1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2012 ARM Ltd. 4 */ 5 #ifndef __ASM_PGTABLE_H 6 #define __ASM_PGTABLE_H 7 8 #include <asm/bug.h> 9 #include <asm/proc-fns.h> 10 11 #include <asm/memory.h> 12 #include <asm/mte.h> 13 #include <asm/pgtable-hwdef.h> 14 #include <asm/pgtable-prot.h> 15 #include <asm/tlbflush.h> 16 17 /* 18 * VMALLOC range. 19 * 20 * VMALLOC_START: beginning of the kernel vmalloc space 21 * VMALLOC_END: extends to the available space below vmemmap, PCI I/O space 22 * and fixed mappings 23 */ 24 #define VMALLOC_START (MODULES_END) 25 #define VMALLOC_END (VMEMMAP_START - SZ_256M) 26 27 #define vmemmap ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT)) 28 29 #ifndef __ASSEMBLY__ 30 31 #include <asm/cmpxchg.h> 32 #include <asm/fixmap.h> 33 #include <linux/mmdebug.h> 34 #include <linux/mm_types.h> 35 #include <linux/sched.h> 36 37 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 38 #define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE 39 40 /* Set stride and tlb_level in flush_*_tlb_range */ 41 #define flush_pmd_tlb_range(vma, addr, end) \ 42 __flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2) 43 #define flush_pud_tlb_range(vma, addr, end) \ 44 __flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1) 45 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 46 47 /* 48 * Outside of a few very special situations (e.g. hibernation), we always 49 * use broadcast TLB invalidation instructions, therefore a spurious page 50 * fault on one CPU which has been handled concurrently by another CPU 51 * does not need to perform additional invalidation. 52 */ 53 #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0) 54 55 /* 56 * ZERO_PAGE is a global shared page that is always zero: used 57 * for zero-mapped memory areas etc.. 58 */ 59 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; 60 #define ZERO_PAGE(vaddr) phys_to_page(__pa_symbol(empty_zero_page)) 61 62 #define pte_ERROR(e) \ 63 pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e)) 64 65 /* 66 * Macros to convert between a physical address and its placement in a 67 * page table entry, taking care of 52-bit addresses. 68 */ 69 #ifdef CONFIG_ARM64_PA_BITS_52 70 static inline phys_addr_t __pte_to_phys(pte_t pte) 71 { 72 return (pte_val(pte) & PTE_ADDR_LOW) | 73 ((pte_val(pte) & PTE_ADDR_HIGH) << 36); 74 } 75 static inline pteval_t __phys_to_pte_val(phys_addr_t phys) 76 { 77 return (phys | (phys >> 36)) & PTE_ADDR_MASK; 78 } 79 #else 80 #define __pte_to_phys(pte) (pte_val(pte) & PTE_ADDR_MASK) 81 #define __phys_to_pte_val(phys) (phys) 82 #endif 83 84 #define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT) 85 #define pfn_pte(pfn,prot) \ 86 __pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) 87 88 #define pte_none(pte) (!pte_val(pte)) 89 #define pte_clear(mm,addr,ptep) set_pte(ptep, __pte(0)) 90 #define pte_page(pte) (pfn_to_page(pte_pfn(pte))) 91 92 /* 93 * The following only work if pte_present(). Undefined behaviour otherwise. 94 */ 95 #define pte_present(pte) (!!(pte_val(pte) & (PTE_VALID | PTE_PROT_NONE))) 96 #define pte_young(pte) (!!(pte_val(pte) & PTE_AF)) 97 #define pte_special(pte) (!!(pte_val(pte) & PTE_SPECIAL)) 98 #define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE)) 99 #define pte_user_exec(pte) (!(pte_val(pte) & PTE_UXN)) 100 #define pte_cont(pte) (!!(pte_val(pte) & PTE_CONT)) 101 #define pte_devmap(pte) (!!(pte_val(pte) & PTE_DEVMAP)) 102 #define pte_tagged(pte) ((pte_val(pte) & PTE_ATTRINDX_MASK) == \ 103 PTE_ATTRINDX(MT_NORMAL_TAGGED)) 104 105 #define pte_cont_addr_end(addr, end) \ 106 ({ unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK; \ 107 (__boundary - 1 < (end) - 1) ? __boundary : (end); \ 108 }) 109 110 #define pmd_cont_addr_end(addr, end) \ 111 ({ unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK; \ 112 (__boundary - 1 < (end) - 1) ? __boundary : (end); \ 113 }) 114 115 #define pte_hw_dirty(pte) (pte_write(pte) && !(pte_val(pte) & PTE_RDONLY)) 116 #define pte_sw_dirty(pte) (!!(pte_val(pte) & PTE_DIRTY)) 117 #define pte_dirty(pte) (pte_sw_dirty(pte) || pte_hw_dirty(pte)) 118 119 #define pte_valid(pte) (!!(pte_val(pte) & PTE_VALID)) 120 /* 121 * Execute-only user mappings do not have the PTE_USER bit set. All valid 122 * kernel mappings have the PTE_UXN bit set. 123 */ 124 #define pte_valid_not_user(pte) \ 125 ((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN)) 126 /* 127 * Could the pte be present in the TLB? We must check mm_tlb_flush_pending 128 * so that we don't erroneously return false for pages that have been 129 * remapped as PROT_NONE but are yet to be flushed from the TLB. 130 * Note that we can't make any assumptions based on the state of the access 131 * flag, since ptep_clear_flush_young() elides a DSB when invalidating the 132 * TLB. 133 */ 134 #define pte_accessible(mm, pte) \ 135 (mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte)) 136 137 /* 138 * p??_access_permitted() is true for valid user mappings (PTE_USER 139 * bit set, subject to the write permission check). For execute-only 140 * mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits 141 * not set) must return false. PROT_NONE mappings do not have the 142 * PTE_VALID bit set. 143 */ 144 #define pte_access_permitted(pte, write) \ 145 (((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte))) 146 #define pmd_access_permitted(pmd, write) \ 147 (pte_access_permitted(pmd_pte(pmd), (write))) 148 #define pud_access_permitted(pud, write) \ 149 (pte_access_permitted(pud_pte(pud), (write))) 150 151 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot) 152 { 153 pte_val(pte) &= ~pgprot_val(prot); 154 return pte; 155 } 156 157 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot) 158 { 159 pte_val(pte) |= pgprot_val(prot); 160 return pte; 161 } 162 163 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot) 164 { 165 pmd_val(pmd) &= ~pgprot_val(prot); 166 return pmd; 167 } 168 169 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot) 170 { 171 pmd_val(pmd) |= pgprot_val(prot); 172 return pmd; 173 } 174 175 static inline pte_t pte_mkwrite(pte_t pte) 176 { 177 pte = set_pte_bit(pte, __pgprot(PTE_WRITE)); 178 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY)); 179 return pte; 180 } 181 182 static inline pte_t pte_mkclean(pte_t pte) 183 { 184 pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY)); 185 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY)); 186 187 return pte; 188 } 189 190 static inline pte_t pte_mkdirty(pte_t pte) 191 { 192 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY)); 193 194 if (pte_write(pte)) 195 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY)); 196 197 return pte; 198 } 199 200 static inline pte_t pte_wrprotect(pte_t pte) 201 { 202 /* 203 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY 204 * clear), set the PTE_DIRTY bit. 205 */ 206 if (pte_hw_dirty(pte)) 207 pte = pte_mkdirty(pte); 208 209 pte = clear_pte_bit(pte, __pgprot(PTE_WRITE)); 210 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY)); 211 return pte; 212 } 213 214 static inline pte_t pte_mkold(pte_t pte) 215 { 216 return clear_pte_bit(pte, __pgprot(PTE_AF)); 217 } 218 219 static inline pte_t pte_mkyoung(pte_t pte) 220 { 221 return set_pte_bit(pte, __pgprot(PTE_AF)); 222 } 223 224 static inline pte_t pte_mkspecial(pte_t pte) 225 { 226 return set_pte_bit(pte, __pgprot(PTE_SPECIAL)); 227 } 228 229 static inline pte_t pte_mkcont(pte_t pte) 230 { 231 pte = set_pte_bit(pte, __pgprot(PTE_CONT)); 232 return set_pte_bit(pte, __pgprot(PTE_TYPE_PAGE)); 233 } 234 235 static inline pte_t pte_mknoncont(pte_t pte) 236 { 237 return clear_pte_bit(pte, __pgprot(PTE_CONT)); 238 } 239 240 static inline pte_t pte_mkpresent(pte_t pte) 241 { 242 return set_pte_bit(pte, __pgprot(PTE_VALID)); 243 } 244 245 static inline pmd_t pmd_mkcont(pmd_t pmd) 246 { 247 return __pmd(pmd_val(pmd) | PMD_SECT_CONT); 248 } 249 250 static inline pte_t pte_mkdevmap(pte_t pte) 251 { 252 return set_pte_bit(pte, __pgprot(PTE_DEVMAP | PTE_SPECIAL)); 253 } 254 255 static inline void set_pte(pte_t *ptep, pte_t pte) 256 { 257 WRITE_ONCE(*ptep, pte); 258 259 /* 260 * Only if the new pte is valid and kernel, otherwise TLB maintenance 261 * or update_mmu_cache() have the necessary barriers. 262 */ 263 if (pte_valid_not_user(pte)) { 264 dsb(ishst); 265 isb(); 266 } 267 } 268 269 extern void __sync_icache_dcache(pte_t pteval); 270 271 /* 272 * PTE bits configuration in the presence of hardware Dirty Bit Management 273 * (PTE_WRITE == PTE_DBM): 274 * 275 * Dirty Writable | PTE_RDONLY PTE_WRITE PTE_DIRTY (sw) 276 * 0 0 | 1 0 0 277 * 0 1 | 1 1 0 278 * 1 0 | 1 0 1 279 * 1 1 | 0 1 x 280 * 281 * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via 282 * the page fault mechanism. Checking the dirty status of a pte becomes: 283 * 284 * PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY) 285 */ 286 287 static inline void __check_racy_pte_update(struct mm_struct *mm, pte_t *ptep, 288 pte_t pte) 289 { 290 pte_t old_pte; 291 292 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 293 return; 294 295 old_pte = READ_ONCE(*ptep); 296 297 if (!pte_valid(old_pte) || !pte_valid(pte)) 298 return; 299 if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1) 300 return; 301 302 /* 303 * Check for potential race with hardware updates of the pte 304 * (ptep_set_access_flags safely changes valid ptes without going 305 * through an invalid entry). 306 */ 307 VM_WARN_ONCE(!pte_young(pte), 308 "%s: racy access flag clearing: 0x%016llx -> 0x%016llx", 309 __func__, pte_val(old_pte), pte_val(pte)); 310 VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte), 311 "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx", 312 __func__, pte_val(old_pte), pte_val(pte)); 313 } 314 315 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 316 pte_t *ptep, pte_t pte) 317 { 318 if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte)) 319 __sync_icache_dcache(pte); 320 321 /* 322 * If the PTE would provide user space access to the tags associated 323 * with it then ensure that the MTE tags are synchronised. Although 324 * pte_access_permitted() returns false for exec only mappings, they 325 * don't expose tags (instruction fetches don't check tags). 326 */ 327 if (system_supports_mte() && pte_access_permitted(pte, false) && 328 !pte_special(pte)) { 329 pte_t old_pte = READ_ONCE(*ptep); 330 /* 331 * We only need to synchronise if the new PTE has tags enabled 332 * or if swapping in (in which case another mapping may have 333 * set tags in the past even if this PTE isn't tagged). 334 * (!pte_none() && !pte_present()) is an open coded version of 335 * is_swap_pte() 336 */ 337 if (pte_tagged(pte) || (!pte_none(old_pte) && !pte_present(old_pte))) 338 mte_sync_tags(old_pte, pte); 339 } 340 341 __check_racy_pte_update(mm, ptep, pte); 342 343 set_pte(ptep, pte); 344 } 345 346 /* 347 * Huge pte definitions. 348 */ 349 #define pte_mkhuge(pte) (__pte(pte_val(pte) & ~PTE_TABLE_BIT)) 350 351 /* 352 * Hugetlb definitions. 353 */ 354 #define HUGE_MAX_HSTATE 4 355 #define HPAGE_SHIFT PMD_SHIFT 356 #define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT) 357 #define HPAGE_MASK (~(HPAGE_SIZE - 1)) 358 #define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT) 359 360 static inline pte_t pgd_pte(pgd_t pgd) 361 { 362 return __pte(pgd_val(pgd)); 363 } 364 365 static inline pte_t p4d_pte(p4d_t p4d) 366 { 367 return __pte(p4d_val(p4d)); 368 } 369 370 static inline pte_t pud_pte(pud_t pud) 371 { 372 return __pte(pud_val(pud)); 373 } 374 375 static inline pud_t pte_pud(pte_t pte) 376 { 377 return __pud(pte_val(pte)); 378 } 379 380 static inline pmd_t pud_pmd(pud_t pud) 381 { 382 return __pmd(pud_val(pud)); 383 } 384 385 static inline pte_t pmd_pte(pmd_t pmd) 386 { 387 return __pte(pmd_val(pmd)); 388 } 389 390 static inline pmd_t pte_pmd(pte_t pte) 391 { 392 return __pmd(pte_val(pte)); 393 } 394 395 static inline pgprot_t mk_pud_sect_prot(pgprot_t prot) 396 { 397 return __pgprot((pgprot_val(prot) & ~PUD_TABLE_BIT) | PUD_TYPE_SECT); 398 } 399 400 static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot) 401 { 402 return __pgprot((pgprot_val(prot) & ~PMD_TABLE_BIT) | PMD_TYPE_SECT); 403 } 404 405 #ifdef CONFIG_NUMA_BALANCING 406 /* 407 * See the comment in include/linux/pgtable.h 408 */ 409 static inline int pte_protnone(pte_t pte) 410 { 411 return (pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)) == PTE_PROT_NONE; 412 } 413 414 static inline int pmd_protnone(pmd_t pmd) 415 { 416 return pte_protnone(pmd_pte(pmd)); 417 } 418 #endif 419 420 #define pmd_present_invalid(pmd) (!!(pmd_val(pmd) & PMD_PRESENT_INVALID)) 421 422 static inline int pmd_present(pmd_t pmd) 423 { 424 return pte_present(pmd_pte(pmd)) || pmd_present_invalid(pmd); 425 } 426 427 /* 428 * THP definitions. 429 */ 430 431 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 432 static inline int pmd_trans_huge(pmd_t pmd) 433 { 434 return pmd_val(pmd) && pmd_present(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT); 435 } 436 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 437 438 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd)) 439 #define pmd_young(pmd) pte_young(pmd_pte(pmd)) 440 #define pmd_valid(pmd) pte_valid(pmd_pte(pmd)) 441 #define pmd_cont(pmd) pte_cont(pmd_pte(pmd)) 442 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd))) 443 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd))) 444 #define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd))) 445 #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd))) 446 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd))) 447 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd))) 448 449 static inline pmd_t pmd_mkinvalid(pmd_t pmd) 450 { 451 pmd = set_pmd_bit(pmd, __pgprot(PMD_PRESENT_INVALID)); 452 pmd = clear_pmd_bit(pmd, __pgprot(PMD_SECT_VALID)); 453 454 return pmd; 455 } 456 457 #define pmd_thp_or_huge(pmd) (pmd_huge(pmd) || pmd_trans_huge(pmd)) 458 459 #define pmd_write(pmd) pte_write(pmd_pte(pmd)) 460 461 #define pmd_mkhuge(pmd) (__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT)) 462 463 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 464 #define pmd_devmap(pmd) pte_devmap(pmd_pte(pmd)) 465 #endif 466 static inline pmd_t pmd_mkdevmap(pmd_t pmd) 467 { 468 return pte_pmd(set_pte_bit(pmd_pte(pmd), __pgprot(PTE_DEVMAP))); 469 } 470 471 #define __pmd_to_phys(pmd) __pte_to_phys(pmd_pte(pmd)) 472 #define __phys_to_pmd_val(phys) __phys_to_pte_val(phys) 473 #define pmd_pfn(pmd) ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT) 474 #define pfn_pmd(pfn,prot) __pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) 475 #define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot) 476 477 #define pud_young(pud) pte_young(pud_pte(pud)) 478 #define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud))) 479 #define pud_write(pud) pte_write(pud_pte(pud)) 480 481 #define pud_mkhuge(pud) (__pud(pud_val(pud) & ~PUD_TABLE_BIT)) 482 483 #define __pud_to_phys(pud) __pte_to_phys(pud_pte(pud)) 484 #define __phys_to_pud_val(phys) __phys_to_pte_val(phys) 485 #define pud_pfn(pud) ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT) 486 #define pfn_pud(pfn,prot) __pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) 487 488 #define set_pmd_at(mm, addr, pmdp, pmd) set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd)) 489 #define set_pud_at(mm, addr, pudp, pud) set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud)) 490 491 #define __p4d_to_phys(p4d) __pte_to_phys(p4d_pte(p4d)) 492 #define __phys_to_p4d_val(phys) __phys_to_pte_val(phys) 493 494 #define __pgd_to_phys(pgd) __pte_to_phys(pgd_pte(pgd)) 495 #define __phys_to_pgd_val(phys) __phys_to_pte_val(phys) 496 497 #define __pgprot_modify(prot,mask,bits) \ 498 __pgprot((pgprot_val(prot) & ~(mask)) | (bits)) 499 500 #define pgprot_nx(prot) \ 501 __pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN) 502 503 /* 504 * Mark the prot value as uncacheable and unbufferable. 505 */ 506 #define pgprot_noncached(prot) \ 507 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN) 508 #define pgprot_writecombine(prot) \ 509 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN) 510 #define pgprot_device(prot) \ 511 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN) 512 #define pgprot_tagged(prot) \ 513 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED)) 514 #define pgprot_mhp pgprot_tagged 515 /* 516 * DMA allocations for non-coherent devices use what the Arm architecture calls 517 * "Normal non-cacheable" memory, which permits speculation, unaligned accesses 518 * and merging of writes. This is different from "Device-nGnR[nE]" memory which 519 * is intended for MMIO and thus forbids speculation, preserves access size, 520 * requires strict alignment and can also force write responses to come from the 521 * endpoint. 522 */ 523 #define pgprot_dmacoherent(prot) \ 524 __pgprot_modify(prot, PTE_ATTRINDX_MASK, \ 525 PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN) 526 527 #define __HAVE_PHYS_MEM_ACCESS_PROT 528 struct file; 529 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 530 unsigned long size, pgprot_t vma_prot); 531 532 #define pmd_none(pmd) (!pmd_val(pmd)) 533 534 #define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \ 535 PMD_TYPE_TABLE) 536 #define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \ 537 PMD_TYPE_SECT) 538 #define pmd_leaf(pmd) pmd_sect(pmd) 539 #define pmd_bad(pmd) (!pmd_table(pmd)) 540 541 #define pmd_leaf_size(pmd) (pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE) 542 #define pte_leaf_size(pte) (pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE) 543 544 #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3 545 static inline bool pud_sect(pud_t pud) { return false; } 546 static inline bool pud_table(pud_t pud) { return true; } 547 #else 548 #define pud_sect(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \ 549 PUD_TYPE_SECT) 550 #define pud_table(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \ 551 PUD_TYPE_TABLE) 552 #endif 553 554 extern pgd_t init_pg_dir[PTRS_PER_PGD]; 555 extern pgd_t init_pg_end[]; 556 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 557 extern pgd_t idmap_pg_dir[PTRS_PER_PGD]; 558 extern pgd_t idmap_pg_end[]; 559 extern pgd_t tramp_pg_dir[PTRS_PER_PGD]; 560 extern pgd_t reserved_pg_dir[PTRS_PER_PGD]; 561 562 extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd); 563 564 static inline bool in_swapper_pgdir(void *addr) 565 { 566 return ((unsigned long)addr & PAGE_MASK) == 567 ((unsigned long)swapper_pg_dir & PAGE_MASK); 568 } 569 570 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) 571 { 572 #ifdef __PAGETABLE_PMD_FOLDED 573 if (in_swapper_pgdir(pmdp)) { 574 set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd))); 575 return; 576 } 577 #endif /* __PAGETABLE_PMD_FOLDED */ 578 579 WRITE_ONCE(*pmdp, pmd); 580 581 if (pmd_valid(pmd)) { 582 dsb(ishst); 583 isb(); 584 } 585 } 586 587 static inline void pmd_clear(pmd_t *pmdp) 588 { 589 set_pmd(pmdp, __pmd(0)); 590 } 591 592 static inline phys_addr_t pmd_page_paddr(pmd_t pmd) 593 { 594 return __pmd_to_phys(pmd); 595 } 596 597 static inline unsigned long pmd_page_vaddr(pmd_t pmd) 598 { 599 return (unsigned long)__va(pmd_page_paddr(pmd)); 600 } 601 602 /* Find an entry in the third-level page table. */ 603 #define pte_offset_phys(dir,addr) (pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t)) 604 605 #define pte_set_fixmap(addr) ((pte_t *)set_fixmap_offset(FIX_PTE, addr)) 606 #define pte_set_fixmap_offset(pmd, addr) pte_set_fixmap(pte_offset_phys(pmd, addr)) 607 #define pte_clear_fixmap() clear_fixmap(FIX_PTE) 608 609 #define pmd_page(pmd) phys_to_page(__pmd_to_phys(pmd)) 610 611 /* use ONLY for statically allocated translation tables */ 612 #define pte_offset_kimg(dir,addr) ((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr)))) 613 614 /* 615 * Conversion functions: convert a page and protection to a page entry, 616 * and a page entry and page directory to the page they refer to. 617 */ 618 #define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot) 619 620 #if CONFIG_PGTABLE_LEVELS > 2 621 622 #define pmd_ERROR(e) \ 623 pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e)) 624 625 #define pud_none(pud) (!pud_val(pud)) 626 #define pud_bad(pud) (!pud_table(pud)) 627 #define pud_present(pud) pte_present(pud_pte(pud)) 628 #define pud_leaf(pud) pud_sect(pud) 629 #define pud_valid(pud) pte_valid(pud_pte(pud)) 630 631 static inline void set_pud(pud_t *pudp, pud_t pud) 632 { 633 #ifdef __PAGETABLE_PUD_FOLDED 634 if (in_swapper_pgdir(pudp)) { 635 set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud))); 636 return; 637 } 638 #endif /* __PAGETABLE_PUD_FOLDED */ 639 640 WRITE_ONCE(*pudp, pud); 641 642 if (pud_valid(pud)) { 643 dsb(ishst); 644 isb(); 645 } 646 } 647 648 static inline void pud_clear(pud_t *pudp) 649 { 650 set_pud(pudp, __pud(0)); 651 } 652 653 static inline phys_addr_t pud_page_paddr(pud_t pud) 654 { 655 return __pud_to_phys(pud); 656 } 657 658 static inline pmd_t *pud_pgtable(pud_t pud) 659 { 660 return (pmd_t *)__va(pud_page_paddr(pud)); 661 } 662 663 /* Find an entry in the second-level page table. */ 664 #define pmd_offset_phys(dir, addr) (pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t)) 665 666 #define pmd_set_fixmap(addr) ((pmd_t *)set_fixmap_offset(FIX_PMD, addr)) 667 #define pmd_set_fixmap_offset(pud, addr) pmd_set_fixmap(pmd_offset_phys(pud, addr)) 668 #define pmd_clear_fixmap() clear_fixmap(FIX_PMD) 669 670 #define pud_page(pud) phys_to_page(__pud_to_phys(pud)) 671 672 /* use ONLY for statically allocated translation tables */ 673 #define pmd_offset_kimg(dir,addr) ((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr)))) 674 675 #else 676 677 #define pud_page_paddr(pud) ({ BUILD_BUG(); 0; }) 678 679 /* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */ 680 #define pmd_set_fixmap(addr) NULL 681 #define pmd_set_fixmap_offset(pudp, addr) ((pmd_t *)pudp) 682 #define pmd_clear_fixmap() 683 684 #define pmd_offset_kimg(dir,addr) ((pmd_t *)dir) 685 686 #endif /* CONFIG_PGTABLE_LEVELS > 2 */ 687 688 #if CONFIG_PGTABLE_LEVELS > 3 689 690 #define pud_ERROR(e) \ 691 pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e)) 692 693 #define p4d_none(p4d) (!p4d_val(p4d)) 694 #define p4d_bad(p4d) (!(p4d_val(p4d) & 2)) 695 #define p4d_present(p4d) (p4d_val(p4d)) 696 697 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d) 698 { 699 if (in_swapper_pgdir(p4dp)) { 700 set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d))); 701 return; 702 } 703 704 WRITE_ONCE(*p4dp, p4d); 705 dsb(ishst); 706 isb(); 707 } 708 709 static inline void p4d_clear(p4d_t *p4dp) 710 { 711 set_p4d(p4dp, __p4d(0)); 712 } 713 714 static inline phys_addr_t p4d_page_paddr(p4d_t p4d) 715 { 716 return __p4d_to_phys(p4d); 717 } 718 719 static inline pud_t *p4d_pgtable(p4d_t p4d) 720 { 721 return (pud_t *)__va(p4d_page_paddr(p4d)); 722 } 723 724 /* Find an entry in the first-level page table. */ 725 #define pud_offset_phys(dir, addr) (p4d_page_paddr(READ_ONCE(*(dir))) + pud_index(addr) * sizeof(pud_t)) 726 727 #define pud_set_fixmap(addr) ((pud_t *)set_fixmap_offset(FIX_PUD, addr)) 728 #define pud_set_fixmap_offset(p4d, addr) pud_set_fixmap(pud_offset_phys(p4d, addr)) 729 #define pud_clear_fixmap() clear_fixmap(FIX_PUD) 730 731 #define p4d_page(p4d) pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d))) 732 733 /* use ONLY for statically allocated translation tables */ 734 #define pud_offset_kimg(dir,addr) ((pud_t *)__phys_to_kimg(pud_offset_phys((dir), (addr)))) 735 736 #else 737 738 #define p4d_page_paddr(p4d) ({ BUILD_BUG(); 0;}) 739 #define pgd_page_paddr(pgd) ({ BUILD_BUG(); 0;}) 740 741 /* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */ 742 #define pud_set_fixmap(addr) NULL 743 #define pud_set_fixmap_offset(pgdp, addr) ((pud_t *)pgdp) 744 #define pud_clear_fixmap() 745 746 #define pud_offset_kimg(dir,addr) ((pud_t *)dir) 747 748 #endif /* CONFIG_PGTABLE_LEVELS > 3 */ 749 750 #define pgd_ERROR(e) \ 751 pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e)) 752 753 #define pgd_set_fixmap(addr) ((pgd_t *)set_fixmap_offset(FIX_PGD, addr)) 754 #define pgd_clear_fixmap() clear_fixmap(FIX_PGD) 755 756 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 757 { 758 /* 759 * Normal and Normal-Tagged are two different memory types and indices 760 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK. 761 */ 762 const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY | 763 PTE_PROT_NONE | PTE_VALID | PTE_WRITE | PTE_GP | 764 PTE_ATTRINDX_MASK; 765 /* preserve the hardware dirty information */ 766 if (pte_hw_dirty(pte)) 767 pte = pte_mkdirty(pte); 768 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask); 769 return pte; 770 } 771 772 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 773 { 774 return pte_pmd(pte_modify(pmd_pte(pmd), newprot)); 775 } 776 777 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 778 extern int ptep_set_access_flags(struct vm_area_struct *vma, 779 unsigned long address, pte_t *ptep, 780 pte_t entry, int dirty); 781 782 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 783 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 784 static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 785 unsigned long address, pmd_t *pmdp, 786 pmd_t entry, int dirty) 787 { 788 return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty); 789 } 790 791 static inline int pud_devmap(pud_t pud) 792 { 793 return 0; 794 } 795 796 static inline int pgd_devmap(pgd_t pgd) 797 { 798 return 0; 799 } 800 #endif 801 802 /* 803 * Atomic pte/pmd modifications. 804 */ 805 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 806 static inline int __ptep_test_and_clear_young(pte_t *ptep) 807 { 808 pte_t old_pte, pte; 809 810 pte = READ_ONCE(*ptep); 811 do { 812 old_pte = pte; 813 pte = pte_mkold(pte); 814 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep), 815 pte_val(old_pte), pte_val(pte)); 816 } while (pte_val(pte) != pte_val(old_pte)); 817 818 return pte_young(pte); 819 } 820 821 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 822 unsigned long address, 823 pte_t *ptep) 824 { 825 return __ptep_test_and_clear_young(ptep); 826 } 827 828 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 829 static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 830 unsigned long address, pte_t *ptep) 831 { 832 int young = ptep_test_and_clear_young(vma, address, ptep); 833 834 if (young) { 835 /* 836 * We can elide the trailing DSB here since the worst that can 837 * happen is that a CPU continues to use the young entry in its 838 * TLB and we mistakenly reclaim the associated page. The 839 * window for such an event is bounded by the next 840 * context-switch, which provides a DSB to complete the TLB 841 * invalidation. 842 */ 843 flush_tlb_page_nosync(vma, address); 844 } 845 846 return young; 847 } 848 849 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 850 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 851 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 852 unsigned long address, 853 pmd_t *pmdp) 854 { 855 return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp); 856 } 857 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 858 859 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 860 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 861 unsigned long address, pte_t *ptep) 862 { 863 return __pte(xchg_relaxed(&pte_val(*ptep), 0)); 864 } 865 866 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 867 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 868 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 869 unsigned long address, pmd_t *pmdp) 870 { 871 return pte_pmd(ptep_get_and_clear(mm, address, (pte_t *)pmdp)); 872 } 873 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 874 875 /* 876 * ptep_set_wrprotect - mark read-only while trasferring potential hardware 877 * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit. 878 */ 879 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 880 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) 881 { 882 pte_t old_pte, pte; 883 884 pte = READ_ONCE(*ptep); 885 do { 886 old_pte = pte; 887 pte = pte_wrprotect(pte); 888 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep), 889 pte_val(old_pte), pte_val(pte)); 890 } while (pte_val(pte) != pte_val(old_pte)); 891 } 892 893 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 894 #define __HAVE_ARCH_PMDP_SET_WRPROTECT 895 static inline void pmdp_set_wrprotect(struct mm_struct *mm, 896 unsigned long address, pmd_t *pmdp) 897 { 898 ptep_set_wrprotect(mm, address, (pte_t *)pmdp); 899 } 900 901 #define pmdp_establish pmdp_establish 902 static inline pmd_t pmdp_establish(struct vm_area_struct *vma, 903 unsigned long address, pmd_t *pmdp, pmd_t pmd) 904 { 905 return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd))); 906 } 907 #endif 908 909 /* 910 * Encode and decode a swap entry: 911 * bits 0-1: present (must be zero) 912 * bits 2-7: swap type 913 * bits 8-57: swap offset 914 * bit 58: PTE_PROT_NONE (must be zero) 915 */ 916 #define __SWP_TYPE_SHIFT 2 917 #define __SWP_TYPE_BITS 6 918 #define __SWP_OFFSET_BITS 50 919 #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1) 920 #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT) 921 #define __SWP_OFFSET_MASK ((1UL << __SWP_OFFSET_BITS) - 1) 922 923 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK) 924 #define __swp_offset(x) (((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK) 925 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) }) 926 927 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 928 #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val }) 929 930 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 931 #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) }) 932 #define __swp_entry_to_pmd(swp) __pmd((swp).val) 933 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */ 934 935 /* 936 * Ensure that there are not more swap files than can be encoded in the kernel 937 * PTEs. 938 */ 939 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS) 940 941 extern int kern_addr_valid(unsigned long addr); 942 943 #ifdef CONFIG_ARM64_MTE 944 945 #define __HAVE_ARCH_PREPARE_TO_SWAP 946 static inline int arch_prepare_to_swap(struct page *page) 947 { 948 if (system_supports_mte()) 949 return mte_save_tags(page); 950 return 0; 951 } 952 953 #define __HAVE_ARCH_SWAP_INVALIDATE 954 static inline void arch_swap_invalidate_page(int type, pgoff_t offset) 955 { 956 if (system_supports_mte()) 957 mte_invalidate_tags(type, offset); 958 } 959 960 static inline void arch_swap_invalidate_area(int type) 961 { 962 if (system_supports_mte()) 963 mte_invalidate_tags_area(type); 964 } 965 966 #define __HAVE_ARCH_SWAP_RESTORE 967 static inline void arch_swap_restore(swp_entry_t entry, struct page *page) 968 { 969 if (system_supports_mte() && mte_restore_tags(entry, page)) 970 set_bit(PG_mte_tagged, &page->flags); 971 } 972 973 #endif /* CONFIG_ARM64_MTE */ 974 975 /* 976 * On AArch64, the cache coherency is handled via the set_pte_at() function. 977 */ 978 static inline void update_mmu_cache(struct vm_area_struct *vma, 979 unsigned long addr, pte_t *ptep) 980 { 981 /* 982 * We don't do anything here, so there's a very small chance of 983 * us retaking a user fault which we just fixed up. The alternative 984 * is doing a dsb(ishst), but that penalises the fastpath. 985 */ 986 } 987 988 #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0) 989 990 #ifdef CONFIG_ARM64_PA_BITS_52 991 #define phys_to_ttbr(addr) (((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52) 992 #else 993 #define phys_to_ttbr(addr) (addr) 994 #endif 995 996 /* 997 * On arm64 without hardware Access Flag, copying from user will fail because 998 * the pte is old and cannot be marked young. So we always end up with zeroed 999 * page after fork() + CoW for pfn mappings. We don't always have a 1000 * hardware-managed access flag on arm64. 1001 */ 1002 static inline bool arch_faults_on_old_pte(void) 1003 { 1004 WARN_ON(preemptible()); 1005 1006 return !cpu_has_hw_af(); 1007 } 1008 #define arch_faults_on_old_pte arch_faults_on_old_pte 1009 1010 /* 1011 * Experimentally, it's cheap to set the access flag in hardware and we 1012 * benefit from prefaulting mappings as 'old' to start with. 1013 */ 1014 static inline bool arch_wants_old_prefaulted_pte(void) 1015 { 1016 return !arch_faults_on_old_pte(); 1017 } 1018 #define arch_wants_old_prefaulted_pte arch_wants_old_prefaulted_pte 1019 1020 static inline bool pud_sect_supported(void) 1021 { 1022 return PAGE_SIZE == SZ_4K; 1023 } 1024 1025 1026 #endif /* !__ASSEMBLY__ */ 1027 1028 #endif /* __ASM_PGTABLE_H */ 1029