modify PSTATE. This won't work from irq context as the PSTATE 1598 * is discarded once we return from the exception. 1599 */ 1600 WARN_ON_ONCE(in_interrupt()); 1601 1602 sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0); 1603 asm(SET_PSTATE_PAN(1)); 1604 } 1605 #endif /* CONFIG_ARM64_PAN */ 1606 1607 #ifdef CONFIG_ARM64_RAS_EXTN 1608 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused) 1609 { 1610 /* Firmware may have left a deferred SError in this register. */ 1611 write_sysreg_s(0, SYS_DISR_EL1); 1612 } 1613 #endif /* CONFIG_ARM64_RAS_EXTN */ 1614 1615 #ifdef CONFIG_ARM64_PTR_AUTH 1616 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope) 1617 { 1618 int boot_val, sec_val; 1619 1620 /* We don't expect to be called with SCOPE_SYSTEM */ 1621 WARN_ON(scope == SCOPE_SYSTEM); 1622 /* 1623 * The ptr-auth feature levels are not intercompatible with lower 1624 * levels. Hence we must match ptr-auth feature level of the secondary 1625 * CPUs with that of the boot CPU. The level of boot cpu is fetched 1626 * from the sanitised register whereas direct register read is done for 1627 * the secondary CPUs. 1628 * The sanitised feature state is guaranteed to match that of the 1629 * boot CPU as a mismatched secondary CPU is parked before it gets 1630 * a chance to update the state, with the capability. 1631 */ 1632 boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg), 1633 entry->field_pos, entry->sign); 1634 if (scope & SCOPE_BOOT_CPU) 1635 return boot_val >= entry->min_field_value; 1636 /* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */ 1637 sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg), 1638 entry->field_pos, entry->sign); 1639 return sec_val == boot_val; 1640 } 1641 1642 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry, 1643 int scope) 1644 { 1645 return has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH], scope) || 1646 has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope); 1647 } 1648 1649 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry, 1650 int __unused) 1651 { 1652 return __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH) || 1653 __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF); 1654 } 1655 #endif /* CONFIG_ARM64_PTR_AUTH */ 1656 1657 #ifdef CONFIG_ARM64_E0PD 1658 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap) 1659 { 1660 if (this_cpu_has_cap(ARM64_HAS_E0PD)) 1661 sysreg_clear_set(tcr_el1, 0, TCR_E0PD1); 1662 } 1663 #endif /* CONFIG_ARM64_E0PD */ 1664 1665 #ifdef CONFIG_ARM64_PSEUDO_NMI 1666 static bool enable_pseudo_nmi; 1667 1668 static int __init early_enable_pseudo_nmi(char *p) 1669 { 1670 return strtobool(p, &enable_pseudo_nmi); 1671 } 1672 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi); 1673 1674 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry, 1675 int scope) 1676 { 1677 return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope); 1678 } 1679 #endif 1680 1681 #ifdef CONFIG_ARM64_BTI 1682 static void bti_enable(const struct arm64_cpu_capabilities *__unused) 1683 { 1684 /* 1685 * Use of X16/X17 for tail-calls and trampolines that jump to 1686 * function entry points using BR is a requirement for 1687 * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI. 1688 * So, be strict and forbid other BRs using other registers to 1689 * jump onto a PACIxSP instruction: 1690 */ 1691 sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1); 1692 isb(); 1693 } 1694 #endif /* CONFIG_ARM64_BTI */ 1695 1696 #ifdef CONFIG_ARM64_MTE 1697 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap) 1698 { 1699 static bool cleared_zero_page = false; 1700 1701 /* 1702 * Clear the tags in the zero page. This needs to be done via the 1703 * linear map which has the Tagged attribute. 1704 */ 1705 if (!cleared_zero_page) { 1706 cleared_zero_page = true; 1707 mte_clear_page_tags(lm_alias(empty_zero_page)); 1708 } 1709 } 1710 #endif /* CONFIG_ARM64_MTE */ 1711 1712 /* Internal helper functions to match cpu capability type */ 1713 static bool 1714 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap) 1715 { 1716 return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU); 1717 } 1718 1719 static bool 1720 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap) 1721 { 1722 return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU); 1723 } 1724 1725 static bool 1726 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap) 1727 { 1728 return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT); 1729 } 1730 1731 static const struct arm64_cpu_capabilities arm64_features[] = { 1732 { 1733 .desc = "GIC system register CPU interface", 1734 .capability = ARM64_HAS_SYSREG_GIC_CPUIF, 1735 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, 1736 .matches = has_useable_gicv3_cpuif, 1737 .sys_reg = SYS_ID_AA64PFR0_EL1, 1738 .field_pos = ID_AA64PFR0_GIC_SHIFT, 1739 .sign = FTR_UNSIGNED, 1740 .min_field_value = 1, 1741 }, 1742 #ifdef CONFIG_ARM64_PAN 1743 { 1744 .desc = "Privileged Access Never", 1745 .capability = ARM64_HAS_PAN, 1746 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1747 .matches = has_cpuid_feature, 1748 .sys_reg = SYS_ID_AA64MMFR1_EL1, 1749 .field_pos = ID_AA64MMFR1_PAN_SHIFT, 1750 .sign = FTR_UNSIGNED, 1751 .min_field_value = 1, 1752 .cpu_enable = cpu_enable_pan, 1753 }, 1754 #endif /* CONFIG_ARM64_PAN */ 1755 #ifdef CONFIG_ARM64_LSE_ATOMICS 1756 { 1757 .desc = "LSE atomic instructions", 1758 .capability = ARM64_HAS_LSE_ATOMICS, 1759 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1760 .matches = has_cpuid_feature, 1761 .sys_reg = SYS_ID_AA64ISAR0_EL1, 1762 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT, 1763 .sign = FTR_UNSIGNED, 1764 .min_field_value = 2, 1765 }, 1766 #endif /* CONFIG_ARM64_LSE_ATOMICS */ 1767 { 1768 .desc = "Software prefetching using PRFM", 1769 .capability = ARM64_HAS_NO_HW_PREFETCH, 1770 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE, 1771 .matches = has_no_hw_prefetch, 1772 }, 1773 #ifdef CONFIG_ARM64_UAO 1774 { 1775 .desc = "User Access Override", 1776 .capability = ARM64_HAS_UAO, 1777 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1778 .matches = has_cpuid_feature, 1779 .sys_reg = SYS_ID_AA64MMFR2_EL1, 1780 .field_pos = ID_AA64MMFR2_UAO_SHIFT, 1781 .min_field_value = 1, 1782 /* 1783 * We rely on stop_machine() calling uao_thread_switch() to set 1784 * UAO immediately after patching. 1785 */ 1786 }, 1787 #endif /* CONFIG_ARM64_UAO */ 1788 #ifdef CONFIG_ARM64_PAN 1789 { 1790 .capability = ARM64_ALT_PAN_NOT_UAO, 1791 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1792 .matches = cpufeature_pan_not_uao, 1793 }, 1794 #endif /* CONFIG_ARM64_PAN */ 1795 #ifdef CONFIG_ARM64_VHE 1796 { 1797 .desc = "Virtualization Host Extensions", 1798 .capability = ARM64_HAS_VIRT_HOST_EXTN, 1799 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, 1800 .matches = runs_at_el2, 1801 .cpu_enable = cpu_copy_el2regs, 1802 }, 1803 #endif /* CONFIG_ARM64_VHE */ 1804 { 1805 .desc = "32-bit EL0 Support", 1806 .capability = ARM64_HAS_32BIT_EL0, 1807 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1808 .matches = has_cpuid_feature, 1809 .sys_reg = SYS_ID_AA64PFR0_EL1, 1810 .sign = FTR_UNSIGNED, 1811 .field_pos = ID_AA64PFR0_EL0_SHIFT, 1812 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT, 1813 }, 1814 #ifdef CONFIG_KVM 1815 { 1816 .desc = "32-bit EL1 Support", 1817 .capability = ARM64_HAS_32BIT_EL1, 1818 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1819 .matches = has_cpuid_feature, 1820 .sys_reg = SYS_ID_AA64PFR0_EL1, 1821 .sign = FTR_UNSIGNED, 1822 .field_pos = ID_AA64PFR0_EL1_SHIFT, 1823 .min_field_value = ID_AA64PFR0_EL1_32BIT_64BIT, 1824 }, 1825 #endif 1826 { 1827 .desc = "Kernel page table isolation (KPTI)", 1828 .capability = ARM64_UNMAP_KERNEL_AT_EL0, 1829 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE, 1830 /* 1831 * The ID feature fields below are used to indicate that 1832 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for 1833 * more details. 1834 */ 1835 .sys_reg = SYS_ID_AA64PFR0_EL1, 1836 .field_pos = ID_AA64PFR0_CSV3_SHIFT, 1837 .min_field_value = 1, 1838 .matches = unmap_kernel_at_el0, 1839 .cpu_enable = kpti_install_ng_mappings, 1840 }, 1841 { 1842 /* FP/SIMD is not implemented */ 1843 .capability = ARM64_HAS_NO_FPSIMD, 1844 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE, 1845 .min_field_value = 0, 1846 .matches = has_no_fpsimd, 1847 }, 1848 #ifdef CONFIG_ARM64_PMEM 1849 { 1850 .desc = "Data cache clean to Point of Persistence", 1851 .capability = ARM64_HAS_DCPOP, 1852 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1853 .matches = has_cpuid_feature, 1854 .sys_reg = SYS_ID_AA64ISAR1_EL1, 1855 .field_pos = ID_AA64ISAR1_DPB_SHIFT, 1856 .min_field_value = 1, 1857 }, 1858 { 1859 .desc = "Data cache clean to Point of Deep Persistence", 1860 .capability = ARM64_HAS_DCPODP, 1861 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1862 .matches = has_cpuid_feature, 1863 .sys_reg = SYS_ID_AA64ISAR1_EL1, 1864 .sign = FTR_UNSIGNED, 1865 .field_pos = ID_AA64ISAR1_DPB_SHIFT, 1866 .min_field_value = 2, 1867 }, 1868 #endif 1869 #ifdef CONFIG_ARM64_SVE 1870 { 1871 .desc = "Scalable Vector Extension", 1872 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1873 .capability = ARM64_SVE, 1874 .sys_reg = SYS_ID_AA64PFR0_EL1, 1875 .sign = FTR_UNSIGNED, 1876 .field_pos = ID_AA64PFR0_SVE_SHIFT, 1877 .min_field_value = ID_AA64PFR0_SVE, 1878 .matches = has_cpuid_feature, 1879 .cpu_enable = sve_kernel_enable, 1880 }, 1881 #endif /* CONFIG_ARM64_SVE */ 1882 #ifdef CONFIG_ARM64_RAS_EXTN 1883 { 1884 .desc = "RAS Extension Support", 1885 .capability = ARM64_HAS_RAS_EXTN, 1886 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1887 .matches = has_cpuid_feature, 1888 .sys_reg = SYS_ID_AA64PFR0_EL1, 1889 .sign = FTR_UNSIGNED, 1890 .field_pos = ID_AA64PFR0_RAS_SHIFT, 1891 .min_field_value = ID_AA64PFR0_RAS_V1, 1892 .cpu_enable = cpu_clear_disr, 1893 }, 1894 #endif /* CONFIG_ARM64_RAS_EXTN */ 1895 #ifdef CONFIG_ARM64_AMU_EXTN 1896 { 1897 /* 1898 * The feature is enabled by default if CONFIG_ARM64_AMU_EXTN=y. 1899 * Therefore, don't provide .desc as we don't want the detection 1900 * message to be shown until at least one CPU is detected to 1901 * support the feature. 1902 */ 1903 .capability = ARM64_HAS_AMU_EXTN, 1904 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE, 1905 .matches = has_amu, 1906 .sys_reg = SYS_ID_AA64PFR0_EL1, 1907 .sign = FTR_UNSIGNED, 1908 .field_pos = ID_AA64PFR0_AMU_SHIFT, 1909 .min_field_value = ID_AA64PFR0_AMU, 1910 .cpu_enable = cpu_amu_enable, 1911 }, 1912 #endif /* CONFIG_ARM64_AMU_EXTN */ 1913 { 1914 .desc = "Data cache clean to the PoU not required for I/D coherence", 1915 .capability = ARM64_HAS_CACHE_IDC, 1916 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1917 .matches = has_cache_idc, 1918 .cpu_enable = cpu_emulate_effective_ctr, 1919 }, 1920 { 1921 .desc = "Instruction cache invalidation not required for I/D coherence", 1922 .capability = ARM64_HAS_CACHE_DIC, 1923 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1924 .matches = has_cache_dic, 1925 }, 1926 { 1927 .desc = "Stage-2 Force Write-Back", 1928 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1929 .capability = ARM64_HAS_STAGE2_FWB, 1930 .sys_reg = SYS_ID_AA64MMFR2_EL1, 1931 .sign = FTR_UNSIGNED, 1932 .field_pos = ID_AA64MMFR2_FWB_SHIFT, 1933 .min_field_value = 1, 1934 .matches = has_cpuid_feature, 1935 .cpu_enable = cpu_has_fwb, 1936 }, 1937 { 1938 .desc = "ARMv8.4 Translation Table Level", 1939 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1940 .capability = ARM64_HAS_ARMv8_4_TTL, 1941 .sys_reg = SYS_ID_AA64MMFR2_EL1, 1942 .sign = FTR_UNSIGNED, 1943 .field_pos = ID_AA64MMFR2_TTL_SHIFT, 1944 .min_field_value = 1, 1945 .matches = has_cpuid_feature, 1946 }, 1947 { 1948 .desc = "TLB range maintenance instructions", 1949 .capability = ARM64_HAS_TLB_RANGE, 1950 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1951 .matches = has_cpuid_feature, 1952 .sys_reg = SYS_ID_AA64ISAR0_EL1, 1953 .field_pos = ID_AA64ISAR0_TLB_SHIFT, 1954 .sign = FTR_UNSIGNED, 1955 .min_field_value = ID_AA64ISAR0_TLB_RANGE, 1956 }, 1957 #ifdef CONFIG_ARM64_HW_AFDBM 1958 { 1959 /* 1960 * Since we turn this on always, we don't want the user to 1961 * think that the feature is available when it may not be. 1962 * So hide the description. 1963 * 1964 * .desc = "Hardware pagetable Dirty Bit Management", 1965 * 1966 */ 1967 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE, 1968 .capability = ARM64_HW_DBM, 1969 .sys_reg = SYS_ID_AA64MMFR1_EL1, 1970 .sign = FTR_UNSIGNED, 1971 .field_pos = ID_AA64MMFR1_HADBS_SHIFT, 1972 .min_field_value = 2, 1973 .matches = has_hw_dbm, 1974 .cpu_enable = cpu_enable_hw_dbm, 1975 }, 1976 #endif 1977 { 1978 .desc = "CRC32 instructions", 1979 .capability = ARM64_HAS_CRC32, 1980 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1981 .matches = has_cpuid_feature, 1982 .sys_reg = SYS_ID_AA64ISAR0_EL1, 1983 .field_pos = ID_AA64ISAR0_CRC32_SHIFT, 1984 .min_field_value = 1, 1985 }, 1986 { 1987 .desc = "Speculative Store Bypassing Safe (SSBS)", 1988 .capability = ARM64_SSBS, 1989 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 1990 .matches = has_cpuid_feature, 1991 .sys_reg = SYS_ID_AA64PFR1_EL1, 1992 .field_pos = ID_AA64PFR1_SSBS_SHIFT, 1993 .sign = FTR_UNSIGNED, 1994 .min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY, 1995 }, 1996 #ifdef CONFIG_ARM64_CNP 1997 { 1998 .desc = "Common not Private translations", 1999 .capability = ARM64_HAS_CNP, 2000 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2001 .matches = has_useable_cnp, 2002 .sys_reg = SYS_ID_AA64MMFR2_EL1, 2003 .sign = FTR_UNSIGNED, 2004 .field_pos = ID_AA64MMFR2_CNP_SHIFT, 2005 .min_field_value = 1, 2006 .cpu_enable = cpu_enable_cnp, 2007 }, 2008 #endif 2009 { 2010 .desc = "Speculation barrier (SB)", 2011 .capability = ARM64_HAS_SB, 2012 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2013 .matches = has_cpuid_feature, 2014 .sys_reg = SYS_ID_AA64ISAR1_EL1, 2015 .field_pos = ID_AA64ISAR1_SB_SHIFT, 2016 .sign = FTR_UNSIGNED, 2017 .min_field_value = 1, 2018 }, 2019 #ifdef CONFIG_ARM64_PTR_AUTH 2020 { 2021 .desc = "Address authentication (architected algorithm)", 2022 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH, 2023 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE, 2024 .sys_reg = SYS_ID_AA64ISAR1_EL1, 2025 .sign = FTR_UNSIGNED, 2026 .field_pos = ID_AA64ISAR1_APA_SHIFT, 2027 .min_field_value = ID_AA64ISAR1_APA_ARCHITECTED, 2028 .matches = has_address_auth_cpucap, 2029 }, 2030 { 2031 .desc = "Address authentication (IMP DEF algorithm)", 2032 .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF, 2033 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE, 2034 .sys_reg = SYS_ID_AA64ISAR1_EL1, 2035 .sign = FTR_UNSIGNED, 2036 .field_pos = ID_AA64ISAR1_API_SHIFT, 2037 .min_field_value = ID_AA64ISAR1_API_IMP_DEF, 2038 .matches = has_address_auth_cpucap, 2039 }, 2040 { 2041 .capability = ARM64_HAS_ADDRESS_AUTH, 2042 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE, 2043 .matches = has_address_auth_metacap, 2044 }, 2045 { 2046 .desc = "Generic authentication (architected algorithm)", 2047 .capability = ARM64_HAS_GENERIC_AUTH_ARCH, 2048 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2049 .sys_reg = SYS_ID_AA64ISAR1_EL1, 2050 .sign = FTR_UNSIGNED, 2051 .field_pos = ID_AA64ISAR1_GPA_SHIFT, 2052 .min_field_value = ID_AA64ISAR1_GPA_ARCHITECTED, 2053 .matches = has_cpuid_feature, 2054 }, 2055 { 2056 .desc = "Generic authentication (IMP DEF algorithm)", 2057 .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF, 2058 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2059 .sys_reg = SYS_ID_AA64ISAR1_EL1, 2060 .sign = FTR_UNSIGNED, 2061 .field_pos = ID_AA64ISAR1_GPI_SHIFT, 2062 .min_field_value = ID_AA64ISAR1_GPI_IMP_DEF, 2063 .matches = has_cpuid_feature, 2064 }, 2065 { 2066 .capability = ARM64_HAS_GENERIC_AUTH, 2067 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2068 .matches = has_generic_auth, 2069 }, 2070 #endif /* CONFIG_ARM64_PTR_AUTH */ 2071 #ifdef CONFIG_ARM64_PSEUDO_NMI 2072 { 2073 /* 2074 * Depends on having GICv3 2075 */ 2076 .desc = "IRQ priority masking", 2077 .capability = ARM64_HAS_IRQ_PRIO_MASKING, 2078 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, 2079 .matches = can_use_gic_priorities, 2080 .sys_reg = SYS_ID_AA64PFR0_EL1, 2081 .field_pos = ID_AA64PFR0_GIC_SHIFT, 2082 .sign = FTR_UNSIGNED, 2083 .min_field_value = 1, 2084 }, 2085 #endif 2086 #ifdef CONFIG_ARM64_E0PD 2087 { 2088 .desc = "E0PD", 2089 .capability = ARM64_HAS_E0PD, 2090 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2091 .sys_reg = SYS_ID_AA64MMFR2_EL1, 2092 .sign = FTR_UNSIGNED, 2093 .field_pos = ID_AA64MMFR2_E0PD_SHIFT, 2094 .matches = has_cpuid_feature, 2095 .min_field_value = 1, 2096 .cpu_enable = cpu_enable_e0pd, 2097 }, 2098 #endif 2099 #ifdef CONFIG_ARCH_RANDOM 2100 { 2101 .desc = "Random Number Generator", 2102 .capability = ARM64_HAS_RNG, 2103 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2104 .matches = has_cpuid_feature, 2105 .sys_reg = SYS_ID_AA64ISAR0_EL1, 2106 .field_pos = ID_AA64ISAR0_RNDR_SHIFT, 2107 .sign = FTR_UNSIGNED, 2108 .min_field_value = 1, 2109 }, 2110 #endif 2111 #ifdef CONFIG_ARM64_BTI 2112 { 2113 .desc = "Branch Target Identification", 2114 .capability = ARM64_BTI, 2115 #ifdef CONFIG_ARM64_BTI_KERNEL 2116 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, 2117 #else 2118 .type = ARM64_CPUCAP_SYSTEM_FEATURE, 2119 #endif 2120 .matches = has_cpuid_feature, 2121 .cpu_enable = bti_enable, 2122 .sys_reg = SYS_ID_AA64PFR1_EL1, 2123 .field_pos = ID_AA64PFR1_BT_SHIFT, 2124 .min_field_value = ID_AA64PFR1_BT_BTI, 2125 .sign = FTR_UNSIGNED, 2126 }, 2127 #endif 2128 #ifdef CONFIG_ARM64_MTE 2129 { 2130 .desc = "Memory Tagging Extension", 2131 .capability = ARM64_MTE, 2132 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, 2133 .matches = has_cpuid_feature, 2134 .sys_reg = SYS_ID_AA64PFR1_EL1, 2135 .field_pos = ID_AA64PFR1_MTE_SHIFT, 2136 .min_field_value = ID_AA64PFR1_MTE, 2137 .sign = FTR_UNSIGNED, 2138 .cpu_enable = cpu_enable_mte, 2139 }, 2140 #endif /* CONFIG_ARM64_MTE */ 2141 {}, 2142 }; 2143 2144 #define HWCAP_CPUID_MATCH(reg, field, s, min_value) \ 2145 .matches = has_cpuid_feature, \ 2146 .sys_reg = reg, \ 2147 .field_pos = field, \ 2148 .sign = s, \ 2149 .min_field_value = min_value, 2150 2151 #define __HWCAP_CAP(name, cap_type, cap) \ 2152 .desc = name, \ 2153 .type = ARM64_CPUCAP_SYSTEM_FEATURE, \ 2154 .hwcap_type = cap_type, \ 2155 .hwcap = cap, \ 2156 2157 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap) \ 2158 { \ 2159 __HWCAP_CAP(#cap, cap_type, cap) \ 2160 HWCAP_CPUID_MATCH(reg, field, s, min_value) \ 2161 } 2162 2163 #define HWCAP_MULTI_CAP(list, cap_type, cap) \ 2164 { \ 2165 __HWCAP_CAP(#cap, cap_type, cap) \ 2166 .matches = cpucap_multi_entry_cap_matches, \ 2167 .match_list = list, \ 2168 } 2169 2170 #define HWCAP_CAP_MATCH(match, cap_type, cap) \ 2171 { \ 2172 __HWCAP_CAP(#cap, cap_type, cap) \ 2173 .matches = match, \ 2174 } 2175 2176 #ifdef CONFIG_ARM64_PTR_AUTH 2177 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = { 2178 { 2179 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_APA_SHIFT, 2180 FTR_UNSIGNED, ID_AA64ISAR1_APA_ARCHITECTED) 2181 }, 2182 { 2183 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_API_SHIFT, 2184 FTR_UNSIGNED, ID_AA64ISAR1_API_IMP_DEF) 2185 }, 2186 {}, 2187 }; 2188 2189 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = { 2190 { 2191 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPA_SHIFT, 2192 FTR_UNSIGNED, ID_AA64ISAR1_GPA_ARCHITECTED) 2193 }, 2194 { 2195 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPI_SHIFT, 2196 FTR_UNSIGNED, ID_AA64ISAR1_GPI_IMP_DEF) 2197 }, 2198 {}, 2199 }; 2200 #endif 2201 2202 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = { 2203 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL), 2204 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES), 2205 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1), 2206 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2), 2207 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512), 2208 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32), 2209 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS), 2210 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM), 2211 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3), 2212 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3), 2213 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4), 2214 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP), 2215 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM), 2216 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM), 2217 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2), 2218 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RNDR_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RNG), 2219 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP), 2220 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP), 2221 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD), 2222 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP), 2223 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT), 2224 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP), 2225 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP), 2226 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT), 2227 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA), 2228 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC), 2229 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC), 2230 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FRINTTS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT), 2231 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_SB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB), 2232 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_BF16_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_BF16), 2233 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DGH_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DGH), 2234 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_I8MM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_I8MM), 2235 HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT), 2236 #ifdef CONFIG_ARM64_SVE 2237 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, KERNEL_HWCAP_SVE), 2238 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SVEVER_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SVEVER_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2), 2239 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES, CAP_HWCAP, KERNEL_HWCAP_SVEAES), 2240 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES_PMULL, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL), 2241 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BITPERM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BITPERM, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM), 2242 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BF16_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BF16, CAP_HWCAP, KERNEL_HWCAP_SVEBF16), 2243 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SHA3_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SHA3, CAP_HWCAP, KERNEL_HWCAP_SVESHA3), 2244 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SM4_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SM4, CAP_HWCAP, KERNEL_HWCAP_SVESM4), 2245 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_I8MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_I8MM, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM), 2246 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F32MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F32MM, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM), 2247 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F64MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F64MM, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM), 2248 #endif 2249 HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, KERNEL_HWCAP_SSBS), 2250 #ifdef CONFIG_ARM64_BTI 2251 HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_BT_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_BT_BTI, CAP_HWCAP, KERNEL_HWCAP_BTI), 2252 #endif 2253 #ifdef CONFIG_ARM64_PTR_AUTH 2254 HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA), 2255 HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG), 2256 #endif 2257 #ifdef CONFIG_ARM64_MTE 2258 HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_MTE_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_MTE, CAP_HWCAP, KERNEL_HWCAP_MTE), 2259 #endif /* CONFIG_ARM64_MTE */ 2260 {}, 2261 }; 2262 2263 #ifdef CONFIG_COMPAT 2264 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope) 2265 { 2266 /* 2267 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available, 2268 * in line with that of arm32 as in vfp_init(). We make sure that the 2269 * check is future proof, by making sure value is non-zero. 2270 */ 2271 u32 mvfr1; 2272 2273 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible()); 2274 if (scope == SCOPE_SYSTEM) 2275 mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1); 2276 else 2277 mvfr1 = read_sysreg_s(SYS_MVFR1_EL1); 2278 2279 return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDSP_SHIFT) && 2280 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDINT_SHIFT) && 2281 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDLS_SHIFT); 2282 } 2283 #endif 2284 2285 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = { 2286 #ifdef CONFIG_COMPAT 2287 HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON), 2288 HWCAP_CAP(SYS_MVFR1_EL1, MVFR1_SIMDFMAC_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4), 2289 /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */ 2290 HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP), 2291 HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3), 2292 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL), 2293 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES), 2294 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1), 2295 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2), 2296 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32), 2297 #endif 2298 {}, 2299 }; 2300 2301 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap) 2302 { 2303 switch (cap->hwcap_type) { 2304 case CAP_HWCAP: 2305 cpu_set_feature(cap->hwcap); 2306 break; 2307 #ifdef CONFIG_COMPAT 2308 case CAP_COMPAT_HWCAP: 2309 compat_elf_hwcap |= (u32)cap->hwcap; 2310 break; 2311 case CAP_COMPAT_HWCAP2: 2312 compat_elf_hwcap2 |= (u32)cap->hwcap; 2313 break; 2314 #endif 2315 default: 2316 WARN_ON(1); 2317 break; 2318 } 2319 } 2320 2321 /* Check if we have a particular HWCAP enabled */ 2322 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap) 2323 { 2324 bool rc; 2325 2326 switch (cap->hwcap_type) { 2327 case CAP_HWCAP: 2328 rc = cpu_have_feature(cap->hwcap); 2329 break; 2330 #ifdef CONFIG_COMPAT 2331 case CAP_COMPAT_HWCAP: 2332 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0; 2333 break; 2334 case CAP_COMPAT_HWCAP2: 2335 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0; 2336 break; 2337 #endif 2338 default: 2339 WARN_ON(1); 2340 rc = false; 2341 } 2342 2343 return rc; 2344 } 2345 2346 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps) 2347 { 2348 /* We support emulation of accesses to CPU ID feature registers */ 2349 cpu_set_named_feature(CPUID); 2350 for (; hwcaps->matches; hwcaps++) 2351 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps))) 2352 cap_set_elf_hwcap(hwcaps); 2353 } 2354 2355 static void update_cpu_capabilities(u16 scope_mask) 2356 { 2357 int i; 2358 const struct arm64_cpu_capabilities *caps; 2359 2360 scope_mask &= ARM64_CPUCAP_SCOPE_MASK; 2361 for (i = 0; i < ARM64_NCAPS; i++) { 2362 caps = cpu_hwcaps_ptrs[i]; 2363 if (!caps || !(caps->type & scope_mask) || 2364 cpus_have_cap(caps->capability) || 2365 !caps->matches(caps, cpucap_default_scope(caps))) 2366 continue; 2367 2368 if (caps->desc) 2369 pr_info("detected: %s\n", caps->desc); 2370 cpus_set_cap(caps->capability); 2371 2372 if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU)) 2373 set_bit(caps->capability, boot_capabilities); 2374 } 2375 } 2376 2377 /* 2378 * Enable all the available capabilities on this CPU. The capabilities 2379 * with BOOT_CPU scope are handled separately and hence skipped here. 2380 */ 2381 static int cpu_enable_non_boot_scope_capabilities(void *__unused) 2382 { 2383 int i; 2384 u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU; 2385 2386 for_each_available_cap(i) { 2387 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i]; 2388 2389 if (WARN_ON(!cap)) 2390 continue; 2391 2392 if (!(cap->type & non_boot_scope)) 2393 continue; 2394 2395 if (cap->cpu_enable) 2396 cap->cpu_enable(cap); 2397 } 2398 return 0; 2399 } 2400 2401 /* 2402 * Run through the enabled capabilities and enable() it on all active 2403 * CPUs 2404 */ 2405 static void __init enable_cpu_capabilities(u16 scope_mask) 2406 { 2407 int i; 2408 const struct arm64_cpu_capabilities *caps; 2409 bool boot_scope; 2410 2411 scope_mask &= ARM64_CPUCAP_SCOPE_MASK; 2412 boot_scope = !!(scope_mask & SCOPE_BOOT_CPU); 2413 2414 for (i = 0; i < ARM64_NCAPS; i++) { 2415 unsigned int num; 2416 2417 caps = cpu_hwcaps_ptrs[i]; 2418 if (!caps || !(caps->type & scope_mask)) 2419 continue; 2420 num = caps->capability; 2421 if (!cpus_have_cap(num)) 2422 continue; 2423 2424 /* Ensure cpus_have_const_cap(num) works */ 2425 static_branch_enable(&cpu_hwcap_keys[num]); 2426 2427 if (boot_scope && caps->cpu_enable) 2428 /* 2429 * Capabilities with SCOPE_BOOT_CPU scope are finalised 2430 * before any secondary CPU boots. Thus, each secondary 2431 * will enable the capability as appropriate via 2432 * check_local_cpu_capabilities(). The only exception is 2433 * the boot CPU, for which the capability must be 2434 * enabled here. This approach avoids costly 2435 * stop_machine() calls for this case. 2436 */ 2437 caps->cpu_enable(caps); 2438 } 2439 2440 /* 2441 * For all non-boot scope capabilities, use stop_machine() 2442 * as it schedules the work allowing us to modify PSTATE, 2443 * instead of on_each_cpu() which uses an IPI, giving us a 2444 * PSTATE that disappears when we return. 2445 */ 2446 if (!boot_scope) 2447 stop_machine(cpu_enable_non_boot_scope_capabilities, 2448 NULL, cpu_online_mask); 2449 } 2450 2451 /* 2452 * Run through the list of capabilities to check for conflicts. 2453 * If the system has already detected a capability, take necessary 2454 * action on this CPU. 2455 */ 2456 static void verify_local_cpu_caps(u16 scope_mask) 2457 { 2458 int i; 2459 bool cpu_has_cap, system_has_cap; 2460 const struct arm64_cpu_capabilities *caps; 2461 2462 scope_mask &= ARM64_CPUCAP_SCOPE_MASK; 2463 2464 for (i = 0; i < ARM64_NCAPS; i++) { 2465 caps = cpu_hwcaps_ptrs[i]; 2466 if (!caps || !(caps->type & scope_mask)) 2467 continue; 2468 2469 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU); 2470 system_has_cap = cpus_have_cap(caps->capability); 2471 2472 if (system_has_cap) { 2473 /* 2474 * Check if the new CPU misses an advertised feature, 2475 * which is not safe to miss. 2476 */ 2477 if (!cpu_has_cap && !cpucap_late_cpu_optional(caps)) 2478 break; 2479 /* 2480 * We have to issue cpu_enable() irrespective of 2481 * whether the CPU has it or not, as it is enabeld 2482 * system wide. It is upto the call back to take 2483 * appropriate action on this CPU. 2484 */ 2485 if (caps->cpu_enable) 2486 caps->cpu_enable(caps); 2487 } else { 2488 /* 2489 * Check if the CPU has this capability if it isn't 2490 * safe to have when the system doesn't. 2491 */ 2492 if (cpu_has_cap && !cpucap_late_cpu_permitted(caps)) 2493 break; 2494 } 2495 } 2496 2497 if (i < ARM64_NCAPS) { 2498 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n", 2499 smp_processor_id(), caps->capability, 2500 caps->desc, system_has_cap, cpu_has_cap); 2501 2502 if (cpucap_panic_on_conflict(caps)) 2503 cpu_panic_kernel(); 2504 else 2505 cpu_die_early(); 2506 } 2507 } 2508 2509 /* 2510 * Check for CPU features that are used in early boot 2511 * based on the Boot CPU value. 2512 */ 2513 static void check_early_cpu_features(void) 2514 { 2515 verify_cpu_asid_bits(); 2516 2517 verify_local_cpu_caps(SCOPE_BOOT_CPU); 2518 } 2519 2520 static void 2521 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps) 2522 { 2523 2524 for (; caps->matches; caps++) 2525 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) { 2526 pr_crit("CPU%d: missing HWCAP: %s\n", 2527 smp_processor_id(), caps->desc); 2528 cpu_die_early(); 2529 } 2530 } 2531 2532 static void verify_sve_features(void) 2533 { 2534 u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1); 2535 u64 zcr = read_zcr_features(); 2536 2537 unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK; 2538 unsigned int len = zcr & ZCR_ELx_LEN_MASK; 2539 2540 if (len < safe_len || sve_verify_vq_map()) { 2541 pr_crit("CPU%d: SVE: vector length support mismatch\n", 2542 smp_processor_id()); 2543 cpu_die_early(); 2544 } 2545 2546 /* Add checks on other ZCR bits here if necessary */ 2547 } 2548 2549 static void verify_hyp_capabilities(void) 2550 { 2551 u64 safe_mmfr1, mmfr0, mmfr1; 2552 int parange, ipa_max; 2553 unsigned int safe_vmid_bits, vmid_bits; 2554 2555 if (!IS_ENABLED(CONFIG_KVM) || !IS_ENABLED(CONFIG_KVM_ARM_HOST)) 2556 return; 2557 2558 safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 2559 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1); 2560 mmfr1 = read_cpuid(ID_AA64MMFR1_EL1); 2561 2562 /* Verify VMID bits */ 2563 safe_vmid_bits = get_vmid_bits(safe_mmfr1); 2564 vmid_bits = get_vmid_bits(mmfr1); 2565 if (vmid_bits < safe_vmid_bits) { 2566 pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id()); 2567 cpu_die_early(); 2568 } 2569 2570 /* Verify IPA range */ 2571 parange = cpuid_feature_extract_unsigned_field(mmfr0, 2572 ID_AA64MMFR0_PARANGE_SHIFT); 2573 ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange); 2574 if (ipa_max < get_kvm_ipa_limit()) { 2575 pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id()); 2576 cpu_die_early(); 2577 } 2578 } 2579 2580 /* 2581 * Run through the enabled system capabilities and enable() it on this CPU. 2582 * The capabilities were decided based on the available CPUs at the boot time. 2583 * Any new CPU should match the system wide status of the capability. If the 2584 * new CPU doesn't have a capability which the system now has enabled, we 2585 * cannot do anything to fix it up and could cause unexpected failures. So 2586 * we park the CPU. 2587 */ 2588 static void verify_local_cpu_capabilities(void) 2589 { 2590 /* 2591 * The capabilities with SCOPE_BOOT_CPU are checked from 2592 * check_early_cpu_features(), as they need to be verified 2593 * on all secondary CPUs. 2594 */ 2595 verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU); 2596 2597 verify_local_elf_hwcaps(arm64_elf_hwcaps); 2598 2599 if (system_supports_32bit_el0()) 2600 verify_local_elf_hwcaps(compat_elf_hwcaps); 2601 2602 if (system_supports_sve()) 2603 verify_sve_features(); 2604 2605 if (is_hyp_mode_available()) 2606 verify_hyp_capabilities(); 2607 } 2608 2609 void check_local_cpu_capabilities(void) 2610 { 2611 /* 2612 * All secondary CPUs should conform to the early CPU features 2613 * in use by the kernel based on boot CPU. 2614 */ 2615 check_early_cpu_features(); 2616 2617 /* 2618 * If we haven't finalised the system capabilities, this CPU gets 2619 * a chance to update the errata work arounds and local features. 2620 * Otherwise, this CPU should verify that it has all the system 2621 * advertised capabilities. 2622 */ 2623 if (!system_capabilities_finalized()) 2624 update_cpu_capabilities(SCOPE_LOCAL_CPU); 2625 else 2626 verify_local_cpu_capabilities(); 2627 } 2628 2629 static void __init setup_boot_cpu_capabilities(void) 2630 { 2631 /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */ 2632 update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU); 2633 /* Enable the SCOPE_BOOT_CPU capabilities alone right away */ 2634 enable_cpu_capabilities(SCOPE_BOOT_CPU); 2635 } 2636 2637 bool this_cpu_has_cap(unsigned int n) 2638 { 2639 if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) { 2640 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n]; 2641 2642 if (cap) 2643 return cap->matches(cap, SCOPE_LOCAL_CPU); 2644 } 2645 2646 return false; 2647 } 2648 2649 /* 2650 * This helper function is used in a narrow window when, 2651 * - The system wide safe registers are set with all the SMP CPUs and, 2652 * - The SYSTEM_FEATURE cpu_hwcaps may not have been set. 2653 * In all other cases cpus_have_{const_}cap() should be used. 2654 */ 2655 static bool __system_matches_cap(unsigned int n) 2656 { 2657 if (n < ARM64_NCAPS) { 2658 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n]; 2659 2660 if (cap) 2661 return cap->matches(cap, SCOPE_SYSTEM); 2662 } 2663 return false; 2664 } 2665 2666 void cpu_set_feature(unsigned int num) 2667 { 2668 WARN_ON(num >= MAX_CPU_FEATURES); 2669 elf_hwcap |= BIT(num); 2670 } 2671 EXPORT_SYMBOL_GPL(cpu_set_feature); 2672 2673 bool cpu_have_feature(unsigned int num) 2674 { 2675 WARN_ON(num >= MAX_CPU_FEATURES); 2676 return elf_hwcap & BIT(num); 2677 } 2678 EXPORT_SYMBOL_GPL(cpu_have_feature); 2679 2680 unsigned long cpu_get_elf_hwcap(void) 2681 { 2682 /* 2683 * We currently only populate the first 32 bits of AT_HWCAP. Please 2684 * note that for userspace compatibility we guarantee that bits 62 2685 * and 63 will always be returned as 0. 2686 */ 2687 return lower_32_bits(elf_hwcap); 2688 } 2689 2690 unsigned long cpu_get_elf_hwcap2(void) 2691 { 2692 return upper_32_bits(elf_hwcap); 2693 } 2694 2695 static void __init setup_system_capabilities(void) 2696 { 2697 /* 2698 * We have finalised the system-wide safe feature 2699 * registers, finalise the capabilities that depend 2700 * on it. Also enable all the available capabilities, 2701 * that are not enabled already. 2702 */ 2703 update_cpu_capabilities(SCOPE_SYSTEM); 2704 enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU); 2705 } 2706 2707 void __init setup_cpu_features(void) 2708 { 2709 u32 cwg; 2710 2711 setup_system_capabilities(); 2712 setup_elf_hwcaps(arm64_elf_hwcaps); 2713 2714 if (system_supports_32bit_el0()) 2715 setup_elf_hwcaps(compat_elf_hwcaps); 2716 2717 if (system_uses_ttbr0_pan()) 2718 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n"); 2719 2720 sve_setup(); 2721 minsigstksz_setup(); 2722 2723 /* Advertise that we have computed the system capabilities */ 2724 finalize_system_capabilities(); 2725 2726 /* 2727 * Check for sane CTR_EL0.CWG value. 2728 */ 2729 cwg = cache_type_cwg(); 2730 if (!cwg) 2731 pr_warn("No Cache Writeback Granule information, assuming %d\n", 2732 ARCH_DMA_MINALIGN); 2733 } 2734 2735 static bool __maybe_unused 2736 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused) 2737 { 2738 return (__system_matches_cap(ARM64_HAS_PAN) && !__system_matches_cap(ARM64_HAS_UAO)); 2739 } 2740 2741 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap) 2742 { 2743 cpu_replace_ttbr1(lm_alias(swapper_pg_dir)); 2744 } 2745 2746 /* 2747 * We emulate only the following system register space. 2748 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7] 2749 * See Table C5-6 System instruction encodings for System register accesses, 2750 * ARMv8 ARM(ARM DDI 0487A.f) for more details. 2751 */ 2752 static inline bool __attribute_const__ is_emulated(u32 id) 2753 { 2754 return (sys_reg_Op0(id) == 0x3 && 2755 sys_reg_CRn(id) == 0x0 && 2756 sys_reg_Op1(id) == 0x0 && 2757 (sys_reg_CRm(id) == 0 || 2758 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7)))); 2759 } 2760 2761 /* 2762 * With CRm == 0, reg should be one of : 2763 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1. 2764 */ 2765 static inline int emulate_id_reg(u32 id, u64 *valp) 2766 { 2767 switch (id) { 2768 case SYS_MIDR_EL1: 2769 *valp = read_cpuid_id(); 2770 break; 2771 case SYS_MPIDR_EL1: 2772 *valp = SYS_MPIDR_SAFE_VAL; 2773 break; 2774 case SYS_REVIDR_EL1: 2775 /* IMPLEMENTATION DEFINED values are emulated with 0 */ 2776 *valp = 0; 2777 break; 2778 default: 2779 return -EINVAL; 2780 } 2781 2782 return 0; 2783 } 2784 2785 static int emulate_sys_reg(u32 id, u64 *valp) 2786 { 2787 struct arm64_ftr_reg *regp; 2788 2789 if (!is_emulated(id)) 2790 return -EINVAL; 2791 2792 if (sys_reg_CRm(id) == 0) 2793 return emulate_id_reg(id, valp); 2794 2795 regp = get_arm64_ftr_reg_nowarn(id); 2796 if (regp) 2797 *valp = arm64_ftr_reg_user_value(regp); 2798 else 2799 /* 2800 * The untracked registers are either IMPLEMENTATION DEFINED 2801 * (e.g, ID_AFR0_EL1) or reserved RAZ. 2802 */ 2803 *valp = 0; 2804 return 0; 2805 } 2806 2807 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt) 2808 { 2809 int rc; 2810 u64 val; 2811 2812 rc = emulate_sys_reg(sys_reg, &val); 2813 if (!rc) { 2814 pt_regs_write_reg(regs, rt, val); 2815 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); 2816 } 2817 return rc; 2818 } 2819 2820 static int emulate_mrs(struct pt_regs *regs, u32 insn) 2821 { 2822 u32 sys_reg, rt; 2823 2824 /* 2825 * sys_reg values are defined as used in mrs/msr instruction. 2826 * shift the imm value to get the encoding. 2827 */ 2828 sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5; 2829 rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn); 2830 return do_emulate_mrs(regs, sys_reg, rt); 2831 } 2832 2833 static struct undef_hook mrs_hook = { 2834 .instr_mask = 0xfff00000, 2835 .instr_val = 0xd5300000, 2836 .pstate_mask = PSR_AA32_MODE_MASK, 2837 .pstate_val = PSR_MODE_EL0t, 2838 .fn = emulate_mrs, 2839 }; 2840 2841 static int __init enable_mrs_emulation(void) 2842 { 2843 register_undef_hook(&mrs_hook); 2844 return 0; 2845 } 2846 2847 core_initcall(enable_mrs_emulation); 2848 2849 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, 2850 char *buf) 2851 { 2852 if (__meltdown_safe) 2853 return sprintf(buf, "Not affected\n"); 2854 2855 if (arm64_kernel_unmapped_at_el0()) 2856 return sprintf(buf, "Mitigation: PTI\n"); 2857 2858 return sprintf(buf, "Vulnerable\n"); 2859 } 2860