1 /* 2 * Copyright (C) 2012 ARM Ltd. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * GNU General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * along with this program. If not, see <http://www.gnu.org/licenses/>. 15 */ 16 #ifndef __ASM_PGTABLE_H 17 #define __ASM_PGTABLE_H 18 19 #include <asm/bug.h> 20 #include <asm/proc-fns.h> 21 22 #include <asm/memory.h> 23 #include <asm/pgtable-hwdef.h> 24 25 /* 26 * Software defined PTE bits definition. 27 */ 28 #define PTE_VALID (_AT(pteval_t, 1) << 0) 29 #define PTE_WRITE (PTE_DBM) /* same as DBM (51) */ 30 #define PTE_DIRTY (_AT(pteval_t, 1) << 55) 31 #define PTE_SPECIAL (_AT(pteval_t, 1) << 56) 32 #define PTE_PROT_NONE (_AT(pteval_t, 1) << 58) /* only when !PTE_VALID */ 33 34 /* 35 * VMALLOC and SPARSEMEM_VMEMMAP ranges. 36 * 37 * VMEMAP_SIZE: allows the whole VA space to be covered by a struct page array 38 * (rounded up to PUD_SIZE). 39 * VMALLOC_START: beginning of the kernel VA space 40 * VMALLOC_END: extends to the available space below vmmemmap, PCI I/O space, 41 * fixed mappings and modules 42 */ 43 #define VMEMMAP_SIZE ALIGN((1UL << (VA_BITS - PAGE_SHIFT)) * sizeof(struct page), PUD_SIZE) 44 45 #ifndef CONFIG_KASAN 46 #define VMALLOC_START (VA_START) 47 #else 48 #include <asm/kasan.h> 49 #define VMALLOC_START (KASAN_SHADOW_END + SZ_64K) 50 #endif 51 52 #define VMALLOC_END (PAGE_OFFSET - PUD_SIZE - VMEMMAP_SIZE - SZ_64K) 53 54 #define vmemmap ((struct page *)(VMALLOC_END + SZ_64K)) 55 56 #define FIRST_USER_ADDRESS 0UL 57 58 #ifndef __ASSEMBLY__ 59 60 #include <linux/mmdebug.h> 61 62 extern void __pte_error(const char *file, int line, unsigned long val); 63 extern void __pmd_error(const char *file, int line, unsigned long val); 64 extern void __pud_error(const char *file, int line, unsigned long val); 65 extern void __pgd_error(const char *file, int line, unsigned long val); 66 67 #define PROT_DEFAULT (PTE_TYPE_PAGE | PTE_AF | PTE_SHARED) 68 #define PROT_SECT_DEFAULT (PMD_TYPE_SECT | PMD_SECT_AF | PMD_SECT_S) 69 70 #define PROT_DEVICE_nGnRnE (PROT_DEFAULT | PTE_PXN | PTE_UXN | PTE_ATTRINDX(MT_DEVICE_nGnRnE)) 71 #define PROT_DEVICE_nGnRE (PROT_DEFAULT | PTE_PXN | PTE_UXN | PTE_ATTRINDX(MT_DEVICE_nGnRE)) 72 #define PROT_NORMAL_NC (PROT_DEFAULT | PTE_PXN | PTE_UXN | PTE_ATTRINDX(MT_NORMAL_NC)) 73 #define PROT_NORMAL_WT (PROT_DEFAULT | PTE_PXN | PTE_UXN | PTE_ATTRINDX(MT_NORMAL_WT)) 74 #define PROT_NORMAL (PROT_DEFAULT | PTE_PXN | PTE_UXN | PTE_ATTRINDX(MT_NORMAL)) 75 76 #define PROT_SECT_DEVICE_nGnRE (PROT_SECT_DEFAULT | PMD_SECT_PXN | PMD_SECT_UXN | PMD_ATTRINDX(MT_DEVICE_nGnRE)) 77 #define PROT_SECT_NORMAL (PROT_SECT_DEFAULT | PMD_SECT_PXN | PMD_SECT_UXN | PMD_ATTRINDX(MT_NORMAL)) 78 #define PROT_SECT_NORMAL_EXEC (PROT_SECT_DEFAULT | PMD_SECT_UXN | PMD_ATTRINDX(MT_NORMAL)) 79 80 #define _PAGE_DEFAULT (PROT_DEFAULT | PTE_ATTRINDX(MT_NORMAL)) 81 82 #define PAGE_KERNEL __pgprot(_PAGE_DEFAULT | PTE_PXN | PTE_UXN | PTE_DIRTY | PTE_WRITE) 83 #define PAGE_KERNEL_RO __pgprot(_PAGE_DEFAULT | PTE_PXN | PTE_UXN | PTE_DIRTY | PTE_RDONLY) 84 #define PAGE_KERNEL_ROX __pgprot(_PAGE_DEFAULT | PTE_UXN | PTE_DIRTY | PTE_RDONLY) 85 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_DEFAULT | PTE_UXN | PTE_DIRTY | PTE_WRITE) 86 #define PAGE_KERNEL_EXEC_CONT __pgprot(_PAGE_DEFAULT | PTE_UXN | PTE_DIRTY | PTE_WRITE | PTE_CONT) 87 88 #define PAGE_HYP __pgprot(_PAGE_DEFAULT | PTE_HYP) 89 #define PAGE_HYP_DEVICE __pgprot(PROT_DEVICE_nGnRE | PTE_HYP) 90 91 #define PAGE_S2 __pgprot(PROT_DEFAULT | PTE_S2_MEMATTR(MT_S2_NORMAL) | PTE_S2_RDONLY) 92 #define PAGE_S2_DEVICE __pgprot(PROT_DEFAULT | PTE_S2_MEMATTR(MT_S2_DEVICE_nGnRE) | PTE_S2_RDONLY | PTE_UXN) 93 94 #define PAGE_NONE __pgprot(((_PAGE_DEFAULT) & ~PTE_VALID) | PTE_PROT_NONE | PTE_PXN | PTE_UXN) 95 #define PAGE_SHARED __pgprot(_PAGE_DEFAULT | PTE_USER | PTE_NG | PTE_PXN | PTE_UXN | PTE_WRITE) 96 #define PAGE_SHARED_EXEC __pgprot(_PAGE_DEFAULT | PTE_USER | PTE_NG | PTE_PXN | PTE_WRITE) 97 #define PAGE_COPY __pgprot(_PAGE_DEFAULT | PTE_USER | PTE_NG | PTE_PXN | PTE_UXN) 98 #define PAGE_COPY_EXEC __pgprot(_PAGE_DEFAULT | PTE_USER | PTE_NG | PTE_PXN) 99 #define PAGE_READONLY __pgprot(_PAGE_DEFAULT | PTE_USER | PTE_NG | PTE_PXN | PTE_UXN) 100 #define PAGE_READONLY_EXEC __pgprot(_PAGE_DEFAULT | PTE_USER | PTE_NG | PTE_PXN) 101 102 #define __P000 PAGE_NONE 103 #define __P001 PAGE_READONLY 104 #define __P010 PAGE_COPY 105 #define __P011 PAGE_COPY 106 #define __P100 PAGE_READONLY_EXEC 107 #define __P101 PAGE_READONLY_EXEC 108 #define __P110 PAGE_COPY_EXEC 109 #define __P111 PAGE_COPY_EXEC 110 111 #define __S000 PAGE_NONE 112 #define __S001 PAGE_READONLY 113 #define __S010 PAGE_SHARED 114 #define __S011 PAGE_SHARED 115 #define __S100 PAGE_READONLY_EXEC 116 #define __S101 PAGE_READONLY_EXEC 117 #define __S110 PAGE_SHARED_EXEC 118 #define __S111 PAGE_SHARED_EXEC 119 120 /* 121 * ZERO_PAGE is a global shared page that is always zero: used 122 * for zero-mapped memory areas etc.. 123 */ 124 extern struct page *empty_zero_page; 125 #define ZERO_PAGE(vaddr) (empty_zero_page) 126 127 #define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte)) 128 129 #define pte_pfn(pte) ((pte_val(pte) & PHYS_MASK) >> PAGE_SHIFT) 130 131 #define pfn_pte(pfn,prot) (__pte(((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))) 132 133 #define pte_none(pte) (!pte_val(pte)) 134 #define pte_clear(mm,addr,ptep) set_pte(ptep, __pte(0)) 135 #define pte_page(pte) (pfn_to_page(pte_pfn(pte))) 136 137 /* Find an entry in the third-level page table. */ 138 #define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 139 140 #define pte_offset_kernel(dir,addr) (pmd_page_vaddr(*(dir)) + pte_index(addr)) 141 142 #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr)) 143 #define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir), (addr)) 144 #define pte_unmap(pte) do { } while (0) 145 #define pte_unmap_nested(pte) do { } while (0) 146 147 /* 148 * The following only work if pte_present(). Undefined behaviour otherwise. 149 */ 150 #define pte_present(pte) (!!(pte_val(pte) & (PTE_VALID | PTE_PROT_NONE))) 151 #define pte_young(pte) (!!(pte_val(pte) & PTE_AF)) 152 #define pte_special(pte) (!!(pte_val(pte) & PTE_SPECIAL)) 153 #define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE)) 154 #define pte_exec(pte) (!(pte_val(pte) & PTE_UXN)) 155 #define pte_cont(pte) (!!(pte_val(pte) & PTE_CONT)) 156 157 #ifdef CONFIG_ARM64_HW_AFDBM 158 #define pte_hw_dirty(pte) (pte_write(pte) && !(pte_val(pte) & PTE_RDONLY)) 159 #else 160 #define pte_hw_dirty(pte) (0) 161 #endif 162 #define pte_sw_dirty(pte) (!!(pte_val(pte) & PTE_DIRTY)) 163 #define pte_dirty(pte) (pte_sw_dirty(pte) || pte_hw_dirty(pte)) 164 165 #define pte_valid(pte) (!!(pte_val(pte) & PTE_VALID)) 166 #define pte_valid_user(pte) \ 167 ((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) 168 #define pte_valid_not_user(pte) \ 169 ((pte_val(pte) & (PTE_VALID | PTE_USER)) == PTE_VALID) 170 171 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot) 172 { 173 pte_val(pte) &= ~pgprot_val(prot); 174 return pte; 175 } 176 177 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot) 178 { 179 pte_val(pte) |= pgprot_val(prot); 180 return pte; 181 } 182 183 static inline pte_t pte_wrprotect(pte_t pte) 184 { 185 return clear_pte_bit(pte, __pgprot(PTE_WRITE)); 186 } 187 188 static inline pte_t pte_mkwrite(pte_t pte) 189 { 190 return set_pte_bit(pte, __pgprot(PTE_WRITE)); 191 } 192 193 static inline pte_t pte_mkclean(pte_t pte) 194 { 195 return clear_pte_bit(pte, __pgprot(PTE_DIRTY)); 196 } 197 198 static inline pte_t pte_mkdirty(pte_t pte) 199 { 200 return set_pte_bit(pte, __pgprot(PTE_DIRTY)); 201 } 202 203 static inline pte_t pte_mkold(pte_t pte) 204 { 205 return clear_pte_bit(pte, __pgprot(PTE_AF)); 206 } 207 208 static inline pte_t pte_mkyoung(pte_t pte) 209 { 210 return set_pte_bit(pte, __pgprot(PTE_AF)); 211 } 212 213 static inline pte_t pte_mkspecial(pte_t pte) 214 { 215 return set_pte_bit(pte, __pgprot(PTE_SPECIAL)); 216 } 217 218 static inline pte_t pte_mkcont(pte_t pte) 219 { 220 return set_pte_bit(pte, __pgprot(PTE_CONT)); 221 } 222 223 static inline pte_t pte_mknoncont(pte_t pte) 224 { 225 return clear_pte_bit(pte, __pgprot(PTE_CONT)); 226 } 227 228 static inline void set_pte(pte_t *ptep, pte_t pte) 229 { 230 *ptep = pte; 231 232 /* 233 * Only if the new pte is valid and kernel, otherwise TLB maintenance 234 * or update_mmu_cache() have the necessary barriers. 235 */ 236 if (pte_valid_not_user(pte)) { 237 dsb(ishst); 238 isb(); 239 } 240 } 241 242 struct mm_struct; 243 struct vm_area_struct; 244 245 extern void __sync_icache_dcache(pte_t pteval, unsigned long addr); 246 247 /* 248 * PTE bits configuration in the presence of hardware Dirty Bit Management 249 * (PTE_WRITE == PTE_DBM): 250 * 251 * Dirty Writable | PTE_RDONLY PTE_WRITE PTE_DIRTY (sw) 252 * 0 0 | 1 0 0 253 * 0 1 | 1 1 0 254 * 1 0 | 1 0 1 255 * 1 1 | 0 1 x 256 * 257 * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via 258 * the page fault mechanism. Checking the dirty status of a pte becomes: 259 * 260 * PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY) 261 */ 262 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 263 pte_t *ptep, pte_t pte) 264 { 265 if (pte_valid_user(pte)) { 266 if (!pte_special(pte) && pte_exec(pte)) 267 __sync_icache_dcache(pte, addr); 268 if (pte_sw_dirty(pte) && pte_write(pte)) 269 pte_val(pte) &= ~PTE_RDONLY; 270 else 271 pte_val(pte) |= PTE_RDONLY; 272 } 273 274 /* 275 * If the existing pte is valid, check for potential race with 276 * hardware updates of the pte (ptep_set_access_flags safely changes 277 * valid ptes without going through an invalid entry). 278 */ 279 if (IS_ENABLED(CONFIG_ARM64_HW_AFDBM) && 280 pte_valid(*ptep) && pte_valid(pte)) { 281 VM_WARN_ONCE(!pte_young(pte), 282 "%s: racy access flag clearing: 0x%016llx -> 0x%016llx", 283 __func__, pte_val(*ptep), pte_val(pte)); 284 VM_WARN_ONCE(pte_write(*ptep) && !pte_dirty(pte), 285 "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx", 286 __func__, pte_val(*ptep), pte_val(pte)); 287 } 288 289 set_pte(ptep, pte); 290 } 291 292 /* 293 * Huge pte definitions. 294 */ 295 #define pte_huge(pte) (!(pte_val(pte) & PTE_TABLE_BIT)) 296 #define pte_mkhuge(pte) (__pte(pte_val(pte) & ~PTE_TABLE_BIT)) 297 298 /* 299 * Hugetlb definitions. 300 */ 301 #define HUGE_MAX_HSTATE 2 302 #define HPAGE_SHIFT PMD_SHIFT 303 #define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT) 304 #define HPAGE_MASK (~(HPAGE_SIZE - 1)) 305 #define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT) 306 307 #define __HAVE_ARCH_PTE_SPECIAL 308 309 static inline pte_t pud_pte(pud_t pud) 310 { 311 return __pte(pud_val(pud)); 312 } 313 314 static inline pmd_t pud_pmd(pud_t pud) 315 { 316 return __pmd(pud_val(pud)); 317 } 318 319 static inline pte_t pmd_pte(pmd_t pmd) 320 { 321 return __pte(pmd_val(pmd)); 322 } 323 324 static inline pmd_t pte_pmd(pte_t pte) 325 { 326 return __pmd(pte_val(pte)); 327 } 328 329 static inline pgprot_t mk_sect_prot(pgprot_t prot) 330 { 331 return __pgprot(pgprot_val(prot) & ~PTE_TABLE_BIT); 332 } 333 334 /* 335 * THP definitions. 336 */ 337 338 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 339 #define pmd_trans_huge(pmd) (pmd_val(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT)) 340 #define pmd_trans_splitting(pmd) pte_special(pmd_pte(pmd)) 341 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 342 #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH 343 struct vm_area_struct; 344 void pmdp_splitting_flush(struct vm_area_struct *vma, unsigned long address, 345 pmd_t *pmdp); 346 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 347 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 348 349 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd)) 350 #define pmd_young(pmd) pte_young(pmd_pte(pmd)) 351 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd))) 352 #define pmd_mksplitting(pmd) pte_pmd(pte_mkspecial(pmd_pte(pmd))) 353 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd))) 354 #define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd))) 355 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd))) 356 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd))) 357 #define pmd_mknotpresent(pmd) (__pmd(pmd_val(pmd) & ~PMD_TYPE_MASK)) 358 359 #define __HAVE_ARCH_PMD_WRITE 360 #define pmd_write(pmd) pte_write(pmd_pte(pmd)) 361 362 #define pmd_mkhuge(pmd) (__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT)) 363 364 #define pmd_pfn(pmd) (((pmd_val(pmd) & PMD_MASK) & PHYS_MASK) >> PAGE_SHIFT) 365 #define pfn_pmd(pfn,prot) (__pmd(((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))) 366 #define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot) 367 368 #define pud_write(pud) pte_write(pud_pte(pud)) 369 #define pud_pfn(pud) (((pud_val(pud) & PUD_MASK) & PHYS_MASK) >> PAGE_SHIFT) 370 371 #define set_pmd_at(mm, addr, pmdp, pmd) set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd)) 372 373 static inline int has_transparent_hugepage(void) 374 { 375 return 1; 376 } 377 378 #define __pgprot_modify(prot,mask,bits) \ 379 __pgprot((pgprot_val(prot) & ~(mask)) | (bits)) 380 381 /* 382 * Mark the prot value as uncacheable and unbufferable. 383 */ 384 #define pgprot_noncached(prot) \ 385 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN) 386 #define pgprot_writecombine(prot) \ 387 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN) 388 #define pgprot_device(prot) \ 389 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN) 390 #define __HAVE_PHYS_MEM_ACCESS_PROT 391 struct file; 392 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 393 unsigned long size, pgprot_t vma_prot); 394 395 #define pmd_none(pmd) (!pmd_val(pmd)) 396 #define pmd_present(pmd) (pmd_val(pmd)) 397 398 #define pmd_bad(pmd) (!(pmd_val(pmd) & 2)) 399 400 #define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \ 401 PMD_TYPE_TABLE) 402 #define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \ 403 PMD_TYPE_SECT) 404 405 #ifdef CONFIG_ARM64_64K_PAGES 406 #define pud_sect(pud) (0) 407 #define pud_table(pud) (1) 408 #else 409 #define pud_sect(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \ 410 PUD_TYPE_SECT) 411 #define pud_table(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \ 412 PUD_TYPE_TABLE) 413 #endif 414 415 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) 416 { 417 *pmdp = pmd; 418 dsb(ishst); 419 isb(); 420 } 421 422 static inline void pmd_clear(pmd_t *pmdp) 423 { 424 set_pmd(pmdp, __pmd(0)); 425 } 426 427 static inline pte_t *pmd_page_vaddr(pmd_t pmd) 428 { 429 return __va(pmd_val(pmd) & PHYS_MASK & (s32)PAGE_MASK); 430 } 431 432 #define pmd_page(pmd) pfn_to_page(__phys_to_pfn(pmd_val(pmd) & PHYS_MASK)) 433 434 /* 435 * Conversion functions: convert a page and protection to a page entry, 436 * and a page entry and page directory to the page they refer to. 437 */ 438 #define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot) 439 440 #if CONFIG_PGTABLE_LEVELS > 2 441 442 #define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd_val(pmd)) 443 444 #define pud_none(pud) (!pud_val(pud)) 445 #define pud_bad(pud) (!(pud_val(pud) & 2)) 446 #define pud_present(pud) (pud_val(pud)) 447 448 static inline void set_pud(pud_t *pudp, pud_t pud) 449 { 450 *pudp = pud; 451 dsb(ishst); 452 isb(); 453 } 454 455 static inline void pud_clear(pud_t *pudp) 456 { 457 set_pud(pudp, __pud(0)); 458 } 459 460 static inline pmd_t *pud_page_vaddr(pud_t pud) 461 { 462 return __va(pud_val(pud) & PHYS_MASK & (s32)PAGE_MASK); 463 } 464 465 /* Find an entry in the second-level page table. */ 466 #define pmd_index(addr) (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)) 467 468 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long addr) 469 { 470 return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(addr); 471 } 472 473 #define pud_page(pud) pfn_to_page(__phys_to_pfn(pud_val(pud) & PHYS_MASK)) 474 475 #endif /* CONFIG_PGTABLE_LEVELS > 2 */ 476 477 #if CONFIG_PGTABLE_LEVELS > 3 478 479 #define pud_ERROR(pud) __pud_error(__FILE__, __LINE__, pud_val(pud)) 480 481 #define pgd_none(pgd) (!pgd_val(pgd)) 482 #define pgd_bad(pgd) (!(pgd_val(pgd) & 2)) 483 #define pgd_present(pgd) (pgd_val(pgd)) 484 485 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd) 486 { 487 *pgdp = pgd; 488 dsb(ishst); 489 } 490 491 static inline void pgd_clear(pgd_t *pgdp) 492 { 493 set_pgd(pgdp, __pgd(0)); 494 } 495 496 static inline pud_t *pgd_page_vaddr(pgd_t pgd) 497 { 498 return __va(pgd_val(pgd) & PHYS_MASK & (s32)PAGE_MASK); 499 } 500 501 /* Find an entry in the frst-level page table. */ 502 #define pud_index(addr) (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1)) 503 504 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long addr) 505 { 506 return (pud_t *)pgd_page_vaddr(*pgd) + pud_index(addr); 507 } 508 509 #define pgd_page(pgd) pfn_to_page(__phys_to_pfn(pgd_val(pgd) & PHYS_MASK)) 510 511 #endif /* CONFIG_PGTABLE_LEVELS > 3 */ 512 513 #define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd)) 514 515 /* to find an entry in a page-table-directory */ 516 #define pgd_index(addr) (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) 517 518 #define pgd_offset(mm, addr) ((mm)->pgd+pgd_index(addr)) 519 520 /* to find an entry in a kernel page-table-directory */ 521 #define pgd_offset_k(addr) pgd_offset(&init_mm, addr) 522 523 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 524 { 525 const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY | 526 PTE_PROT_NONE | PTE_VALID | PTE_WRITE; 527 /* preserve the hardware dirty information */ 528 if (pte_hw_dirty(pte)) 529 pte = pte_mkdirty(pte); 530 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask); 531 return pte; 532 } 533 534 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 535 { 536 return pte_pmd(pte_modify(pmd_pte(pmd), newprot)); 537 } 538 539 #ifdef CONFIG_ARM64_HW_AFDBM 540 /* 541 * Atomic pte/pmd modifications. 542 */ 543 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 544 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 545 unsigned long address, 546 pte_t *ptep) 547 { 548 pteval_t pteval; 549 unsigned int tmp, res; 550 551 asm volatile("// ptep_test_and_clear_young\n" 552 " prfm pstl1strm, %2\n" 553 "1: ldxr %0, %2\n" 554 " ubfx %w3, %w0, %5, #1 // extract PTE_AF (young)\n" 555 " and %0, %0, %4 // clear PTE_AF\n" 556 " stxr %w1, %0, %2\n" 557 " cbnz %w1, 1b\n" 558 : "=&r" (pteval), "=&r" (tmp), "+Q" (pte_val(*ptep)), "=&r" (res) 559 : "L" (~PTE_AF), "I" (ilog2(PTE_AF))); 560 561 return res; 562 } 563 564 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 565 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 566 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 567 unsigned long address, 568 pmd_t *pmdp) 569 { 570 return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp); 571 } 572 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 573 574 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 575 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 576 unsigned long address, pte_t *ptep) 577 { 578 pteval_t old_pteval; 579 unsigned int tmp; 580 581 asm volatile("// ptep_get_and_clear\n" 582 " prfm pstl1strm, %2\n" 583 "1: ldxr %0, %2\n" 584 " stxr %w1, xzr, %2\n" 585 " cbnz %w1, 1b\n" 586 : "=&r" (old_pteval), "=&r" (tmp), "+Q" (pte_val(*ptep))); 587 588 return __pte(old_pteval); 589 } 590 591 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 592 #define __HAVE_ARCH_PMDP_GET_AND_CLEAR 593 static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm, 594 unsigned long address, pmd_t *pmdp) 595 { 596 return pte_pmd(ptep_get_and_clear(mm, address, (pte_t *)pmdp)); 597 } 598 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 599 600 /* 601 * ptep_set_wrprotect - mark read-only while trasferring potential hardware 602 * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit. 603 */ 604 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 605 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) 606 { 607 pteval_t pteval; 608 unsigned long tmp; 609 610 asm volatile("// ptep_set_wrprotect\n" 611 " prfm pstl1strm, %2\n" 612 "1: ldxr %0, %2\n" 613 " tst %0, %4 // check for hw dirty (!PTE_RDONLY)\n" 614 " csel %1, %3, xzr, eq // set PTE_DIRTY|PTE_RDONLY if dirty\n" 615 " orr %0, %0, %1 // if !dirty, PTE_RDONLY is already set\n" 616 " and %0, %0, %5 // clear PTE_WRITE/PTE_DBM\n" 617 " stxr %w1, %0, %2\n" 618 " cbnz %w1, 1b\n" 619 : "=&r" (pteval), "=&r" (tmp), "+Q" (pte_val(*ptep)) 620 : "r" (PTE_DIRTY|PTE_RDONLY), "L" (PTE_RDONLY), "L" (~PTE_WRITE) 621 : "cc"); 622 } 623 624 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 625 #define __HAVE_ARCH_PMDP_SET_WRPROTECT 626 static inline void pmdp_set_wrprotect(struct mm_struct *mm, 627 unsigned long address, pmd_t *pmdp) 628 { 629 ptep_set_wrprotect(mm, address, (pte_t *)pmdp); 630 } 631 #endif 632 #endif /* CONFIG_ARM64_HW_AFDBM */ 633 634 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 635 extern pgd_t idmap_pg_dir[PTRS_PER_PGD]; 636 637 /* 638 * Encode and decode a swap entry: 639 * bits 0-1: present (must be zero) 640 * bits 2-7: swap type 641 * bits 8-57: swap offset 642 */ 643 #define __SWP_TYPE_SHIFT 2 644 #define __SWP_TYPE_BITS 6 645 #define __SWP_OFFSET_BITS 50 646 #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1) 647 #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT) 648 #define __SWP_OFFSET_MASK ((1UL << __SWP_OFFSET_BITS) - 1) 649 650 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK) 651 #define __swp_offset(x) (((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK) 652 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) }) 653 654 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 655 #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val }) 656 657 /* 658 * Ensure that there are not more swap files than can be encoded in the kernel 659 * PTEs. 660 */ 661 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS) 662 663 extern int kern_addr_valid(unsigned long addr); 664 665 #include <asm-generic/pgtable.h> 666 667 #define pgtable_cache_init() do { } while (0) 668 669 /* 670 * On AArch64, the cache coherency is handled via the set_pte_at() function. 671 */ 672 static inline void update_mmu_cache(struct vm_area_struct *vma, 673 unsigned long addr, pte_t *ptep) 674 { 675 /* 676 * We don't do anything here, so there's a very small chance of 677 * us retaking a user fault which we just fixed up. The alternative 678 * is doing a dsb(ishst), but that penalises the fastpath. 679 */ 680 } 681 682 #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0) 683 684 #define kc_vaddr_to_offset(v) ((v) & ~VA_START) 685 #define kc_offset_to_vaddr(o) ((o) | VA_START) 686 687 #endif /* !__ASSEMBLY__ */ 688 689 #endif /* __ASM_PGTABLE_H */ 690