1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * alternative runtime patching 4 * inspired by the x86 version 5 * 6 * Copyright (C) 2014 ARM Ltd. 7 */ 8 9 #define pr_fmt(fmt) "alternatives: " fmt 10 11 #include <linux/init.h> 12 #include <linux/cpu.h> 13 #include <asm/cacheflush.h> 14 #include <asm/alternative.h> 15 #include <asm/cpufeature.h> 16 #include <asm/insn.h> 17 #include <asm/sections.h> 18 #include <linux/stop_machine.h> 19 20 #define __ALT_PTR(a,f) ((void *)&(a)->f + (a)->f) 21 #define ALT_ORIG_PTR(a) __ALT_PTR(a, orig_offset) 22 #define ALT_REPL_PTR(a) __ALT_PTR(a, alt_offset) 23 24 /* Volatile, as we may be patching the guts of READ_ONCE() */ 25 static volatile int all_alternatives_applied; 26 27 static DECLARE_BITMAP(applied_alternatives, ARM64_NCAPS); 28 29 struct alt_region { 30 struct alt_instr *begin; 31 struct alt_instr *end; 32 }; 33 34 bool alternative_is_applied(u16 cpufeature) 35 { 36 if (WARN_ON(cpufeature >= ARM64_NCAPS)) 37 return false; 38 39 return test_bit(cpufeature, applied_alternatives); 40 } 41 42 /* 43 * Check if the target PC is within an alternative block. 44 */ 45 static bool branch_insn_requires_update(struct alt_instr *alt, unsigned long pc) 46 { 47 unsigned long replptr = (unsigned long)ALT_REPL_PTR(alt); 48 return !(pc >= replptr && pc <= (replptr + alt->alt_len)); 49 } 50 51 #define align_down(x, a) ((unsigned long)(x) & ~(((unsigned long)(a)) - 1)) 52 53 static u32 get_alt_insn(struct alt_instr *alt, __le32 *insnptr, __le32 *altinsnptr) 54 { 55 u32 insn; 56 57 insn = le32_to_cpu(*altinsnptr); 58 59 if (aarch64_insn_is_branch_imm(insn)) { 60 s32 offset = aarch64_get_branch_offset(insn); 61 unsigned long target; 62 63 target = (unsigned long)altinsnptr + offset; 64 65 /* 66 * If we're branching inside the alternate sequence, 67 * do not rewrite the instruction, as it is already 68 * correct. Otherwise, generate the new instruction. 69 */ 70 if (branch_insn_requires_update(alt, target)) { 71 offset = target - (unsigned long)insnptr; 72 insn = aarch64_set_branch_offset(insn, offset); 73 } 74 } else if (aarch64_insn_is_adrp(insn)) { 75 s32 orig_offset, new_offset; 76 unsigned long target; 77 78 /* 79 * If we're replacing an adrp instruction, which uses PC-relative 80 * immediate addressing, adjust the offset to reflect the new 81 * PC. adrp operates on 4K aligned addresses. 82 */ 83 orig_offset = aarch64_insn_adrp_get_offset(insn); 84 target = align_down(altinsnptr, SZ_4K) + orig_offset; 85 new_offset = target - align_down(insnptr, SZ_4K); 86 insn = aarch64_insn_adrp_set_offset(insn, new_offset); 87 } else if (aarch64_insn_uses_literal(insn)) { 88 /* 89 * Disallow patching unhandled instructions using PC relative 90 * literal addresses 91 */ 92 BUG(); 93 } 94 95 return insn; 96 } 97 98 static void patch_alternative(struct alt_instr *alt, 99 __le32 *origptr, __le32 *updptr, int nr_inst) 100 { 101 __le32 *replptr; 102 int i; 103 104 replptr = ALT_REPL_PTR(alt); 105 for (i = 0; i < nr_inst; i++) { 106 u32 insn; 107 108 insn = get_alt_insn(alt, origptr + i, replptr + i); 109 updptr[i] = cpu_to_le32(insn); 110 } 111 } 112 113 /* 114 * We provide our own, private D-cache cleaning function so that we don't 115 * accidentally call into the cache.S code, which is patched by us at 116 * runtime. 117 */ 118 static void clean_dcache_range_nopatch(u64 start, u64 end) 119 { 120 u64 cur, d_size, ctr_el0; 121 122 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0); 123 d_size = 4 << cpuid_feature_extract_unsigned_field(ctr_el0, 124 CTR_DMINLINE_SHIFT); 125 cur = start & ~(d_size - 1); 126 do { 127 /* 128 * We must clean+invalidate to the PoC in order to avoid 129 * Cortex-A53 errata 826319, 827319, 824069 and 819472 130 * (this corresponds to ARM64_WORKAROUND_CLEAN_CACHE) 131 */ 132 asm volatile("dc civac, %0" : : "r" (cur) : "memory"); 133 } while (cur += d_size, cur < end); 134 } 135 136 static void __apply_alternatives(void *alt_region, bool is_module, 137 unsigned long *feature_mask) 138 { 139 struct alt_instr *alt; 140 struct alt_region *region = alt_region; 141 __le32 *origptr, *updptr; 142 alternative_cb_t alt_cb; 143 144 for (alt = region->begin; alt < region->end; alt++) { 145 int nr_inst; 146 147 if (!test_bit(alt->cpufeature, feature_mask)) 148 continue; 149 150 /* Use ARM64_CB_PATCH as an unconditional patch */ 151 if (alt->cpufeature < ARM64_CB_PATCH && 152 !cpus_have_cap(alt->cpufeature)) 153 continue; 154 155 if (alt->cpufeature == ARM64_CB_PATCH) 156 BUG_ON(alt->alt_len != 0); 157 else 158 BUG_ON(alt->alt_len != alt->orig_len); 159 160 pr_info_once("patching kernel code\n"); 161 162 origptr = ALT_ORIG_PTR(alt); 163 updptr = is_module ? origptr : lm_alias(origptr); 164 nr_inst = alt->orig_len / AARCH64_INSN_SIZE; 165 166 if (alt->cpufeature < ARM64_CB_PATCH) 167 alt_cb = patch_alternative; 168 else 169 alt_cb = ALT_REPL_PTR(alt); 170 171 alt_cb(alt, origptr, updptr, nr_inst); 172 173 if (!is_module) { 174 clean_dcache_range_nopatch((u64)origptr, 175 (u64)(origptr + nr_inst)); 176 } 177 } 178 179 /* 180 * The core module code takes care of cache maintenance in 181 * flush_module_icache(). 182 */ 183 if (!is_module) { 184 dsb(ish); 185 __flush_icache_all(); 186 isb(); 187 188 /* Ignore ARM64_CB bit from feature mask */ 189 bitmap_or(applied_alternatives, applied_alternatives, 190 feature_mask, ARM64_NCAPS); 191 bitmap_and(applied_alternatives, applied_alternatives, 192 cpu_hwcaps, ARM64_NCAPS); 193 } 194 } 195 196 /* 197 * We might be patching the stop_machine state machine, so implement a 198 * really simple polling protocol here. 199 */ 200 static int __apply_alternatives_multi_stop(void *unused) 201 { 202 struct alt_region region = { 203 .begin = (struct alt_instr *)__alt_instructions, 204 .end = (struct alt_instr *)__alt_instructions_end, 205 }; 206 207 /* We always have a CPU 0 at this point (__init) */ 208 if (smp_processor_id()) { 209 while (!all_alternatives_applied) 210 cpu_relax(); 211 isb(); 212 } else { 213 DECLARE_BITMAP(remaining_capabilities, ARM64_NPATCHABLE); 214 215 bitmap_complement(remaining_capabilities, boot_capabilities, 216 ARM64_NPATCHABLE); 217 218 BUG_ON(all_alternatives_applied); 219 __apply_alternatives(®ion, false, remaining_capabilities); 220 /* Barriers provided by the cache flushing */ 221 all_alternatives_applied = 1; 222 } 223 224 return 0; 225 } 226 227 void __init apply_alternatives_all(void) 228 { 229 /* better not try code patching on a live SMP system */ 230 stop_machine(__apply_alternatives_multi_stop, NULL, cpu_online_mask); 231 } 232 233 /* 234 * This is called very early in the boot process (directly after we run 235 * a feature detect on the boot CPU). No need to worry about other CPUs 236 * here. 237 */ 238 void __init apply_boot_alternatives(void) 239 { 240 struct alt_region region = { 241 .begin = (struct alt_instr *)__alt_instructions, 242 .end = (struct alt_instr *)__alt_instructions_end, 243 }; 244 245 /* If called on non-boot cpu things could go wrong */ 246 WARN_ON(smp_processor_id() != 0); 247 248 __apply_alternatives(®ion, false, &boot_capabilities[0]); 249 } 250 251 #ifdef CONFIG_MODULES 252 void apply_alternatives_module(void *start, size_t length) 253 { 254 struct alt_region region = { 255 .begin = start, 256 .end = start + length, 257 }; 258 DECLARE_BITMAP(all_capabilities, ARM64_NPATCHABLE); 259 260 bitmap_fill(all_capabilities, ARM64_NPATCHABLE); 261 262 __apply_alternatives(®ion, true, &all_capabilities[0]); 263 } 264 #endif 265