xref: /openbmc/linux/arch/arm64/include/asm/pgtable.h (revision abade675e02e1b73da0c20ffaf08fbe309038298)
1 /*
2  * Copyright (C) 2012 ARM Ltd.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  */
16 #ifndef __ASM_PGTABLE_H
17 #define __ASM_PGTABLE_H
18 
19 #include <asm/bug.h>
20 #include <asm/proc-fns.h>
21 
22 #include <asm/memory.h>
23 #include <asm/pgtable-hwdef.h>
24 #include <asm/pgtable-prot.h>
25 #include <asm/tlbflush.h>
26 
27 /*
28  * VMALLOC range.
29  *
30  * VMALLOC_START: beginning of the kernel vmalloc space
31  * VMALLOC_END: extends to the available space below vmmemmap, PCI I/O space
32  *	and fixed mappings
33  */
34 #define VMALLOC_START		(MODULES_END)
35 #define VMALLOC_END		(PAGE_OFFSET - PUD_SIZE - VMEMMAP_SIZE - SZ_64K)
36 
37 #define vmemmap			((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
38 
39 #define FIRST_USER_ADDRESS	0UL
40 
41 #ifndef __ASSEMBLY__
42 
43 #include <asm/cmpxchg.h>
44 #include <asm/fixmap.h>
45 #include <linux/mmdebug.h>
46 #include <linux/mm_types.h>
47 #include <linux/sched.h>
48 
49 extern void __pte_error(const char *file, int line, unsigned long val);
50 extern void __pmd_error(const char *file, int line, unsigned long val);
51 extern void __pud_error(const char *file, int line, unsigned long val);
52 extern void __pgd_error(const char *file, int line, unsigned long val);
53 
54 /*
55  * ZERO_PAGE is a global shared page that is always zero: used
56  * for zero-mapped memory areas etc..
57  */
58 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
59 #define ZERO_PAGE(vaddr)	phys_to_page(__pa_symbol(empty_zero_page))
60 
61 #define pte_ERROR(pte)		__pte_error(__FILE__, __LINE__, pte_val(pte))
62 
63 /*
64  * Macros to convert between a physical address and its placement in a
65  * page table entry, taking care of 52-bit addresses.
66  */
67 #ifdef CONFIG_ARM64_PA_BITS_52
68 #define __pte_to_phys(pte)	\
69 	((pte_val(pte) & PTE_ADDR_LOW) | ((pte_val(pte) & PTE_ADDR_HIGH) << 36))
70 #define __phys_to_pte_val(phys)	(((phys) | ((phys) >> 36)) & PTE_ADDR_MASK)
71 #else
72 #define __pte_to_phys(pte)	(pte_val(pte) & PTE_ADDR_MASK)
73 #define __phys_to_pte_val(phys)	(phys)
74 #endif
75 
76 #define pte_pfn(pte)		(__pte_to_phys(pte) >> PAGE_SHIFT)
77 #define pfn_pte(pfn,prot)	\
78 	__pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
79 
80 #define pte_none(pte)		(!pte_val(pte))
81 #define pte_clear(mm,addr,ptep)	set_pte(ptep, __pte(0))
82 #define pte_page(pte)		(pfn_to_page(pte_pfn(pte)))
83 
84 /*
85  * The following only work if pte_present(). Undefined behaviour otherwise.
86  */
87 #define pte_present(pte)	(!!(pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)))
88 #define pte_young(pte)		(!!(pte_val(pte) & PTE_AF))
89 #define pte_special(pte)	(!!(pte_val(pte) & PTE_SPECIAL))
90 #define pte_write(pte)		(!!(pte_val(pte) & PTE_WRITE))
91 #define pte_user_exec(pte)	(!(pte_val(pte) & PTE_UXN))
92 #define pte_cont(pte)		(!!(pte_val(pte) & PTE_CONT))
93 
94 #define pte_cont_addr_end(addr, end)						\
95 ({	unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK;	\
96 	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
97 })
98 
99 #define pmd_cont_addr_end(addr, end)						\
100 ({	unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK;	\
101 	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
102 })
103 
104 #define pte_hw_dirty(pte)	(pte_write(pte) && !(pte_val(pte) & PTE_RDONLY))
105 #define pte_sw_dirty(pte)	(!!(pte_val(pte) & PTE_DIRTY))
106 #define pte_dirty(pte)		(pte_sw_dirty(pte) || pte_hw_dirty(pte))
107 
108 #define pte_valid(pte)		(!!(pte_val(pte) & PTE_VALID))
109 /*
110  * Execute-only user mappings do not have the PTE_USER bit set. All valid
111  * kernel mappings have the PTE_UXN bit set.
112  */
113 #define pte_valid_not_user(pte) \
114 	((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN))
115 #define pte_valid_young(pte) \
116 	((pte_val(pte) & (PTE_VALID | PTE_AF)) == (PTE_VALID | PTE_AF))
117 #define pte_valid_user(pte) \
118 	((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER))
119 
120 /*
121  * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
122  * so that we don't erroneously return false for pages that have been
123  * remapped as PROT_NONE but are yet to be flushed from the TLB.
124  */
125 #define pte_accessible(mm, pte)	\
126 	(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid_young(pte))
127 
128 /*
129  * p??_access_permitted() is true for valid user mappings (subject to the
130  * write permission check) other than user execute-only which do not have the
131  * PTE_USER bit set. PROT_NONE mappings do not have the PTE_VALID bit set.
132  */
133 #define pte_access_permitted(pte, write) \
134 	(pte_valid_user(pte) && (!(write) || pte_write(pte)))
135 #define pmd_access_permitted(pmd, write) \
136 	(pte_access_permitted(pmd_pte(pmd), (write)))
137 #define pud_access_permitted(pud, write) \
138 	(pte_access_permitted(pud_pte(pud), (write)))
139 
140 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
141 {
142 	pte_val(pte) &= ~pgprot_val(prot);
143 	return pte;
144 }
145 
146 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
147 {
148 	pte_val(pte) |= pgprot_val(prot);
149 	return pte;
150 }
151 
152 static inline pte_t pte_wrprotect(pte_t pte)
153 {
154 	pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
155 	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
156 	return pte;
157 }
158 
159 static inline pte_t pte_mkwrite(pte_t pte)
160 {
161 	pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
162 	pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
163 	return pte;
164 }
165 
166 static inline pte_t pte_mkclean(pte_t pte)
167 {
168 	pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
169 	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
170 
171 	return pte;
172 }
173 
174 static inline pte_t pte_mkdirty(pte_t pte)
175 {
176 	pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
177 
178 	if (pte_write(pte))
179 		pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
180 
181 	return pte;
182 }
183 
184 static inline pte_t pte_mkold(pte_t pte)
185 {
186 	return clear_pte_bit(pte, __pgprot(PTE_AF));
187 }
188 
189 static inline pte_t pte_mkyoung(pte_t pte)
190 {
191 	return set_pte_bit(pte, __pgprot(PTE_AF));
192 }
193 
194 static inline pte_t pte_mkspecial(pte_t pte)
195 {
196 	return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
197 }
198 
199 static inline pte_t pte_mkcont(pte_t pte)
200 {
201 	pte = set_pte_bit(pte, __pgprot(PTE_CONT));
202 	return set_pte_bit(pte, __pgprot(PTE_TYPE_PAGE));
203 }
204 
205 static inline pte_t pte_mknoncont(pte_t pte)
206 {
207 	return clear_pte_bit(pte, __pgprot(PTE_CONT));
208 }
209 
210 static inline pte_t pte_mkpresent(pte_t pte)
211 {
212 	return set_pte_bit(pte, __pgprot(PTE_VALID));
213 }
214 
215 static inline pmd_t pmd_mkcont(pmd_t pmd)
216 {
217 	return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
218 }
219 
220 static inline void set_pte(pte_t *ptep, pte_t pte)
221 {
222 	WRITE_ONCE(*ptep, pte);
223 
224 	/*
225 	 * Only if the new pte is valid and kernel, otherwise TLB maintenance
226 	 * or update_mmu_cache() have the necessary barriers.
227 	 */
228 	if (pte_valid_not_user(pte))
229 		dsb(ishst);
230 }
231 
232 extern void __sync_icache_dcache(pte_t pteval);
233 
234 /*
235  * PTE bits configuration in the presence of hardware Dirty Bit Management
236  * (PTE_WRITE == PTE_DBM):
237  *
238  * Dirty  Writable | PTE_RDONLY  PTE_WRITE  PTE_DIRTY (sw)
239  *   0      0      |   1           0          0
240  *   0      1      |   1           1          0
241  *   1      0      |   1           0          1
242  *   1      1      |   0           1          x
243  *
244  * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
245  * the page fault mechanism. Checking the dirty status of a pte becomes:
246  *
247  *   PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
248  */
249 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
250 			      pte_t *ptep, pte_t pte)
251 {
252 	pte_t old_pte;
253 
254 	if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
255 		__sync_icache_dcache(pte);
256 
257 	/*
258 	 * If the existing pte is valid, check for potential race with
259 	 * hardware updates of the pte (ptep_set_access_flags safely changes
260 	 * valid ptes without going through an invalid entry).
261 	 */
262 	old_pte = READ_ONCE(*ptep);
263 	if (IS_ENABLED(CONFIG_DEBUG_VM) && pte_valid(old_pte) && pte_valid(pte) &&
264 	   (mm == current->active_mm || atomic_read(&mm->mm_users) > 1)) {
265 		VM_WARN_ONCE(!pte_young(pte),
266 			     "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
267 			     __func__, pte_val(old_pte), pte_val(pte));
268 		VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
269 			     "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
270 			     __func__, pte_val(old_pte), pte_val(pte));
271 	}
272 
273 	set_pte(ptep, pte);
274 }
275 
276 #define __HAVE_ARCH_PTE_SAME
277 static inline int pte_same(pte_t pte_a, pte_t pte_b)
278 {
279 	pteval_t lhs, rhs;
280 
281 	lhs = pte_val(pte_a);
282 	rhs = pte_val(pte_b);
283 
284 	if (pte_present(pte_a))
285 		lhs &= ~PTE_RDONLY;
286 
287 	if (pte_present(pte_b))
288 		rhs &= ~PTE_RDONLY;
289 
290 	return (lhs == rhs);
291 }
292 
293 /*
294  * Huge pte definitions.
295  */
296 #define pte_huge(pte)		(!(pte_val(pte) & PTE_TABLE_BIT))
297 #define pte_mkhuge(pte)		(__pte(pte_val(pte) & ~PTE_TABLE_BIT))
298 
299 /*
300  * Hugetlb definitions.
301  */
302 #define HUGE_MAX_HSTATE		4
303 #define HPAGE_SHIFT		PMD_SHIFT
304 #define HPAGE_SIZE		(_AC(1, UL) << HPAGE_SHIFT)
305 #define HPAGE_MASK		(~(HPAGE_SIZE - 1))
306 #define HUGETLB_PAGE_ORDER	(HPAGE_SHIFT - PAGE_SHIFT)
307 
308 static inline pte_t pgd_pte(pgd_t pgd)
309 {
310 	return __pte(pgd_val(pgd));
311 }
312 
313 static inline pte_t pud_pte(pud_t pud)
314 {
315 	return __pte(pud_val(pud));
316 }
317 
318 static inline pud_t pte_pud(pte_t pte)
319 {
320 	return __pud(pte_val(pte));
321 }
322 
323 static inline pmd_t pud_pmd(pud_t pud)
324 {
325 	return __pmd(pud_val(pud));
326 }
327 
328 static inline pte_t pmd_pte(pmd_t pmd)
329 {
330 	return __pte(pmd_val(pmd));
331 }
332 
333 static inline pmd_t pte_pmd(pte_t pte)
334 {
335 	return __pmd(pte_val(pte));
336 }
337 
338 static inline pgprot_t mk_sect_prot(pgprot_t prot)
339 {
340 	return __pgprot(pgprot_val(prot) & ~PTE_TABLE_BIT);
341 }
342 
343 #ifdef CONFIG_NUMA_BALANCING
344 /*
345  * See the comment in include/asm-generic/pgtable.h
346  */
347 static inline int pte_protnone(pte_t pte)
348 {
349 	return (pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)) == PTE_PROT_NONE;
350 }
351 
352 static inline int pmd_protnone(pmd_t pmd)
353 {
354 	return pte_protnone(pmd_pte(pmd));
355 }
356 #endif
357 
358 /*
359  * THP definitions.
360  */
361 
362 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
363 #define pmd_trans_huge(pmd)	(pmd_val(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT))
364 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
365 
366 #define pmd_present(pmd)	pte_present(pmd_pte(pmd))
367 #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
368 #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
369 #define pmd_valid(pmd)		pte_valid(pmd_pte(pmd))
370 #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
371 #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
372 #define pmd_mkwrite(pmd)	pte_pmd(pte_mkwrite(pmd_pte(pmd)))
373 #define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
374 #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
375 #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
376 #define pmd_mknotpresent(pmd)	(__pmd(pmd_val(pmd) & ~PMD_SECT_VALID))
377 
378 #define pmd_thp_or_huge(pmd)	(pmd_huge(pmd) || pmd_trans_huge(pmd))
379 
380 #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
381 
382 #define pmd_mkhuge(pmd)		(__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
383 
384 #define __pmd_to_phys(pmd)	__pte_to_phys(pmd_pte(pmd))
385 #define __phys_to_pmd_val(phys)	__phys_to_pte_val(phys)
386 #define pmd_pfn(pmd)		((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
387 #define pfn_pmd(pfn,prot)	__pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
388 #define mk_pmd(page,prot)	pfn_pmd(page_to_pfn(page),prot)
389 
390 #define pud_young(pud)		pte_young(pud_pte(pud))
391 #define pud_mkyoung(pud)	pte_pud(pte_mkyoung(pud_pte(pud)))
392 #define pud_write(pud)		pte_write(pud_pte(pud))
393 
394 #define pud_mkhuge(pud)		(__pud(pud_val(pud) & ~PUD_TABLE_BIT))
395 
396 #define __pud_to_phys(pud)	__pte_to_phys(pud_pte(pud))
397 #define __phys_to_pud_val(phys)	__phys_to_pte_val(phys)
398 #define pud_pfn(pud)		((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
399 #define pfn_pud(pfn,prot)	__pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
400 
401 #define set_pmd_at(mm, addr, pmdp, pmd)	set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd))
402 
403 #define __pgd_to_phys(pgd)	__pte_to_phys(pgd_pte(pgd))
404 #define __phys_to_pgd_val(phys)	__phys_to_pte_val(phys)
405 
406 #define __pgprot_modify(prot,mask,bits) \
407 	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
408 
409 /*
410  * Mark the prot value as uncacheable and unbufferable.
411  */
412 #define pgprot_noncached(prot) \
413 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
414 #define pgprot_writecombine(prot) \
415 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
416 #define pgprot_device(prot) \
417 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
418 #define __HAVE_PHYS_MEM_ACCESS_PROT
419 struct file;
420 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
421 				     unsigned long size, pgprot_t vma_prot);
422 
423 #define pmd_none(pmd)		(!pmd_val(pmd))
424 
425 #define pmd_bad(pmd)		(!(pmd_val(pmd) & PMD_TABLE_BIT))
426 
427 #define pmd_table(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
428 				 PMD_TYPE_TABLE)
429 #define pmd_sect(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
430 				 PMD_TYPE_SECT)
431 
432 #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
433 #define pud_sect(pud)		(0)
434 #define pud_table(pud)		(1)
435 #else
436 #define pud_sect(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
437 				 PUD_TYPE_SECT)
438 #define pud_table(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
439 				 PUD_TYPE_TABLE)
440 #endif
441 
442 extern pgd_t init_pg_dir[PTRS_PER_PGD];
443 extern pgd_t init_pg_end[];
444 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
445 extern pgd_t idmap_pg_dir[PTRS_PER_PGD];
446 extern pgd_t tramp_pg_dir[PTRS_PER_PGD];
447 
448 extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
449 
450 static inline bool in_swapper_pgdir(void *addr)
451 {
452 	return ((unsigned long)addr & PAGE_MASK) ==
453 	        ((unsigned long)swapper_pg_dir & PAGE_MASK);
454 }
455 
456 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
457 {
458 #ifdef __PAGETABLE_PMD_FOLDED
459 	if (in_swapper_pgdir(pmdp)) {
460 		set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
461 		return;
462 	}
463 #endif /* __PAGETABLE_PMD_FOLDED */
464 
465 	WRITE_ONCE(*pmdp, pmd);
466 
467 	if (pmd_valid(pmd))
468 		dsb(ishst);
469 }
470 
471 static inline void pmd_clear(pmd_t *pmdp)
472 {
473 	set_pmd(pmdp, __pmd(0));
474 }
475 
476 static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
477 {
478 	return __pmd_to_phys(pmd);
479 }
480 
481 static inline void pte_unmap(pte_t *pte) { }
482 
483 /* Find an entry in the third-level page table. */
484 #define pte_index(addr)		(((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
485 
486 #define pte_offset_phys(dir,addr)	(pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
487 #define pte_offset_kernel(dir,addr)	((pte_t *)__va(pte_offset_phys((dir), (addr))))
488 
489 #define pte_offset_map(dir,addr)	pte_offset_kernel((dir), (addr))
490 
491 #define pte_set_fixmap(addr)		((pte_t *)set_fixmap_offset(FIX_PTE, addr))
492 #define pte_set_fixmap_offset(pmd, addr)	pte_set_fixmap(pte_offset_phys(pmd, addr))
493 #define pte_clear_fixmap()		clear_fixmap(FIX_PTE)
494 
495 #define pmd_page(pmd)		pfn_to_page(__phys_to_pfn(__pmd_to_phys(pmd)))
496 
497 /* use ONLY for statically allocated translation tables */
498 #define pte_offset_kimg(dir,addr)	((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
499 
500 /*
501  * Conversion functions: convert a page and protection to a page entry,
502  * and a page entry and page directory to the page they refer to.
503  */
504 #define mk_pte(page,prot)	pfn_pte(page_to_pfn(page),prot)
505 
506 #if CONFIG_PGTABLE_LEVELS > 2
507 
508 #define pmd_ERROR(pmd)		__pmd_error(__FILE__, __LINE__, pmd_val(pmd))
509 
510 #define pud_none(pud)		(!pud_val(pud))
511 #define pud_bad(pud)		(!(pud_val(pud) & PUD_TABLE_BIT))
512 #define pud_present(pud)	pte_present(pud_pte(pud))
513 #define pud_valid(pud)		pte_valid(pud_pte(pud))
514 
515 static inline void set_pud(pud_t *pudp, pud_t pud)
516 {
517 #ifdef __PAGETABLE_PUD_FOLDED
518 	if (in_swapper_pgdir(pudp)) {
519 		set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
520 		return;
521 	}
522 #endif /* __PAGETABLE_PUD_FOLDED */
523 
524 	WRITE_ONCE(*pudp, pud);
525 
526 	if (pud_valid(pud))
527 		dsb(ishst);
528 }
529 
530 static inline void pud_clear(pud_t *pudp)
531 {
532 	set_pud(pudp, __pud(0));
533 }
534 
535 static inline phys_addr_t pud_page_paddr(pud_t pud)
536 {
537 	return __pud_to_phys(pud);
538 }
539 
540 /* Find an entry in the second-level page table. */
541 #define pmd_index(addr)		(((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))
542 
543 #define pmd_offset_phys(dir, addr)	(pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
544 #define pmd_offset(dir, addr)		((pmd_t *)__va(pmd_offset_phys((dir), (addr))))
545 
546 #define pmd_set_fixmap(addr)		((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
547 #define pmd_set_fixmap_offset(pud, addr)	pmd_set_fixmap(pmd_offset_phys(pud, addr))
548 #define pmd_clear_fixmap()		clear_fixmap(FIX_PMD)
549 
550 #define pud_page(pud)		pfn_to_page(__phys_to_pfn(__pud_to_phys(pud)))
551 
552 /* use ONLY for statically allocated translation tables */
553 #define pmd_offset_kimg(dir,addr)	((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
554 
555 #else
556 
557 #define pud_page_paddr(pud)	({ BUILD_BUG(); 0; })
558 
559 /* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
560 #define pmd_set_fixmap(addr)		NULL
561 #define pmd_set_fixmap_offset(pudp, addr)	((pmd_t *)pudp)
562 #define pmd_clear_fixmap()
563 
564 #define pmd_offset_kimg(dir,addr)	((pmd_t *)dir)
565 
566 #endif	/* CONFIG_PGTABLE_LEVELS > 2 */
567 
568 #if CONFIG_PGTABLE_LEVELS > 3
569 
570 #define pud_ERROR(pud)		__pud_error(__FILE__, __LINE__, pud_val(pud))
571 
572 #define pgd_none(pgd)		(!pgd_val(pgd))
573 #define pgd_bad(pgd)		(!(pgd_val(pgd) & 2))
574 #define pgd_present(pgd)	(pgd_val(pgd))
575 
576 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
577 {
578 	if (in_swapper_pgdir(pgdp)) {
579 		set_swapper_pgd(pgdp, pgd);
580 		return;
581 	}
582 
583 	WRITE_ONCE(*pgdp, pgd);
584 	dsb(ishst);
585 }
586 
587 static inline void pgd_clear(pgd_t *pgdp)
588 {
589 	set_pgd(pgdp, __pgd(0));
590 }
591 
592 static inline phys_addr_t pgd_page_paddr(pgd_t pgd)
593 {
594 	return __pgd_to_phys(pgd);
595 }
596 
597 /* Find an entry in the frst-level page table. */
598 #define pud_index(addr)		(((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))
599 
600 #define pud_offset_phys(dir, addr)	(pgd_page_paddr(READ_ONCE(*(dir))) + pud_index(addr) * sizeof(pud_t))
601 #define pud_offset(dir, addr)		((pud_t *)__va(pud_offset_phys((dir), (addr))))
602 
603 #define pud_set_fixmap(addr)		((pud_t *)set_fixmap_offset(FIX_PUD, addr))
604 #define pud_set_fixmap_offset(pgd, addr)	pud_set_fixmap(pud_offset_phys(pgd, addr))
605 #define pud_clear_fixmap()		clear_fixmap(FIX_PUD)
606 
607 #define pgd_page(pgd)		pfn_to_page(__phys_to_pfn(__pgd_to_phys(pgd)))
608 
609 /* use ONLY for statically allocated translation tables */
610 #define pud_offset_kimg(dir,addr)	((pud_t *)__phys_to_kimg(pud_offset_phys((dir), (addr))))
611 
612 #else
613 
614 #define pgd_page_paddr(pgd)	({ BUILD_BUG(); 0;})
615 
616 /* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
617 #define pud_set_fixmap(addr)		NULL
618 #define pud_set_fixmap_offset(pgdp, addr)	((pud_t *)pgdp)
619 #define pud_clear_fixmap()
620 
621 #define pud_offset_kimg(dir,addr)	((pud_t *)dir)
622 
623 #endif  /* CONFIG_PGTABLE_LEVELS > 3 */
624 
625 #define pgd_ERROR(pgd)		__pgd_error(__FILE__, __LINE__, pgd_val(pgd))
626 
627 /* to find an entry in a page-table-directory */
628 #define pgd_index(addr)		(((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
629 
630 #define pgd_offset_raw(pgd, addr)	((pgd) + pgd_index(addr))
631 
632 #define pgd_offset(mm, addr)	(pgd_offset_raw((mm)->pgd, (addr)))
633 
634 /* to find an entry in a kernel page-table-directory */
635 #define pgd_offset_k(addr)	pgd_offset(&init_mm, addr)
636 
637 #define pgd_set_fixmap(addr)	((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
638 #define pgd_clear_fixmap()	clear_fixmap(FIX_PGD)
639 
640 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
641 {
642 	const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
643 			      PTE_PROT_NONE | PTE_VALID | PTE_WRITE;
644 	/* preserve the hardware dirty information */
645 	if (pte_hw_dirty(pte))
646 		pte = pte_mkdirty(pte);
647 	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
648 	return pte;
649 }
650 
651 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
652 {
653 	return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
654 }
655 
656 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
657 extern int ptep_set_access_flags(struct vm_area_struct *vma,
658 				 unsigned long address, pte_t *ptep,
659 				 pte_t entry, int dirty);
660 
661 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
662 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
663 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
664 					unsigned long address, pmd_t *pmdp,
665 					pmd_t entry, int dirty)
666 {
667 	return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
668 }
669 #endif
670 
671 /*
672  * Atomic pte/pmd modifications.
673  */
674 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
675 static inline int __ptep_test_and_clear_young(pte_t *ptep)
676 {
677 	pte_t old_pte, pte;
678 
679 	pte = READ_ONCE(*ptep);
680 	do {
681 		old_pte = pte;
682 		pte = pte_mkold(pte);
683 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
684 					       pte_val(old_pte), pte_val(pte));
685 	} while (pte_val(pte) != pte_val(old_pte));
686 
687 	return pte_young(pte);
688 }
689 
690 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
691 					    unsigned long address,
692 					    pte_t *ptep)
693 {
694 	return __ptep_test_and_clear_young(ptep);
695 }
696 
697 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
698 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
699 					 unsigned long address, pte_t *ptep)
700 {
701 	int young = ptep_test_and_clear_young(vma, address, ptep);
702 
703 	if (young) {
704 		/*
705 		 * We can elide the trailing DSB here since the worst that can
706 		 * happen is that a CPU continues to use the young entry in its
707 		 * TLB and we mistakenly reclaim the associated page. The
708 		 * window for such an event is bounded by the next
709 		 * context-switch, which provides a DSB to complete the TLB
710 		 * invalidation.
711 		 */
712 		flush_tlb_page_nosync(vma, address);
713 	}
714 
715 	return young;
716 }
717 
718 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
719 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
720 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
721 					    unsigned long address,
722 					    pmd_t *pmdp)
723 {
724 	return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
725 }
726 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
727 
728 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
729 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
730 				       unsigned long address, pte_t *ptep)
731 {
732 	return __pte(xchg_relaxed(&pte_val(*ptep), 0));
733 }
734 
735 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
736 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
737 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
738 					    unsigned long address, pmd_t *pmdp)
739 {
740 	return pte_pmd(ptep_get_and_clear(mm, address, (pte_t *)pmdp));
741 }
742 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
743 
744 /*
745  * ptep_set_wrprotect - mark read-only while trasferring potential hardware
746  * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
747  */
748 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
749 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
750 {
751 	pte_t old_pte, pte;
752 
753 	pte = READ_ONCE(*ptep);
754 	do {
755 		old_pte = pte;
756 		/*
757 		 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
758 		 * clear), set the PTE_DIRTY bit.
759 		 */
760 		if (pte_hw_dirty(pte))
761 			pte = pte_mkdirty(pte);
762 		pte = pte_wrprotect(pte);
763 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
764 					       pte_val(old_pte), pte_val(pte));
765 	} while (pte_val(pte) != pte_val(old_pte));
766 }
767 
768 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
769 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
770 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
771 				      unsigned long address, pmd_t *pmdp)
772 {
773 	ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
774 }
775 
776 #define pmdp_establish pmdp_establish
777 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
778 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
779 {
780 	return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
781 }
782 #endif
783 
784 /*
785  * Encode and decode a swap entry:
786  *	bits 0-1:	present (must be zero)
787  *	bits 2-7:	swap type
788  *	bits 8-57:	swap offset
789  *	bit  58:	PTE_PROT_NONE (must be zero)
790  */
791 #define __SWP_TYPE_SHIFT	2
792 #define __SWP_TYPE_BITS		6
793 #define __SWP_OFFSET_BITS	50
794 #define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
795 #define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
796 #define __SWP_OFFSET_MASK	((1UL << __SWP_OFFSET_BITS) - 1)
797 
798 #define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
799 #define __swp_offset(x)		(((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
800 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
801 
802 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
803 #define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })
804 
805 /*
806  * Ensure that there are not more swap files than can be encoded in the kernel
807  * PTEs.
808  */
809 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
810 
811 extern int kern_addr_valid(unsigned long addr);
812 
813 #include <asm-generic/pgtable.h>
814 
815 void pgd_cache_init(void);
816 #define pgtable_cache_init	pgd_cache_init
817 
818 /*
819  * On AArch64, the cache coherency is handled via the set_pte_at() function.
820  */
821 static inline void update_mmu_cache(struct vm_area_struct *vma,
822 				    unsigned long addr, pte_t *ptep)
823 {
824 	/*
825 	 * We don't do anything here, so there's a very small chance of
826 	 * us retaking a user fault which we just fixed up. The alternative
827 	 * is doing a dsb(ishst), but that penalises the fastpath.
828 	 */
829 }
830 
831 #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
832 
833 #define kc_vaddr_to_offset(v)	((v) & ~VA_START)
834 #define kc_offset_to_vaddr(o)	((o) | VA_START)
835 
836 #ifdef CONFIG_ARM64_PA_BITS_52
837 #define phys_to_ttbr(addr)	(((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
838 #else
839 #define phys_to_ttbr(addr)	(addr)
840 #endif
841 
842 #endif /* !__ASSEMBLY__ */
843 
844 #endif /* __ASM_PGTABLE_H */
845