1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * ARM64 Specific Low-Level ACPI Boot Support 4 * 5 * Copyright (C) 2013-2014, Linaro Ltd. 6 * Author: Al Stone <al.stone@linaro.org> 7 * Author: Graeme Gregory <graeme.gregory@linaro.org> 8 * Author: Hanjun Guo <hanjun.guo@linaro.org> 9 * Author: Tomasz Nowicki <tomasz.nowicki@linaro.org> 10 * Author: Naresh Bhat <naresh.bhat@linaro.org> 11 */ 12 13 #define pr_fmt(fmt) "ACPI: " fmt 14 15 #include <linux/acpi.h> 16 #include <linux/arm-smccc.h> 17 #include <linux/cpumask.h> 18 #include <linux/efi.h> 19 #include <linux/efi-bgrt.h> 20 #include <linux/init.h> 21 #include <linux/irq.h> 22 #include <linux/irqdomain.h> 23 #include <linux/irq_work.h> 24 #include <linux/memblock.h> 25 #include <linux/of_fdt.h> 26 #include <linux/libfdt.h> 27 #include <linux/smp.h> 28 #include <linux/serial_core.h> 29 #include <linux/pgtable.h> 30 31 #include <acpi/ghes.h> 32 #include <asm/cputype.h> 33 #include <asm/cpu_ops.h> 34 #include <asm/daifflags.h> 35 #include <asm/smp_plat.h> 36 37 int acpi_noirq = 1; /* skip ACPI IRQ initialization */ 38 int acpi_disabled = 1; 39 EXPORT_SYMBOL(acpi_disabled); 40 41 int acpi_pci_disabled = 1; /* skip ACPI PCI scan and IRQ initialization */ 42 EXPORT_SYMBOL(acpi_pci_disabled); 43 44 static bool param_acpi_off __initdata; 45 static bool param_acpi_on __initdata; 46 static bool param_acpi_force __initdata; 47 48 static int __init parse_acpi(char *arg) 49 { 50 if (!arg) 51 return -EINVAL; 52 53 /* "acpi=off" disables both ACPI table parsing and interpreter */ 54 if (strcmp(arg, "off") == 0) 55 param_acpi_off = true; 56 else if (strcmp(arg, "on") == 0) /* prefer ACPI over DT */ 57 param_acpi_on = true; 58 else if (strcmp(arg, "force") == 0) /* force ACPI to be enabled */ 59 param_acpi_force = true; 60 else 61 return -EINVAL; /* Core will print when we return error */ 62 63 return 0; 64 } 65 early_param("acpi", parse_acpi); 66 67 static bool __init dt_is_stub(void) 68 { 69 int node; 70 71 fdt_for_each_subnode(node, initial_boot_params, 0) { 72 const char *name = fdt_get_name(initial_boot_params, node, NULL); 73 if (strcmp(name, "chosen") == 0) 74 continue; 75 if (strcmp(name, "hypervisor") == 0 && 76 of_flat_dt_is_compatible(node, "xen,xen")) 77 continue; 78 79 return false; 80 } 81 82 return true; 83 } 84 85 /* 86 * __acpi_map_table() will be called before page_init(), so early_ioremap() 87 * or early_memremap() should be called here to for ACPI table mapping. 88 */ 89 void __init __iomem *__acpi_map_table(unsigned long phys, unsigned long size) 90 { 91 if (!size) 92 return NULL; 93 94 return early_memremap(phys, size); 95 } 96 97 void __init __acpi_unmap_table(void __iomem *map, unsigned long size) 98 { 99 if (!map || !size) 100 return; 101 102 early_memunmap(map, size); 103 } 104 105 bool __init acpi_psci_present(void) 106 { 107 return acpi_gbl_FADT.arm_boot_flags & ACPI_FADT_PSCI_COMPLIANT; 108 } 109 110 /* Whether HVC must be used instead of SMC as the PSCI conduit */ 111 bool acpi_psci_use_hvc(void) 112 { 113 return acpi_gbl_FADT.arm_boot_flags & ACPI_FADT_PSCI_USE_HVC; 114 } 115 116 /* 117 * acpi_fadt_sanity_check() - Check FADT presence and carry out sanity 118 * checks on it 119 * 120 * Return 0 on success, <0 on failure 121 */ 122 static int __init acpi_fadt_sanity_check(void) 123 { 124 struct acpi_table_header *table; 125 struct acpi_table_fadt *fadt; 126 acpi_status status; 127 int ret = 0; 128 129 /* 130 * FADT is required on arm64; retrieve it to check its presence 131 * and carry out revision and ACPI HW reduced compliancy tests 132 */ 133 status = acpi_get_table(ACPI_SIG_FADT, 0, &table); 134 if (ACPI_FAILURE(status)) { 135 const char *msg = acpi_format_exception(status); 136 137 pr_err("Failed to get FADT table, %s\n", msg); 138 return -ENODEV; 139 } 140 141 fadt = (struct acpi_table_fadt *)table; 142 143 /* 144 * Revision in table header is the FADT Major revision, and there 145 * is a minor revision of FADT which was introduced by ACPI 5.1, 146 * we only deal with ACPI 5.1 or newer revision to get GIC and SMP 147 * boot protocol configuration data. 148 */ 149 if (table->revision < 5 || 150 (table->revision == 5 && fadt->minor_revision < 1)) { 151 pr_err(FW_BUG "Unsupported FADT revision %d.%d, should be 5.1+\n", 152 table->revision, fadt->minor_revision); 153 154 if (!fadt->arm_boot_flags) { 155 ret = -EINVAL; 156 goto out; 157 } 158 pr_err("FADT has ARM boot flags set, assuming 5.1\n"); 159 } 160 161 if (!(fadt->flags & ACPI_FADT_HW_REDUCED)) { 162 pr_err("FADT not ACPI hardware reduced compliant\n"); 163 ret = -EINVAL; 164 } 165 166 out: 167 /* 168 * acpi_get_table() creates FADT table mapping that 169 * should be released after parsing and before resuming boot 170 */ 171 acpi_put_table(table); 172 return ret; 173 } 174 175 /* 176 * acpi_boot_table_init() called from setup_arch(), always. 177 * 1. find RSDP and get its address, and then find XSDT 178 * 2. extract all tables and checksums them all 179 * 3. check ACPI FADT revision 180 * 4. check ACPI FADT HW reduced flag 181 * 182 * We can parse ACPI boot-time tables such as MADT after 183 * this function is called. 184 * 185 * On return ACPI is enabled if either: 186 * 187 * - ACPI tables are initialized and sanity checks passed 188 * - acpi=force was passed in the command line and ACPI was not disabled 189 * explicitly through acpi=off command line parameter 190 * 191 * ACPI is disabled on function return otherwise 192 */ 193 void __init acpi_boot_table_init(void) 194 { 195 /* 196 * Enable ACPI instead of device tree unless 197 * - ACPI has been disabled explicitly (acpi=off), or 198 * - the device tree is not empty (it has more than just a /chosen node, 199 * and a /hypervisor node when running on Xen) 200 * and ACPI has not been [force] enabled (acpi=on|force) 201 */ 202 if (param_acpi_off || 203 (!param_acpi_on && !param_acpi_force && !dt_is_stub())) 204 goto done; 205 206 /* 207 * ACPI is disabled at this point. Enable it in order to parse 208 * the ACPI tables and carry out sanity checks 209 */ 210 enable_acpi(); 211 212 /* 213 * If ACPI tables are initialized and FADT sanity checks passed, 214 * leave ACPI enabled and carry on booting; otherwise disable ACPI 215 * on initialization error. 216 * If acpi=force was passed on the command line it forces ACPI 217 * to be enabled even if its initialization failed. 218 */ 219 if (acpi_table_init() || acpi_fadt_sanity_check()) { 220 pr_err("Failed to init ACPI tables\n"); 221 if (!param_acpi_force) 222 disable_acpi(); 223 } 224 225 done: 226 if (acpi_disabled) { 227 if (earlycon_acpi_spcr_enable) 228 early_init_dt_scan_chosen_stdout(); 229 } else { 230 acpi_parse_spcr(earlycon_acpi_spcr_enable, true); 231 if (IS_ENABLED(CONFIG_ACPI_BGRT)) 232 acpi_table_parse(ACPI_SIG_BGRT, acpi_parse_bgrt); 233 } 234 } 235 236 static pgprot_t __acpi_get_writethrough_mem_attribute(void) 237 { 238 /* 239 * Although UEFI specifies the use of Normal Write-through for 240 * EFI_MEMORY_WT, it is seldom used in practice and not implemented 241 * by most (all?) CPUs. Rather than allocate a MAIR just for this 242 * purpose, emit a warning and use Normal Non-cacheable instead. 243 */ 244 pr_warn_once("No MAIR allocation for EFI_MEMORY_WT; treating as Normal Non-cacheable\n"); 245 return __pgprot(PROT_NORMAL_NC); 246 } 247 248 pgprot_t __acpi_get_mem_attribute(phys_addr_t addr) 249 { 250 /* 251 * According to "Table 8 Map: EFI memory types to AArch64 memory 252 * types" of UEFI 2.5 section 2.3.6.1, each EFI memory type is 253 * mapped to a corresponding MAIR attribute encoding. 254 * The EFI memory attribute advises all possible capabilities 255 * of a memory region. 256 */ 257 258 u64 attr; 259 260 attr = efi_mem_attributes(addr); 261 if (attr & EFI_MEMORY_WB) 262 return PAGE_KERNEL; 263 if (attr & EFI_MEMORY_WC) 264 return __pgprot(PROT_NORMAL_NC); 265 if (attr & EFI_MEMORY_WT) 266 return __acpi_get_writethrough_mem_attribute(); 267 return __pgprot(PROT_DEVICE_nGnRnE); 268 } 269 270 void __iomem *acpi_os_ioremap(acpi_physical_address phys, acpi_size size) 271 { 272 efi_memory_desc_t *md, *region = NULL; 273 pgprot_t prot; 274 275 if (WARN_ON_ONCE(!efi_enabled(EFI_MEMMAP))) 276 return NULL; 277 278 for_each_efi_memory_desc(md) { 279 u64 end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT); 280 281 if (phys < md->phys_addr || phys >= end) 282 continue; 283 284 if (phys + size > end) { 285 pr_warn(FW_BUG "requested region covers multiple EFI memory regions\n"); 286 return NULL; 287 } 288 region = md; 289 break; 290 } 291 292 /* 293 * It is fine for AML to remap regions that are not represented in the 294 * EFI memory map at all, as it only describes normal memory, and MMIO 295 * regions that require a virtual mapping to make them accessible to 296 * the EFI runtime services. 297 */ 298 prot = __pgprot(PROT_DEVICE_nGnRnE); 299 if (region) { 300 switch (region->type) { 301 case EFI_LOADER_CODE: 302 case EFI_LOADER_DATA: 303 case EFI_BOOT_SERVICES_CODE: 304 case EFI_BOOT_SERVICES_DATA: 305 case EFI_CONVENTIONAL_MEMORY: 306 case EFI_PERSISTENT_MEMORY: 307 if (memblock_is_map_memory(phys) || 308 !memblock_is_region_memory(phys, size)) { 309 pr_warn(FW_BUG "requested region covers kernel memory @ %pa\n", &phys); 310 return NULL; 311 } 312 /* 313 * Mapping kernel memory is permitted if the region in 314 * question is covered by a single memblock with the 315 * NOMAP attribute set: this enables the use of ACPI 316 * table overrides passed via initramfs, which are 317 * reserved in memory using arch_reserve_mem_area() 318 * below. As this particular use case only requires 319 * read access, fall through to the R/O mapping case. 320 */ 321 fallthrough; 322 323 case EFI_RUNTIME_SERVICES_CODE: 324 /* 325 * This would be unusual, but not problematic per se, 326 * as long as we take care not to create a writable 327 * mapping for executable code. 328 */ 329 prot = PAGE_KERNEL_RO; 330 break; 331 332 case EFI_ACPI_RECLAIM_MEMORY: 333 /* 334 * ACPI reclaim memory is used to pass firmware tables 335 * and other data that is intended for consumption by 336 * the OS only, which may decide it wants to reclaim 337 * that memory and use it for something else. We never 338 * do that, but we usually add it to the linear map 339 * anyway, in which case we should use the existing 340 * mapping. 341 */ 342 if (memblock_is_map_memory(phys)) 343 return (void __iomem *)__phys_to_virt(phys); 344 fallthrough; 345 346 default: 347 if (region->attribute & EFI_MEMORY_WB) 348 prot = PAGE_KERNEL; 349 else if (region->attribute & EFI_MEMORY_WC) 350 prot = __pgprot(PROT_NORMAL_NC); 351 else if (region->attribute & EFI_MEMORY_WT) 352 prot = __acpi_get_writethrough_mem_attribute(); 353 } 354 } 355 return ioremap_prot(phys, size, pgprot_val(prot)); 356 } 357 358 /* 359 * Claim Synchronous External Aborts as a firmware first notification. 360 * 361 * Used by KVM and the arch do_sea handler. 362 * @regs may be NULL when called from process context. 363 */ 364 int apei_claim_sea(struct pt_regs *regs) 365 { 366 int err = -ENOENT; 367 bool return_to_irqs_enabled; 368 unsigned long current_flags; 369 370 if (!IS_ENABLED(CONFIG_ACPI_APEI_GHES)) 371 return err; 372 373 current_flags = local_daif_save_flags(); 374 375 /* current_flags isn't useful here as daif doesn't tell us about pNMI */ 376 return_to_irqs_enabled = !irqs_disabled_flags(arch_local_save_flags()); 377 378 if (regs) 379 return_to_irqs_enabled = interrupts_enabled(regs); 380 381 /* 382 * SEA can interrupt SError, mask it and describe this as an NMI so 383 * that APEI defers the handling. 384 */ 385 local_daif_restore(DAIF_ERRCTX); 386 nmi_enter(); 387 err = ghes_notify_sea(); 388 nmi_exit(); 389 390 /* 391 * APEI NMI-like notifications are deferred to irq_work. Unless 392 * we interrupted irqs-masked code, we can do that now. 393 */ 394 if (!err) { 395 if (return_to_irqs_enabled) { 396 local_daif_restore(DAIF_PROCCTX_NOIRQ); 397 __irq_enter(); 398 irq_work_run(); 399 __irq_exit(); 400 } else { 401 pr_warn_ratelimited("APEI work queued but not completed"); 402 err = -EINPROGRESS; 403 } 404 } 405 406 local_daif_restore(current_flags); 407 408 return err; 409 } 410 411 void arch_reserve_mem_area(acpi_physical_address addr, size_t size) 412 { 413 memblock_mark_nomap(addr, size); 414 } 415 416 #ifdef CONFIG_ACPI_FFH 417 /* 418 * Implements ARM64 specific callbacks to support ACPI FFH Operation Region as 419 * specified in https://developer.arm.com/docs/den0048/latest 420 */ 421 struct acpi_ffh_data { 422 struct acpi_ffh_info info; 423 void (*invoke_ffh_fn)(unsigned long a0, unsigned long a1, 424 unsigned long a2, unsigned long a3, 425 unsigned long a4, unsigned long a5, 426 unsigned long a6, unsigned long a7, 427 struct arm_smccc_res *args, 428 struct arm_smccc_quirk *res); 429 void (*invoke_ffh64_fn)(const struct arm_smccc_1_2_regs *args, 430 struct arm_smccc_1_2_regs *res); 431 }; 432 433 int acpi_ffh_address_space_arch_setup(void *handler_ctxt, void **region_ctxt) 434 { 435 enum arm_smccc_conduit conduit; 436 struct acpi_ffh_data *ffh_ctxt; 437 438 ffh_ctxt = kzalloc(sizeof(*ffh_ctxt), GFP_KERNEL); 439 if (!ffh_ctxt) 440 return -ENOMEM; 441 442 if (arm_smccc_get_version() < ARM_SMCCC_VERSION_1_2) 443 return -EOPNOTSUPP; 444 445 conduit = arm_smccc_1_1_get_conduit(); 446 if (conduit == SMCCC_CONDUIT_NONE) { 447 pr_err("%s: invalid SMCCC conduit\n", __func__); 448 return -EOPNOTSUPP; 449 } 450 451 if (conduit == SMCCC_CONDUIT_SMC) { 452 ffh_ctxt->invoke_ffh_fn = __arm_smccc_smc; 453 ffh_ctxt->invoke_ffh64_fn = arm_smccc_1_2_smc; 454 } else { 455 ffh_ctxt->invoke_ffh_fn = __arm_smccc_hvc; 456 ffh_ctxt->invoke_ffh64_fn = arm_smccc_1_2_hvc; 457 } 458 459 memcpy(ffh_ctxt, handler_ctxt, sizeof(ffh_ctxt->info)); 460 461 *region_ctxt = ffh_ctxt; 462 return AE_OK; 463 } 464 465 static bool acpi_ffh_smccc_owner_allowed(u32 fid) 466 { 467 int owner = ARM_SMCCC_OWNER_NUM(fid); 468 469 if (owner == ARM_SMCCC_OWNER_STANDARD || 470 owner == ARM_SMCCC_OWNER_SIP || owner == ARM_SMCCC_OWNER_OEM) 471 return true; 472 473 return false; 474 } 475 476 int acpi_ffh_address_space_arch_handler(acpi_integer *value, void *region_context) 477 { 478 int ret = 0; 479 struct acpi_ffh_data *ffh_ctxt = region_context; 480 481 if (ffh_ctxt->info.offset == 0) { 482 /* SMC/HVC 32bit call */ 483 struct arm_smccc_res res; 484 u32 a[8] = { 0 }, *ptr = (u32 *)value; 485 486 if (!ARM_SMCCC_IS_FAST_CALL(*ptr) || ARM_SMCCC_IS_64(*ptr) || 487 !acpi_ffh_smccc_owner_allowed(*ptr) || 488 ffh_ctxt->info.length > 32) { 489 ret = AE_ERROR; 490 } else { 491 int idx, len = ffh_ctxt->info.length >> 2; 492 493 for (idx = 0; idx < len; idx++) 494 a[idx] = *(ptr + idx); 495 496 ffh_ctxt->invoke_ffh_fn(a[0], a[1], a[2], a[3], a[4], 497 a[5], a[6], a[7], &res, NULL); 498 memcpy(value, &res, sizeof(res)); 499 } 500 501 } else if (ffh_ctxt->info.offset == 1) { 502 /* SMC/HVC 64bit call */ 503 struct arm_smccc_1_2_regs *r = (struct arm_smccc_1_2_regs *)value; 504 505 if (!ARM_SMCCC_IS_FAST_CALL(r->a0) || !ARM_SMCCC_IS_64(r->a0) || 506 !acpi_ffh_smccc_owner_allowed(r->a0) || 507 ffh_ctxt->info.length > sizeof(*r)) { 508 ret = AE_ERROR; 509 } else { 510 ffh_ctxt->invoke_ffh64_fn(r, r); 511 memcpy(value, r, ffh_ctxt->info.length); 512 } 513 } else { 514 ret = AE_ERROR; 515 } 516 517 return ret; 518 } 519 #endif /* CONFIG_ACPI_FFH */ 520