1 /* 2 * Based on arch/arm/include/asm/mmu_context.h 3 * 4 * Copyright (C) 1996 Russell King. 5 * Copyright (C) 2012 ARM Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 #ifndef __ASM_MMU_CONTEXT_H 20 #define __ASM_MMU_CONTEXT_H 21 22 #ifndef __ASSEMBLY__ 23 24 #include <linux/compiler.h> 25 #include <linux/sched.h> 26 #include <linux/sched/hotplug.h> 27 #include <linux/mm_types.h> 28 29 #include <asm/cacheflush.h> 30 #include <asm/cpufeature.h> 31 #include <asm/proc-fns.h> 32 #include <asm-generic/mm_hooks.h> 33 #include <asm/cputype.h> 34 #include <asm/pgtable.h> 35 #include <asm/sysreg.h> 36 #include <asm/tlbflush.h> 37 38 static inline void contextidr_thread_switch(struct task_struct *next) 39 { 40 if (!IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR)) 41 return; 42 43 write_sysreg(task_pid_nr(next), contextidr_el1); 44 isb(); 45 } 46 47 /* 48 * Set TTBR0 to empty_zero_page. No translations will be possible via TTBR0. 49 */ 50 static inline void cpu_set_reserved_ttbr0(void) 51 { 52 unsigned long ttbr = phys_to_ttbr(__pa_symbol(empty_zero_page)); 53 54 write_sysreg(ttbr, ttbr0_el1); 55 isb(); 56 } 57 58 static inline void cpu_switch_mm(pgd_t *pgd, struct mm_struct *mm) 59 { 60 BUG_ON(pgd == swapper_pg_dir); 61 cpu_set_reserved_ttbr0(); 62 cpu_do_switch_mm(virt_to_phys(pgd),mm); 63 } 64 65 /* 66 * TCR.T0SZ value to use when the ID map is active. Usually equals 67 * TCR_T0SZ(VA_BITS), unless system RAM is positioned very high in 68 * physical memory, in which case it will be smaller. 69 */ 70 extern u64 idmap_t0sz; 71 extern u64 idmap_ptrs_per_pgd; 72 73 static inline bool __cpu_uses_extended_idmap(void) 74 { 75 return unlikely(idmap_t0sz != TCR_T0SZ(VA_BITS)); 76 } 77 78 /* 79 * True if the extended ID map requires an extra level of translation table 80 * to be configured. 81 */ 82 static inline bool __cpu_uses_extended_idmap_level(void) 83 { 84 return ARM64_HW_PGTABLE_LEVELS(64 - idmap_t0sz) > CONFIG_PGTABLE_LEVELS; 85 } 86 87 /* 88 * Set TCR.T0SZ to its default value (based on VA_BITS) 89 */ 90 static inline void __cpu_set_tcr_t0sz(unsigned long t0sz) 91 { 92 unsigned long tcr; 93 94 if (!__cpu_uses_extended_idmap()) 95 return; 96 97 tcr = read_sysreg(tcr_el1); 98 tcr &= ~TCR_T0SZ_MASK; 99 tcr |= t0sz << TCR_T0SZ_OFFSET; 100 write_sysreg(tcr, tcr_el1); 101 isb(); 102 } 103 104 #define cpu_set_default_tcr_t0sz() __cpu_set_tcr_t0sz(TCR_T0SZ(VA_BITS)) 105 #define cpu_set_idmap_tcr_t0sz() __cpu_set_tcr_t0sz(idmap_t0sz) 106 107 /* 108 * Remove the idmap from TTBR0_EL1 and install the pgd of the active mm. 109 * 110 * The idmap lives in the same VA range as userspace, but uses global entries 111 * and may use a different TCR_EL1.T0SZ. To avoid issues resulting from 112 * speculative TLB fetches, we must temporarily install the reserved page 113 * tables while we invalidate the TLBs and set up the correct TCR_EL1.T0SZ. 114 * 115 * If current is a not a user task, the mm covers the TTBR1_EL1 page tables, 116 * which should not be installed in TTBR0_EL1. In this case we can leave the 117 * reserved page tables in place. 118 */ 119 static inline void cpu_uninstall_idmap(void) 120 { 121 struct mm_struct *mm = current->active_mm; 122 123 cpu_set_reserved_ttbr0(); 124 local_flush_tlb_all(); 125 cpu_set_default_tcr_t0sz(); 126 127 if (mm != &init_mm && !system_uses_ttbr0_pan()) 128 cpu_switch_mm(mm->pgd, mm); 129 } 130 131 static inline void cpu_install_idmap(void) 132 { 133 cpu_set_reserved_ttbr0(); 134 local_flush_tlb_all(); 135 cpu_set_idmap_tcr_t0sz(); 136 137 cpu_switch_mm(lm_alias(idmap_pg_dir), &init_mm); 138 } 139 140 /* 141 * Atomically replaces the active TTBR1_EL1 PGD with a new VA-compatible PGD, 142 * avoiding the possibility of conflicting TLB entries being allocated. 143 */ 144 static inline void cpu_replace_ttbr1(pgd_t *pgdp) 145 { 146 typedef void (ttbr_replace_func)(phys_addr_t); 147 extern ttbr_replace_func idmap_cpu_replace_ttbr1; 148 ttbr_replace_func *replace_phys; 149 150 /* phys_to_ttbr() zeros lower 2 bits of ttbr with 52-bit PA */ 151 phys_addr_t ttbr1 = phys_to_ttbr(virt_to_phys(pgdp)); 152 153 if (system_supports_cnp() && !WARN_ON(pgdp != lm_alias(swapper_pg_dir))) { 154 /* 155 * cpu_replace_ttbr1() is used when there's a boot CPU 156 * up (i.e. cpufeature framework is not up yet) and 157 * latter only when we enable CNP via cpufeature's 158 * enable() callback. 159 * Also we rely on the cpu_hwcap bit being set before 160 * calling the enable() function. 161 */ 162 ttbr1 |= TTBR_CNP_BIT; 163 } 164 165 replace_phys = (void *)__pa_symbol(idmap_cpu_replace_ttbr1); 166 167 cpu_install_idmap(); 168 replace_phys(ttbr1); 169 cpu_uninstall_idmap(); 170 } 171 172 /* 173 * It would be nice to return ASIDs back to the allocator, but unfortunately 174 * that introduces a race with a generation rollover where we could erroneously 175 * free an ASID allocated in a future generation. We could workaround this by 176 * freeing the ASID from the context of the dying mm (e.g. in arch_exit_mmap), 177 * but we'd then need to make sure that we didn't dirty any TLBs afterwards. 178 * Setting a reserved TTBR0 or EPD0 would work, but it all gets ugly when you 179 * take CPU migration into account. 180 */ 181 #define destroy_context(mm) do { } while(0) 182 void check_and_switch_context(struct mm_struct *mm, unsigned int cpu); 183 184 #define init_new_context(tsk,mm) ({ atomic64_set(&(mm)->context.id, 0); 0; }) 185 186 #ifdef CONFIG_ARM64_SW_TTBR0_PAN 187 static inline void update_saved_ttbr0(struct task_struct *tsk, 188 struct mm_struct *mm) 189 { 190 u64 ttbr; 191 192 if (!system_uses_ttbr0_pan()) 193 return; 194 195 if (mm == &init_mm) 196 ttbr = __pa_symbol(empty_zero_page); 197 else 198 ttbr = virt_to_phys(mm->pgd) | ASID(mm) << 48; 199 200 WRITE_ONCE(task_thread_info(tsk)->ttbr0, ttbr); 201 } 202 #else 203 static inline void update_saved_ttbr0(struct task_struct *tsk, 204 struct mm_struct *mm) 205 { 206 } 207 #endif 208 209 static inline void 210 enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk) 211 { 212 /* 213 * We don't actually care about the ttbr0 mapping, so point it at the 214 * zero page. 215 */ 216 update_saved_ttbr0(tsk, &init_mm); 217 } 218 219 static inline void __switch_mm(struct mm_struct *next) 220 { 221 unsigned int cpu = smp_processor_id(); 222 223 /* 224 * init_mm.pgd does not contain any user mappings and it is always 225 * active for kernel addresses in TTBR1. Just set the reserved TTBR0. 226 */ 227 if (next == &init_mm) { 228 cpu_set_reserved_ttbr0(); 229 return; 230 } 231 232 check_and_switch_context(next, cpu); 233 } 234 235 static inline void 236 switch_mm(struct mm_struct *prev, struct mm_struct *next, 237 struct task_struct *tsk) 238 { 239 if (prev != next) 240 __switch_mm(next); 241 242 /* 243 * Update the saved TTBR0_EL1 of the scheduled-in task as the previous 244 * value may have not been initialised yet (activate_mm caller) or the 245 * ASID has changed since the last run (following the context switch 246 * of another thread of the same process). 247 */ 248 update_saved_ttbr0(tsk, next); 249 } 250 251 #define deactivate_mm(tsk,mm) do { } while (0) 252 #define activate_mm(prev,next) switch_mm(prev, next, current) 253 254 void verify_cpu_asid_bits(void); 255 void post_ttbr_update_workaround(void); 256 257 #endif /* !__ASSEMBLY__ */ 258 259 #endif /* !__ASM_MMU_CONTEXT_H */ 260