1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2012 ARM Ltd. 4 */ 5 #ifndef __ASM_PGTABLE_H 6 #define __ASM_PGTABLE_H 7 8 #include <asm/bug.h> 9 #include <asm/proc-fns.h> 10 11 #include <asm/memory.h> 12 #include <asm/pgtable-hwdef.h> 13 #include <asm/pgtable-prot.h> 14 #include <asm/tlbflush.h> 15 16 /* 17 * VMALLOC range. 18 * 19 * VMALLOC_START: beginning of the kernel vmalloc space 20 * VMALLOC_END: extends to the available space below vmmemmap, PCI I/O space 21 * and fixed mappings 22 */ 23 #define VMALLOC_START (MODULES_END) 24 #define VMALLOC_END (PAGE_OFFSET - PUD_SIZE - VMEMMAP_SIZE - SZ_64K) 25 26 #define vmemmap ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT)) 27 28 #define FIRST_USER_ADDRESS 0UL 29 30 #ifndef __ASSEMBLY__ 31 32 #include <asm/cmpxchg.h> 33 #include <asm/fixmap.h> 34 #include <linux/mmdebug.h> 35 #include <linux/mm_types.h> 36 #include <linux/sched.h> 37 38 extern void __pte_error(const char *file, int line, unsigned long val); 39 extern void __pmd_error(const char *file, int line, unsigned long val); 40 extern void __pud_error(const char *file, int line, unsigned long val); 41 extern void __pgd_error(const char *file, int line, unsigned long val); 42 43 /* 44 * ZERO_PAGE is a global shared page that is always zero: used 45 * for zero-mapped memory areas etc.. 46 */ 47 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; 48 #define ZERO_PAGE(vaddr) phys_to_page(__pa_symbol(empty_zero_page)) 49 50 #define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte)) 51 52 /* 53 * Macros to convert between a physical address and its placement in a 54 * page table entry, taking care of 52-bit addresses. 55 */ 56 #ifdef CONFIG_ARM64_PA_BITS_52 57 #define __pte_to_phys(pte) \ 58 ((pte_val(pte) & PTE_ADDR_LOW) | ((pte_val(pte) & PTE_ADDR_HIGH) << 36)) 59 #define __phys_to_pte_val(phys) (((phys) | ((phys) >> 36)) & PTE_ADDR_MASK) 60 #else 61 #define __pte_to_phys(pte) (pte_val(pte) & PTE_ADDR_MASK) 62 #define __phys_to_pte_val(phys) (phys) 63 #endif 64 65 #define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT) 66 #define pfn_pte(pfn,prot) \ 67 __pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) 68 69 #define pte_none(pte) (!pte_val(pte)) 70 #define pte_clear(mm,addr,ptep) set_pte(ptep, __pte(0)) 71 #define pte_page(pte) (pfn_to_page(pte_pfn(pte))) 72 73 /* 74 * The following only work if pte_present(). Undefined behaviour otherwise. 75 */ 76 #define pte_present(pte) (!!(pte_val(pte) & (PTE_VALID | PTE_PROT_NONE))) 77 #define pte_young(pte) (!!(pte_val(pte) & PTE_AF)) 78 #define pte_special(pte) (!!(pte_val(pte) & PTE_SPECIAL)) 79 #define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE)) 80 #define pte_user_exec(pte) (!(pte_val(pte) & PTE_UXN)) 81 #define pte_cont(pte) (!!(pte_val(pte) & PTE_CONT)) 82 #define pte_devmap(pte) (!!(pte_val(pte) & PTE_DEVMAP)) 83 84 #define pte_cont_addr_end(addr, end) \ 85 ({ unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK; \ 86 (__boundary - 1 < (end) - 1) ? __boundary : (end); \ 87 }) 88 89 #define pmd_cont_addr_end(addr, end) \ 90 ({ unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK; \ 91 (__boundary - 1 < (end) - 1) ? __boundary : (end); \ 92 }) 93 94 #define pte_hw_dirty(pte) (pte_write(pte) && !(pte_val(pte) & PTE_RDONLY)) 95 #define pte_sw_dirty(pte) (!!(pte_val(pte) & PTE_DIRTY)) 96 #define pte_dirty(pte) (pte_sw_dirty(pte) || pte_hw_dirty(pte)) 97 98 #define pte_valid(pte) (!!(pte_val(pte) & PTE_VALID)) 99 /* 100 * Execute-only user mappings do not have the PTE_USER bit set. All valid 101 * kernel mappings have the PTE_UXN bit set. 102 */ 103 #define pte_valid_not_user(pte) \ 104 ((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN)) 105 #define pte_valid_young(pte) \ 106 ((pte_val(pte) & (PTE_VALID | PTE_AF)) == (PTE_VALID | PTE_AF)) 107 #define pte_valid_user(pte) \ 108 ((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) 109 110 /* 111 * Could the pte be present in the TLB? We must check mm_tlb_flush_pending 112 * so that we don't erroneously return false for pages that have been 113 * remapped as PROT_NONE but are yet to be flushed from the TLB. 114 */ 115 #define pte_accessible(mm, pte) \ 116 (mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid_young(pte)) 117 118 /* 119 * p??_access_permitted() is true for valid user mappings (subject to the 120 * write permission check) other than user execute-only which do not have the 121 * PTE_USER bit set. PROT_NONE mappings do not have the PTE_VALID bit set. 122 */ 123 #define pte_access_permitted(pte, write) \ 124 (pte_valid_user(pte) && (!(write) || pte_write(pte))) 125 #define pmd_access_permitted(pmd, write) \ 126 (pte_access_permitted(pmd_pte(pmd), (write))) 127 #define pud_access_permitted(pud, write) \ 128 (pte_access_permitted(pud_pte(pud), (write))) 129 130 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot) 131 { 132 pte_val(pte) &= ~pgprot_val(prot); 133 return pte; 134 } 135 136 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot) 137 { 138 pte_val(pte) |= pgprot_val(prot); 139 return pte; 140 } 141 142 static inline pte_t pte_wrprotect(pte_t pte) 143 { 144 pte = clear_pte_bit(pte, __pgprot(PTE_WRITE)); 145 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY)); 146 return pte; 147 } 148 149 static inline pte_t pte_mkwrite(pte_t pte) 150 { 151 pte = set_pte_bit(pte, __pgprot(PTE_WRITE)); 152 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY)); 153 return pte; 154 } 155 156 static inline pte_t pte_mkclean(pte_t pte) 157 { 158 pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY)); 159 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY)); 160 161 return pte; 162 } 163 164 static inline pte_t pte_mkdirty(pte_t pte) 165 { 166 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY)); 167 168 if (pte_write(pte)) 169 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY)); 170 171 return pte; 172 } 173 174 static inline pte_t pte_mkold(pte_t pte) 175 { 176 return clear_pte_bit(pte, __pgprot(PTE_AF)); 177 } 178 179 static inline pte_t pte_mkyoung(pte_t pte) 180 { 181 return set_pte_bit(pte, __pgprot(PTE_AF)); 182 } 183 184 static inline pte_t pte_mkspecial(pte_t pte) 185 { 186 return set_pte_bit(pte, __pgprot(PTE_SPECIAL)); 187 } 188 189 static inline pte_t pte_mkcont(pte_t pte) 190 { 191 pte = set_pte_bit(pte, __pgprot(PTE_CONT)); 192 return set_pte_bit(pte, __pgprot(PTE_TYPE_PAGE)); 193 } 194 195 static inline pte_t pte_mknoncont(pte_t pte) 196 { 197 return clear_pte_bit(pte, __pgprot(PTE_CONT)); 198 } 199 200 static inline pte_t pte_mkpresent(pte_t pte) 201 { 202 return set_pte_bit(pte, __pgprot(PTE_VALID)); 203 } 204 205 static inline pmd_t pmd_mkcont(pmd_t pmd) 206 { 207 return __pmd(pmd_val(pmd) | PMD_SECT_CONT); 208 } 209 210 static inline pte_t pte_mkdevmap(pte_t pte) 211 { 212 return set_pte_bit(pte, __pgprot(PTE_DEVMAP)); 213 } 214 215 static inline void set_pte(pte_t *ptep, pte_t pte) 216 { 217 WRITE_ONCE(*ptep, pte); 218 219 /* 220 * Only if the new pte is valid and kernel, otherwise TLB maintenance 221 * or update_mmu_cache() have the necessary barriers. 222 */ 223 if (pte_valid_not_user(pte)) 224 dsb(ishst); 225 } 226 227 extern void __sync_icache_dcache(pte_t pteval); 228 229 /* 230 * PTE bits configuration in the presence of hardware Dirty Bit Management 231 * (PTE_WRITE == PTE_DBM): 232 * 233 * Dirty Writable | PTE_RDONLY PTE_WRITE PTE_DIRTY (sw) 234 * 0 0 | 1 0 0 235 * 0 1 | 1 1 0 236 * 1 0 | 1 0 1 237 * 1 1 | 0 1 x 238 * 239 * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via 240 * the page fault mechanism. Checking the dirty status of a pte becomes: 241 * 242 * PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY) 243 */ 244 245 static inline void __check_racy_pte_update(struct mm_struct *mm, pte_t *ptep, 246 pte_t pte) 247 { 248 pte_t old_pte; 249 250 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 251 return; 252 253 old_pte = READ_ONCE(*ptep); 254 255 if (!pte_valid(old_pte) || !pte_valid(pte)) 256 return; 257 if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1) 258 return; 259 260 /* 261 * Check for potential race with hardware updates of the pte 262 * (ptep_set_access_flags safely changes valid ptes without going 263 * through an invalid entry). 264 */ 265 VM_WARN_ONCE(!pte_young(pte), 266 "%s: racy access flag clearing: 0x%016llx -> 0x%016llx", 267 __func__, pte_val(old_pte), pte_val(pte)); 268 VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte), 269 "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx", 270 __func__, pte_val(old_pte), pte_val(pte)); 271 } 272 273 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 274 pte_t *ptep, pte_t pte) 275 { 276 if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte)) 277 __sync_icache_dcache(pte); 278 279 __check_racy_pte_update(mm, ptep, pte); 280 281 set_pte(ptep, pte); 282 } 283 284 #define __HAVE_ARCH_PTE_SAME 285 static inline int pte_same(pte_t pte_a, pte_t pte_b) 286 { 287 pteval_t lhs, rhs; 288 289 lhs = pte_val(pte_a); 290 rhs = pte_val(pte_b); 291 292 if (pte_present(pte_a)) 293 lhs &= ~PTE_RDONLY; 294 295 if (pte_present(pte_b)) 296 rhs &= ~PTE_RDONLY; 297 298 return (lhs == rhs); 299 } 300 301 /* 302 * Huge pte definitions. 303 */ 304 #define pte_mkhuge(pte) (__pte(pte_val(pte) & ~PTE_TABLE_BIT)) 305 306 /* 307 * Hugetlb definitions. 308 */ 309 #define HUGE_MAX_HSTATE 4 310 #define HPAGE_SHIFT PMD_SHIFT 311 #define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT) 312 #define HPAGE_MASK (~(HPAGE_SIZE - 1)) 313 #define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT) 314 315 static inline pte_t pgd_pte(pgd_t pgd) 316 { 317 return __pte(pgd_val(pgd)); 318 } 319 320 static inline pte_t pud_pte(pud_t pud) 321 { 322 return __pte(pud_val(pud)); 323 } 324 325 static inline pud_t pte_pud(pte_t pte) 326 { 327 return __pud(pte_val(pte)); 328 } 329 330 static inline pmd_t pud_pmd(pud_t pud) 331 { 332 return __pmd(pud_val(pud)); 333 } 334 335 static inline pte_t pmd_pte(pmd_t pmd) 336 { 337 return __pte(pmd_val(pmd)); 338 } 339 340 static inline pmd_t pte_pmd(pte_t pte) 341 { 342 return __pmd(pte_val(pte)); 343 } 344 345 static inline pgprot_t mk_pud_sect_prot(pgprot_t prot) 346 { 347 return __pgprot((pgprot_val(prot) & ~PUD_TABLE_BIT) | PUD_TYPE_SECT); 348 } 349 350 static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot) 351 { 352 return __pgprot((pgprot_val(prot) & ~PMD_TABLE_BIT) | PMD_TYPE_SECT); 353 } 354 355 #ifdef CONFIG_NUMA_BALANCING 356 /* 357 * See the comment in include/asm-generic/pgtable.h 358 */ 359 static inline int pte_protnone(pte_t pte) 360 { 361 return (pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)) == PTE_PROT_NONE; 362 } 363 364 static inline int pmd_protnone(pmd_t pmd) 365 { 366 return pte_protnone(pmd_pte(pmd)); 367 } 368 #endif 369 370 /* 371 * THP definitions. 372 */ 373 374 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 375 #define pmd_trans_huge(pmd) (pmd_val(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT)) 376 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 377 378 #define pmd_present(pmd) pte_present(pmd_pte(pmd)) 379 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd)) 380 #define pmd_young(pmd) pte_young(pmd_pte(pmd)) 381 #define pmd_valid(pmd) pte_valid(pmd_pte(pmd)) 382 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd))) 383 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd))) 384 #define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd))) 385 #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd))) 386 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd))) 387 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd))) 388 #define pmd_mknotpresent(pmd) (__pmd(pmd_val(pmd) & ~PMD_SECT_VALID)) 389 390 #define pmd_thp_or_huge(pmd) (pmd_huge(pmd) || pmd_trans_huge(pmd)) 391 392 #define pmd_write(pmd) pte_write(pmd_pte(pmd)) 393 394 #define pmd_mkhuge(pmd) (__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT)) 395 396 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 397 #define pmd_devmap(pmd) pte_devmap(pmd_pte(pmd)) 398 #endif 399 #define pmd_mkdevmap(pmd) pte_pmd(pte_mkdevmap(pmd_pte(pmd))) 400 401 #define __pmd_to_phys(pmd) __pte_to_phys(pmd_pte(pmd)) 402 #define __phys_to_pmd_val(phys) __phys_to_pte_val(phys) 403 #define pmd_pfn(pmd) ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT) 404 #define pfn_pmd(pfn,prot) __pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) 405 #define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot) 406 407 #define pud_young(pud) pte_young(pud_pte(pud)) 408 #define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud))) 409 #define pud_write(pud) pte_write(pud_pte(pud)) 410 411 #define pud_mkhuge(pud) (__pud(pud_val(pud) & ~PUD_TABLE_BIT)) 412 413 #define __pud_to_phys(pud) __pte_to_phys(pud_pte(pud)) 414 #define __phys_to_pud_val(phys) __phys_to_pte_val(phys) 415 #define pud_pfn(pud) ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT) 416 #define pfn_pud(pfn,prot) __pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) 417 418 #define set_pmd_at(mm, addr, pmdp, pmd) set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd)) 419 420 #define __pgd_to_phys(pgd) __pte_to_phys(pgd_pte(pgd)) 421 #define __phys_to_pgd_val(phys) __phys_to_pte_val(phys) 422 423 #define __pgprot_modify(prot,mask,bits) \ 424 __pgprot((pgprot_val(prot) & ~(mask)) | (bits)) 425 426 /* 427 * Mark the prot value as uncacheable and unbufferable. 428 */ 429 #define pgprot_noncached(prot) \ 430 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN) 431 #define pgprot_writecombine(prot) \ 432 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN) 433 #define pgprot_device(prot) \ 434 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN) 435 #define __HAVE_PHYS_MEM_ACCESS_PROT 436 struct file; 437 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 438 unsigned long size, pgprot_t vma_prot); 439 440 #define pmd_none(pmd) (!pmd_val(pmd)) 441 442 #define pmd_bad(pmd) (!(pmd_val(pmd) & PMD_TABLE_BIT)) 443 444 #define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \ 445 PMD_TYPE_TABLE) 446 #define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \ 447 PMD_TYPE_SECT) 448 449 #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3 450 static inline bool pud_sect(pud_t pud) { return false; } 451 static inline bool pud_table(pud_t pud) { return true; } 452 #else 453 #define pud_sect(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \ 454 PUD_TYPE_SECT) 455 #define pud_table(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \ 456 PUD_TYPE_TABLE) 457 #endif 458 459 extern pgd_t init_pg_dir[PTRS_PER_PGD]; 460 extern pgd_t init_pg_end[]; 461 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 462 extern pgd_t idmap_pg_dir[PTRS_PER_PGD]; 463 extern pgd_t tramp_pg_dir[PTRS_PER_PGD]; 464 465 extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd); 466 467 static inline bool in_swapper_pgdir(void *addr) 468 { 469 return ((unsigned long)addr & PAGE_MASK) == 470 ((unsigned long)swapper_pg_dir & PAGE_MASK); 471 } 472 473 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) 474 { 475 #ifdef __PAGETABLE_PMD_FOLDED 476 if (in_swapper_pgdir(pmdp)) { 477 set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd))); 478 return; 479 } 480 #endif /* __PAGETABLE_PMD_FOLDED */ 481 482 WRITE_ONCE(*pmdp, pmd); 483 484 if (pmd_valid(pmd)) 485 dsb(ishst); 486 } 487 488 static inline void pmd_clear(pmd_t *pmdp) 489 { 490 set_pmd(pmdp, __pmd(0)); 491 } 492 493 static inline phys_addr_t pmd_page_paddr(pmd_t pmd) 494 { 495 return __pmd_to_phys(pmd); 496 } 497 498 static inline void pte_unmap(pte_t *pte) { } 499 500 /* Find an entry in the third-level page table. */ 501 #define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 502 503 #define pte_offset_phys(dir,addr) (pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t)) 504 #define pte_offset_kernel(dir,addr) ((pte_t *)__va(pte_offset_phys((dir), (addr)))) 505 506 #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr)) 507 508 #define pte_set_fixmap(addr) ((pte_t *)set_fixmap_offset(FIX_PTE, addr)) 509 #define pte_set_fixmap_offset(pmd, addr) pte_set_fixmap(pte_offset_phys(pmd, addr)) 510 #define pte_clear_fixmap() clear_fixmap(FIX_PTE) 511 512 #define pmd_page(pmd) pfn_to_page(__phys_to_pfn(__pmd_to_phys(pmd))) 513 514 /* use ONLY for statically allocated translation tables */ 515 #define pte_offset_kimg(dir,addr) ((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr)))) 516 517 /* 518 * Conversion functions: convert a page and protection to a page entry, 519 * and a page entry and page directory to the page they refer to. 520 */ 521 #define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot) 522 523 #if CONFIG_PGTABLE_LEVELS > 2 524 525 #define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd_val(pmd)) 526 527 #define pud_none(pud) (!pud_val(pud)) 528 #define pud_bad(pud) (!(pud_val(pud) & PUD_TABLE_BIT)) 529 #define pud_present(pud) pte_present(pud_pte(pud)) 530 #define pud_valid(pud) pte_valid(pud_pte(pud)) 531 532 static inline void set_pud(pud_t *pudp, pud_t pud) 533 { 534 #ifdef __PAGETABLE_PUD_FOLDED 535 if (in_swapper_pgdir(pudp)) { 536 set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud))); 537 return; 538 } 539 #endif /* __PAGETABLE_PUD_FOLDED */ 540 541 WRITE_ONCE(*pudp, pud); 542 543 if (pud_valid(pud)) 544 dsb(ishst); 545 } 546 547 static inline void pud_clear(pud_t *pudp) 548 { 549 set_pud(pudp, __pud(0)); 550 } 551 552 static inline phys_addr_t pud_page_paddr(pud_t pud) 553 { 554 return __pud_to_phys(pud); 555 } 556 557 /* Find an entry in the second-level page table. */ 558 #define pmd_index(addr) (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)) 559 560 #define pmd_offset_phys(dir, addr) (pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t)) 561 #define pmd_offset(dir, addr) ((pmd_t *)__va(pmd_offset_phys((dir), (addr)))) 562 563 #define pmd_set_fixmap(addr) ((pmd_t *)set_fixmap_offset(FIX_PMD, addr)) 564 #define pmd_set_fixmap_offset(pud, addr) pmd_set_fixmap(pmd_offset_phys(pud, addr)) 565 #define pmd_clear_fixmap() clear_fixmap(FIX_PMD) 566 567 #define pud_page(pud) pfn_to_page(__phys_to_pfn(__pud_to_phys(pud))) 568 569 /* use ONLY for statically allocated translation tables */ 570 #define pmd_offset_kimg(dir,addr) ((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr)))) 571 572 #else 573 574 #define pud_page_paddr(pud) ({ BUILD_BUG(); 0; }) 575 576 /* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */ 577 #define pmd_set_fixmap(addr) NULL 578 #define pmd_set_fixmap_offset(pudp, addr) ((pmd_t *)pudp) 579 #define pmd_clear_fixmap() 580 581 #define pmd_offset_kimg(dir,addr) ((pmd_t *)dir) 582 583 #endif /* CONFIG_PGTABLE_LEVELS > 2 */ 584 585 #if CONFIG_PGTABLE_LEVELS > 3 586 587 #define pud_ERROR(pud) __pud_error(__FILE__, __LINE__, pud_val(pud)) 588 589 #define pgd_none(pgd) (!pgd_val(pgd)) 590 #define pgd_bad(pgd) (!(pgd_val(pgd) & 2)) 591 #define pgd_present(pgd) (pgd_val(pgd)) 592 593 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd) 594 { 595 if (in_swapper_pgdir(pgdp)) { 596 set_swapper_pgd(pgdp, pgd); 597 return; 598 } 599 600 WRITE_ONCE(*pgdp, pgd); 601 dsb(ishst); 602 } 603 604 static inline void pgd_clear(pgd_t *pgdp) 605 { 606 set_pgd(pgdp, __pgd(0)); 607 } 608 609 static inline phys_addr_t pgd_page_paddr(pgd_t pgd) 610 { 611 return __pgd_to_phys(pgd); 612 } 613 614 /* Find an entry in the frst-level page table. */ 615 #define pud_index(addr) (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1)) 616 617 #define pud_offset_phys(dir, addr) (pgd_page_paddr(READ_ONCE(*(dir))) + pud_index(addr) * sizeof(pud_t)) 618 #define pud_offset(dir, addr) ((pud_t *)__va(pud_offset_phys((dir), (addr)))) 619 620 #define pud_set_fixmap(addr) ((pud_t *)set_fixmap_offset(FIX_PUD, addr)) 621 #define pud_set_fixmap_offset(pgd, addr) pud_set_fixmap(pud_offset_phys(pgd, addr)) 622 #define pud_clear_fixmap() clear_fixmap(FIX_PUD) 623 624 #define pgd_page(pgd) pfn_to_page(__phys_to_pfn(__pgd_to_phys(pgd))) 625 626 /* use ONLY for statically allocated translation tables */ 627 #define pud_offset_kimg(dir,addr) ((pud_t *)__phys_to_kimg(pud_offset_phys((dir), (addr)))) 628 629 #else 630 631 #define pgd_page_paddr(pgd) ({ BUILD_BUG(); 0;}) 632 633 /* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */ 634 #define pud_set_fixmap(addr) NULL 635 #define pud_set_fixmap_offset(pgdp, addr) ((pud_t *)pgdp) 636 #define pud_clear_fixmap() 637 638 #define pud_offset_kimg(dir,addr) ((pud_t *)dir) 639 640 #endif /* CONFIG_PGTABLE_LEVELS > 3 */ 641 642 #define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd)) 643 644 /* to find an entry in a page-table-directory */ 645 #define pgd_index(addr) (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) 646 647 #define pgd_offset_raw(pgd, addr) ((pgd) + pgd_index(addr)) 648 649 #define pgd_offset(mm, addr) (pgd_offset_raw((mm)->pgd, (addr))) 650 651 /* to find an entry in a kernel page-table-directory */ 652 #define pgd_offset_k(addr) pgd_offset(&init_mm, addr) 653 654 #define pgd_set_fixmap(addr) ((pgd_t *)set_fixmap_offset(FIX_PGD, addr)) 655 #define pgd_clear_fixmap() clear_fixmap(FIX_PGD) 656 657 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 658 { 659 const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY | 660 PTE_PROT_NONE | PTE_VALID | PTE_WRITE; 661 /* preserve the hardware dirty information */ 662 if (pte_hw_dirty(pte)) 663 pte = pte_mkdirty(pte); 664 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask); 665 return pte; 666 } 667 668 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 669 { 670 return pte_pmd(pte_modify(pmd_pte(pmd), newprot)); 671 } 672 673 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 674 extern int ptep_set_access_flags(struct vm_area_struct *vma, 675 unsigned long address, pte_t *ptep, 676 pte_t entry, int dirty); 677 678 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 679 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 680 static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 681 unsigned long address, pmd_t *pmdp, 682 pmd_t entry, int dirty) 683 { 684 return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty); 685 } 686 687 static inline int pud_devmap(pud_t pud) 688 { 689 return 0; 690 } 691 692 static inline int pgd_devmap(pgd_t pgd) 693 { 694 return 0; 695 } 696 #endif 697 698 /* 699 * Atomic pte/pmd modifications. 700 */ 701 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 702 static inline int __ptep_test_and_clear_young(pte_t *ptep) 703 { 704 pte_t old_pte, pte; 705 706 pte = READ_ONCE(*ptep); 707 do { 708 old_pte = pte; 709 pte = pte_mkold(pte); 710 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep), 711 pte_val(old_pte), pte_val(pte)); 712 } while (pte_val(pte) != pte_val(old_pte)); 713 714 return pte_young(pte); 715 } 716 717 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 718 unsigned long address, 719 pte_t *ptep) 720 { 721 return __ptep_test_and_clear_young(ptep); 722 } 723 724 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 725 static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 726 unsigned long address, pte_t *ptep) 727 { 728 int young = ptep_test_and_clear_young(vma, address, ptep); 729 730 if (young) { 731 /* 732 * We can elide the trailing DSB here since the worst that can 733 * happen is that a CPU continues to use the young entry in its 734 * TLB and we mistakenly reclaim the associated page. The 735 * window for such an event is bounded by the next 736 * context-switch, which provides a DSB to complete the TLB 737 * invalidation. 738 */ 739 flush_tlb_page_nosync(vma, address); 740 } 741 742 return young; 743 } 744 745 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 746 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 747 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 748 unsigned long address, 749 pmd_t *pmdp) 750 { 751 return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp); 752 } 753 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 754 755 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 756 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 757 unsigned long address, pte_t *ptep) 758 { 759 return __pte(xchg_relaxed(&pte_val(*ptep), 0)); 760 } 761 762 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 763 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 764 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 765 unsigned long address, pmd_t *pmdp) 766 { 767 return pte_pmd(ptep_get_and_clear(mm, address, (pte_t *)pmdp)); 768 } 769 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 770 771 /* 772 * ptep_set_wrprotect - mark read-only while trasferring potential hardware 773 * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit. 774 */ 775 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 776 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) 777 { 778 pte_t old_pte, pte; 779 780 pte = READ_ONCE(*ptep); 781 do { 782 old_pte = pte; 783 /* 784 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY 785 * clear), set the PTE_DIRTY bit. 786 */ 787 if (pte_hw_dirty(pte)) 788 pte = pte_mkdirty(pte); 789 pte = pte_wrprotect(pte); 790 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep), 791 pte_val(old_pte), pte_val(pte)); 792 } while (pte_val(pte) != pte_val(old_pte)); 793 } 794 795 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 796 #define __HAVE_ARCH_PMDP_SET_WRPROTECT 797 static inline void pmdp_set_wrprotect(struct mm_struct *mm, 798 unsigned long address, pmd_t *pmdp) 799 { 800 ptep_set_wrprotect(mm, address, (pte_t *)pmdp); 801 } 802 803 #define pmdp_establish pmdp_establish 804 static inline pmd_t pmdp_establish(struct vm_area_struct *vma, 805 unsigned long address, pmd_t *pmdp, pmd_t pmd) 806 { 807 return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd))); 808 } 809 #endif 810 811 /* 812 * Encode and decode a swap entry: 813 * bits 0-1: present (must be zero) 814 * bits 2-7: swap type 815 * bits 8-57: swap offset 816 * bit 58: PTE_PROT_NONE (must be zero) 817 */ 818 #define __SWP_TYPE_SHIFT 2 819 #define __SWP_TYPE_BITS 6 820 #define __SWP_OFFSET_BITS 50 821 #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1) 822 #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT) 823 #define __SWP_OFFSET_MASK ((1UL << __SWP_OFFSET_BITS) - 1) 824 825 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK) 826 #define __swp_offset(x) (((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK) 827 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) }) 828 829 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 830 #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val }) 831 832 /* 833 * Ensure that there are not more swap files than can be encoded in the kernel 834 * PTEs. 835 */ 836 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS) 837 838 extern int kern_addr_valid(unsigned long addr); 839 840 #include <asm-generic/pgtable.h> 841 842 static inline void pgtable_cache_init(void) { } 843 844 /* 845 * On AArch64, the cache coherency is handled via the set_pte_at() function. 846 */ 847 static inline void update_mmu_cache(struct vm_area_struct *vma, 848 unsigned long addr, pte_t *ptep) 849 { 850 /* 851 * We don't do anything here, so there's a very small chance of 852 * us retaking a user fault which we just fixed up. The alternative 853 * is doing a dsb(ishst), but that penalises the fastpath. 854 */ 855 } 856 857 #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0) 858 859 #define kc_vaddr_to_offset(v) ((v) & ~VA_START) 860 #define kc_offset_to_vaddr(o) ((o) | VA_START) 861 862 #ifdef CONFIG_ARM64_PA_BITS_52 863 #define phys_to_ttbr(addr) (((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52) 864 #else 865 #define phys_to_ttbr(addr) (addr) 866 #endif 867 868 #endif /* !__ASSEMBLY__ */ 869 870 #endif /* __ASM_PGTABLE_H */ 871