1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Based on arch/arm/include/asm/mmu_context.h
4  *
5  * Copyright (C) 1996 Russell King.
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 #ifndef __ASM_MMU_CONTEXT_H
9 #define __ASM_MMU_CONTEXT_H
10 
11 #ifndef __ASSEMBLY__
12 
13 #include <linux/compiler.h>
14 #include <linux/sched.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/mm_types.h>
17 #include <linux/pgtable.h>
18 
19 #include <asm/cacheflush.h>
20 #include <asm/cpufeature.h>
21 #include <asm/proc-fns.h>
22 #include <asm-generic/mm_hooks.h>
23 #include <asm/cputype.h>
24 #include <asm/sysreg.h>
25 #include <asm/tlbflush.h>
26 
27 extern bool rodata_full;
28 
29 static inline void contextidr_thread_switch(struct task_struct *next)
30 {
31 	if (!IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR))
32 		return;
33 
34 	write_sysreg(task_pid_nr(next), contextidr_el1);
35 	isb();
36 }
37 
38 /*
39  * Set TTBR0 to empty_zero_page. No translations will be possible via TTBR0.
40  */
41 static inline void cpu_set_reserved_ttbr0(void)
42 {
43 	unsigned long ttbr = phys_to_ttbr(__pa_symbol(empty_zero_page));
44 
45 	write_sysreg(ttbr, ttbr0_el1);
46 	isb();
47 }
48 
49 void cpu_do_switch_mm(phys_addr_t pgd_phys, struct mm_struct *mm);
50 
51 static inline void cpu_switch_mm(pgd_t *pgd, struct mm_struct *mm)
52 {
53 	BUG_ON(pgd == swapper_pg_dir);
54 	cpu_set_reserved_ttbr0();
55 	cpu_do_switch_mm(virt_to_phys(pgd),mm);
56 }
57 
58 /*
59  * TCR.T0SZ value to use when the ID map is active. Usually equals
60  * TCR_T0SZ(VA_BITS), unless system RAM is positioned very high in
61  * physical memory, in which case it will be smaller.
62  */
63 extern u64 idmap_t0sz;
64 extern u64 idmap_ptrs_per_pgd;
65 
66 static inline bool __cpu_uses_extended_idmap(void)
67 {
68 	if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52))
69 		return false;
70 
71 	return unlikely(idmap_t0sz != TCR_T0SZ(VA_BITS));
72 }
73 
74 /*
75  * True if the extended ID map requires an extra level of translation table
76  * to be configured.
77  */
78 static inline bool __cpu_uses_extended_idmap_level(void)
79 {
80 	return ARM64_HW_PGTABLE_LEVELS(64 - idmap_t0sz) > CONFIG_PGTABLE_LEVELS;
81 }
82 
83 /*
84  * Set TCR.T0SZ to its default value (based on VA_BITS)
85  */
86 static inline void __cpu_set_tcr_t0sz(unsigned long t0sz)
87 {
88 	unsigned long tcr;
89 
90 	if (!__cpu_uses_extended_idmap())
91 		return;
92 
93 	tcr = read_sysreg(tcr_el1);
94 	tcr &= ~TCR_T0SZ_MASK;
95 	tcr |= t0sz << TCR_T0SZ_OFFSET;
96 	write_sysreg(tcr, tcr_el1);
97 	isb();
98 }
99 
100 #define cpu_set_default_tcr_t0sz()	__cpu_set_tcr_t0sz(TCR_T0SZ(vabits_actual))
101 #define cpu_set_idmap_tcr_t0sz()	__cpu_set_tcr_t0sz(idmap_t0sz)
102 
103 /*
104  * Remove the idmap from TTBR0_EL1 and install the pgd of the active mm.
105  *
106  * The idmap lives in the same VA range as userspace, but uses global entries
107  * and may use a different TCR_EL1.T0SZ. To avoid issues resulting from
108  * speculative TLB fetches, we must temporarily install the reserved page
109  * tables while we invalidate the TLBs and set up the correct TCR_EL1.T0SZ.
110  *
111  * If current is a not a user task, the mm covers the TTBR1_EL1 page tables,
112  * which should not be installed in TTBR0_EL1. In this case we can leave the
113  * reserved page tables in place.
114  */
115 static inline void cpu_uninstall_idmap(void)
116 {
117 	struct mm_struct *mm = current->active_mm;
118 
119 	cpu_set_reserved_ttbr0();
120 	local_flush_tlb_all();
121 	cpu_set_default_tcr_t0sz();
122 
123 	if (mm != &init_mm && !system_uses_ttbr0_pan())
124 		cpu_switch_mm(mm->pgd, mm);
125 }
126 
127 static inline void cpu_install_idmap(void)
128 {
129 	cpu_set_reserved_ttbr0();
130 	local_flush_tlb_all();
131 	cpu_set_idmap_tcr_t0sz();
132 
133 	cpu_switch_mm(lm_alias(idmap_pg_dir), &init_mm);
134 }
135 
136 /*
137  * Atomically replaces the active TTBR1_EL1 PGD with a new VA-compatible PGD,
138  * avoiding the possibility of conflicting TLB entries being allocated.
139  */
140 static inline void cpu_replace_ttbr1(pgd_t *pgdp)
141 {
142 	typedef void (ttbr_replace_func)(phys_addr_t);
143 	extern ttbr_replace_func idmap_cpu_replace_ttbr1;
144 	ttbr_replace_func *replace_phys;
145 
146 	/* phys_to_ttbr() zeros lower 2 bits of ttbr with 52-bit PA */
147 	phys_addr_t ttbr1 = phys_to_ttbr(virt_to_phys(pgdp));
148 
149 	if (system_supports_cnp() && !WARN_ON(pgdp != lm_alias(swapper_pg_dir))) {
150 		/*
151 		 * cpu_replace_ttbr1() is used when there's a boot CPU
152 		 * up (i.e. cpufeature framework is not up yet) and
153 		 * latter only when we enable CNP via cpufeature's
154 		 * enable() callback.
155 		 * Also we rely on the cpu_hwcap bit being set before
156 		 * calling the enable() function.
157 		 */
158 		ttbr1 |= TTBR_CNP_BIT;
159 	}
160 
161 	replace_phys = (void *)__pa_symbol(idmap_cpu_replace_ttbr1);
162 
163 	cpu_install_idmap();
164 	replace_phys(ttbr1);
165 	cpu_uninstall_idmap();
166 }
167 
168 /*
169  * It would be nice to return ASIDs back to the allocator, but unfortunately
170  * that introduces a race with a generation rollover where we could erroneously
171  * free an ASID allocated in a future generation. We could workaround this by
172  * freeing the ASID from the context of the dying mm (e.g. in arch_exit_mmap),
173  * but we'd then need to make sure that we didn't dirty any TLBs afterwards.
174  * Setting a reserved TTBR0 or EPD0 would work, but it all gets ugly when you
175  * take CPU migration into account.
176  */
177 #define destroy_context(mm)		do { } while(0)
178 void check_and_switch_context(struct mm_struct *mm, unsigned int cpu);
179 
180 #define init_new_context(tsk,mm)	({ atomic64_set(&(mm)->context.id, 0); 0; })
181 
182 #ifdef CONFIG_ARM64_SW_TTBR0_PAN
183 static inline void update_saved_ttbr0(struct task_struct *tsk,
184 				      struct mm_struct *mm)
185 {
186 	u64 ttbr;
187 
188 	if (!system_uses_ttbr0_pan())
189 		return;
190 
191 	if (mm == &init_mm)
192 		ttbr = __pa_symbol(empty_zero_page);
193 	else
194 		ttbr = virt_to_phys(mm->pgd) | ASID(mm) << 48;
195 
196 	WRITE_ONCE(task_thread_info(tsk)->ttbr0, ttbr);
197 }
198 #else
199 static inline void update_saved_ttbr0(struct task_struct *tsk,
200 				      struct mm_struct *mm)
201 {
202 }
203 #endif
204 
205 static inline void
206 enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
207 {
208 	/*
209 	 * We don't actually care about the ttbr0 mapping, so point it at the
210 	 * zero page.
211 	 */
212 	update_saved_ttbr0(tsk, &init_mm);
213 }
214 
215 static inline void __switch_mm(struct mm_struct *next)
216 {
217 	unsigned int cpu = smp_processor_id();
218 
219 	/*
220 	 * init_mm.pgd does not contain any user mappings and it is always
221 	 * active for kernel addresses in TTBR1. Just set the reserved TTBR0.
222 	 */
223 	if (next == &init_mm) {
224 		cpu_set_reserved_ttbr0();
225 		return;
226 	}
227 
228 	check_and_switch_context(next, cpu);
229 }
230 
231 static inline void
232 switch_mm(struct mm_struct *prev, struct mm_struct *next,
233 	  struct task_struct *tsk)
234 {
235 	if (prev != next)
236 		__switch_mm(next);
237 
238 	/*
239 	 * Update the saved TTBR0_EL1 of the scheduled-in task as the previous
240 	 * value may have not been initialised yet (activate_mm caller) or the
241 	 * ASID has changed since the last run (following the context switch
242 	 * of another thread of the same process).
243 	 */
244 	update_saved_ttbr0(tsk, next);
245 }
246 
247 #define deactivate_mm(tsk,mm)	do { } while (0)
248 #define activate_mm(prev,next)	switch_mm(prev, next, current)
249 
250 void verify_cpu_asid_bits(void);
251 void post_ttbr_update_workaround(void);
252 
253 #endif /* !__ASSEMBLY__ */
254 
255 #endif /* !__ASM_MMU_CONTEXT_H */
256