1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Based on arch/arm/include/asm/memory.h 4 * 5 * Copyright (C) 2000-2002 Russell King 6 * Copyright (C) 2012 ARM Ltd. 7 * 8 * Note: this file should not be included by non-asm/.h files 9 */ 10 #ifndef __ASM_MEMORY_H 11 #define __ASM_MEMORY_H 12 13 #include <linux/compiler.h> 14 #include <linux/const.h> 15 #include <linux/sizes.h> 16 #include <linux/types.h> 17 #include <asm/bug.h> 18 #include <asm/page-def.h> 19 20 /* 21 * Size of the PCI I/O space. This must remain a power of two so that 22 * IO_SPACE_LIMIT acts as a mask for the low bits of I/O addresses. 23 */ 24 #define PCI_IO_SIZE SZ_16M 25 26 /* 27 * VMEMMAP_SIZE - allows the whole linear region to be covered by 28 * a struct page array 29 * 30 * If we are configured with a 52-bit kernel VA then our VMEMMAP_SIZE 31 * needs to cover the memory region from the beginning of the 52-bit 32 * PAGE_OFFSET all the way to PAGE_END for 48-bit. This allows us to 33 * keep a constant PAGE_OFFSET and "fallback" to using the higher end 34 * of the VMEMMAP where 52-bit support is not available in hardware. 35 */ 36 #define VMEMMAP_SIZE ((_PAGE_END(VA_BITS_MIN) - PAGE_OFFSET) \ 37 >> (PAGE_SHIFT - STRUCT_PAGE_MAX_SHIFT)) 38 39 /* 40 * PAGE_OFFSET - the virtual address of the start of the linear map, at the 41 * start of the TTBR1 address space. 42 * PAGE_END - the end of the linear map, where all other kernel mappings begin. 43 * KIMAGE_VADDR - the virtual address of the start of the kernel image. 44 * VA_BITS - the maximum number of bits for virtual addresses. 45 */ 46 #define VA_BITS (CONFIG_ARM64_VA_BITS) 47 #define _PAGE_OFFSET(va) (-(UL(1) << (va))) 48 #define PAGE_OFFSET (_PAGE_OFFSET(VA_BITS)) 49 #define KIMAGE_VADDR (MODULES_END) 50 #define BPF_JIT_REGION_START (KASAN_SHADOW_END) 51 #define BPF_JIT_REGION_SIZE (SZ_128M) 52 #define BPF_JIT_REGION_END (BPF_JIT_REGION_START + BPF_JIT_REGION_SIZE) 53 #define MODULES_END (MODULES_VADDR + MODULES_VSIZE) 54 #define MODULES_VADDR (BPF_JIT_REGION_END) 55 #define MODULES_VSIZE (SZ_128M) 56 #define VMEMMAP_START (-VMEMMAP_SIZE - SZ_2M) 57 #define PCI_IO_END (VMEMMAP_START - SZ_2M) 58 #define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE) 59 #define FIXADDR_TOP (PCI_IO_START - SZ_2M) 60 61 #if VA_BITS > 48 62 #define VA_BITS_MIN (48) 63 #else 64 #define VA_BITS_MIN (VA_BITS) 65 #endif 66 67 #define _PAGE_END(va) (-(UL(1) << ((va) - 1))) 68 69 #define KERNEL_START _text 70 #define KERNEL_END _end 71 72 /* 73 * Generic and tag-based KASAN require 1/8th and 1/16th of the kernel virtual 74 * address space for the shadow region respectively. They can bloat the stack 75 * significantly, so double the (minimum) stack size when they are in use. 76 */ 77 #ifdef CONFIG_KASAN 78 #define KASAN_SHADOW_OFFSET _AC(CONFIG_KASAN_SHADOW_OFFSET, UL) 79 #define KASAN_SHADOW_END ((UL(1) << (64 - KASAN_SHADOW_SCALE_SHIFT)) \ 80 + KASAN_SHADOW_OFFSET) 81 #define KASAN_THREAD_SHIFT 1 82 #else 83 #define KASAN_THREAD_SHIFT 0 84 #define KASAN_SHADOW_END (_PAGE_END(VA_BITS_MIN)) 85 #endif /* CONFIG_KASAN */ 86 87 #define MIN_THREAD_SHIFT (14 + KASAN_THREAD_SHIFT) 88 89 /* 90 * VMAP'd stacks are allocated at page granularity, so we must ensure that such 91 * stacks are a multiple of page size. 92 */ 93 #if defined(CONFIG_VMAP_STACK) && (MIN_THREAD_SHIFT < PAGE_SHIFT) 94 #define THREAD_SHIFT PAGE_SHIFT 95 #else 96 #define THREAD_SHIFT MIN_THREAD_SHIFT 97 #endif 98 99 #if THREAD_SHIFT >= PAGE_SHIFT 100 #define THREAD_SIZE_ORDER (THREAD_SHIFT - PAGE_SHIFT) 101 #endif 102 103 #define THREAD_SIZE (UL(1) << THREAD_SHIFT) 104 105 /* 106 * By aligning VMAP'd stacks to 2 * THREAD_SIZE, we can detect overflow by 107 * checking sp & (1 << THREAD_SHIFT), which we can do cheaply in the entry 108 * assembly. 109 */ 110 #ifdef CONFIG_VMAP_STACK 111 #define THREAD_ALIGN (2 * THREAD_SIZE) 112 #else 113 #define THREAD_ALIGN THREAD_SIZE 114 #endif 115 116 #define IRQ_STACK_SIZE THREAD_SIZE 117 118 #define OVERFLOW_STACK_SIZE SZ_4K 119 120 /* 121 * Alignment of kernel segments (e.g. .text, .data). 122 */ 123 #if defined(CONFIG_DEBUG_ALIGN_RODATA) 124 /* 125 * 4 KB granule: 1 level 2 entry 126 * 16 KB granule: 128 level 3 entries, with contiguous bit 127 * 64 KB granule: 32 level 3 entries, with contiguous bit 128 */ 129 #define SEGMENT_ALIGN SZ_2M 130 #else 131 /* 132 * 4 KB granule: 16 level 3 entries, with contiguous bit 133 * 16 KB granule: 4 level 3 entries, without contiguous bit 134 * 64 KB granule: 1 level 3 entry 135 */ 136 #define SEGMENT_ALIGN SZ_64K 137 #endif 138 139 /* 140 * Memory types available. 141 */ 142 #define MT_DEVICE_nGnRnE 0 143 #define MT_DEVICE_nGnRE 1 144 #define MT_DEVICE_GRE 2 145 #define MT_NORMAL_NC 3 146 #define MT_NORMAL 4 147 #define MT_NORMAL_WT 5 148 149 /* 150 * Memory types for Stage-2 translation 151 */ 152 #define MT_S2_NORMAL 0xf 153 #define MT_S2_DEVICE_nGnRE 0x1 154 155 /* 156 * Memory types for Stage-2 translation when ID_AA64MMFR2_EL1.FWB is 0001 157 * Stage-2 enforces Normal-WB and Device-nGnRE 158 */ 159 #define MT_S2_FWB_NORMAL 6 160 #define MT_S2_FWB_DEVICE_nGnRE 1 161 162 #ifdef CONFIG_ARM64_4K_PAGES 163 #define IOREMAP_MAX_ORDER (PUD_SHIFT) 164 #else 165 #define IOREMAP_MAX_ORDER (PMD_SHIFT) 166 #endif 167 168 #ifndef __ASSEMBLY__ 169 extern u64 vabits_actual; 170 #define PAGE_END (_PAGE_END(vabits_actual)) 171 172 #include <linux/bitops.h> 173 #include <linux/mmdebug.h> 174 175 extern s64 physvirt_offset; 176 extern s64 memstart_addr; 177 /* PHYS_OFFSET - the physical address of the start of memory. */ 178 #define PHYS_OFFSET ({ VM_BUG_ON(memstart_addr & 1); memstart_addr; }) 179 180 /* the virtual base of the kernel image (minus TEXT_OFFSET) */ 181 extern u64 kimage_vaddr; 182 183 /* the offset between the kernel virtual and physical mappings */ 184 extern u64 kimage_voffset; 185 186 static inline unsigned long kaslr_offset(void) 187 { 188 return kimage_vaddr - KIMAGE_VADDR; 189 } 190 191 /* 192 * Allow all memory at the discovery stage. We will clip it later. 193 */ 194 #define MIN_MEMBLOCK_ADDR 0 195 #define MAX_MEMBLOCK_ADDR U64_MAX 196 197 /* 198 * PFNs are used to describe any physical page; this means 199 * PFN 0 == physical address 0. 200 * 201 * This is the PFN of the first RAM page in the kernel 202 * direct-mapped view. We assume this is the first page 203 * of RAM in the mem_map as well. 204 */ 205 #define PHYS_PFN_OFFSET (PHYS_OFFSET >> PAGE_SHIFT) 206 207 /* 208 * When dealing with data aborts, watchpoints, or instruction traps we may end 209 * up with a tagged userland pointer. Clear the tag to get a sane pointer to 210 * pass on to access_ok(), for instance. 211 */ 212 #define __untagged_addr(addr) \ 213 ((__force __typeof__(addr))sign_extend64((__force u64)(addr), 55)) 214 215 #define untagged_addr(addr) ({ \ 216 u64 __addr = (__force u64)addr; \ 217 __addr &= __untagged_addr(__addr); \ 218 (__force __typeof__(addr))__addr; \ 219 }) 220 221 #ifdef CONFIG_KASAN_SW_TAGS 222 #define __tag_shifted(tag) ((u64)(tag) << 56) 223 #define __tag_reset(addr) __untagged_addr(addr) 224 #define __tag_get(addr) (__u8)((u64)(addr) >> 56) 225 #else 226 #define __tag_shifted(tag) 0UL 227 #define __tag_reset(addr) (addr) 228 #define __tag_get(addr) 0 229 #endif /* CONFIG_KASAN_SW_TAGS */ 230 231 static inline const void *__tag_set(const void *addr, u8 tag) 232 { 233 u64 __addr = (u64)addr & ~__tag_shifted(0xff); 234 return (const void *)(__addr | __tag_shifted(tag)); 235 } 236 237 /* 238 * Physical vs virtual RAM address space conversion. These are 239 * private definitions which should NOT be used outside memory.h 240 * files. Use virt_to_phys/phys_to_virt/__pa/__va instead. 241 */ 242 243 244 /* 245 * The linear kernel range starts at the bottom of the virtual address 246 * space. Testing the top bit for the start of the region is a 247 * sufficient check and avoids having to worry about the tag. 248 */ 249 #define __is_lm_address(addr) (!(((u64)addr) & BIT(vabits_actual - 1))) 250 251 #define __lm_to_phys(addr) (((addr) + physvirt_offset)) 252 #define __kimg_to_phys(addr) ((addr) - kimage_voffset) 253 254 #define __virt_to_phys_nodebug(x) ({ \ 255 phys_addr_t __x = (phys_addr_t)(__tag_reset(x)); \ 256 __is_lm_address(__x) ? __lm_to_phys(__x) : __kimg_to_phys(__x); \ 257 }) 258 259 #define __pa_symbol_nodebug(x) __kimg_to_phys((phys_addr_t)(x)) 260 261 #ifdef CONFIG_DEBUG_VIRTUAL 262 extern phys_addr_t __virt_to_phys(unsigned long x); 263 extern phys_addr_t __phys_addr_symbol(unsigned long x); 264 #else 265 #define __virt_to_phys(x) __virt_to_phys_nodebug(x) 266 #define __phys_addr_symbol(x) __pa_symbol_nodebug(x) 267 #endif /* CONFIG_DEBUG_VIRTUAL */ 268 269 #define __phys_to_virt(x) ((unsigned long)((x) - physvirt_offset)) 270 #define __phys_to_kimg(x) ((unsigned long)((x) + kimage_voffset)) 271 272 /* 273 * Convert a page to/from a physical address 274 */ 275 #define page_to_phys(page) (__pfn_to_phys(page_to_pfn(page))) 276 #define phys_to_page(phys) (pfn_to_page(__phys_to_pfn(phys))) 277 278 /* 279 * Note: Drivers should NOT use these. They are the wrong 280 * translation for translating DMA addresses. Use the driver 281 * DMA support - see dma-mapping.h. 282 */ 283 #define virt_to_phys virt_to_phys 284 static inline phys_addr_t virt_to_phys(const volatile void *x) 285 { 286 return __virt_to_phys((unsigned long)(x)); 287 } 288 289 #define phys_to_virt phys_to_virt 290 static inline void *phys_to_virt(phys_addr_t x) 291 { 292 return (void *)(__phys_to_virt(x)); 293 } 294 295 /* 296 * Drivers should NOT use these either. 297 */ 298 #define __pa(x) __virt_to_phys((unsigned long)(x)) 299 #define __pa_symbol(x) __phys_addr_symbol(RELOC_HIDE((unsigned long)(x), 0)) 300 #define __pa_nodebug(x) __virt_to_phys_nodebug((unsigned long)(x)) 301 #define __va(x) ((void *)__phys_to_virt((phys_addr_t)(x))) 302 #define pfn_to_kaddr(pfn) __va((pfn) << PAGE_SHIFT) 303 #define virt_to_pfn(x) __phys_to_pfn(__virt_to_phys((unsigned long)(x))) 304 #define sym_to_pfn(x) __phys_to_pfn(__pa_symbol(x)) 305 306 /* 307 * virt_to_page(x) convert a _valid_ virtual address to struct page * 308 * virt_addr_valid(x) indicates whether a virtual address is valid 309 */ 310 #define ARCH_PFN_OFFSET ((unsigned long)PHYS_PFN_OFFSET) 311 312 #if !defined(CONFIG_SPARSEMEM_VMEMMAP) || defined(CONFIG_DEBUG_VIRTUAL) 313 #define virt_to_page(x) pfn_to_page(virt_to_pfn(x)) 314 #else 315 #define page_to_virt(x) ({ \ 316 __typeof__(x) __page = x; \ 317 u64 __idx = ((u64)__page - VMEMMAP_START) / sizeof(struct page);\ 318 u64 __addr = PAGE_OFFSET + (__idx * PAGE_SIZE); \ 319 (void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\ 320 }) 321 322 #define virt_to_page(x) ({ \ 323 u64 __idx = (__tag_reset((u64)x) - PAGE_OFFSET) / PAGE_SIZE; \ 324 u64 __addr = VMEMMAP_START + (__idx * sizeof(struct page)); \ 325 (struct page *)__addr; \ 326 }) 327 #endif /* !CONFIG_SPARSEMEM_VMEMMAP || CONFIG_DEBUG_VIRTUAL */ 328 329 #define virt_addr_valid(addr) ({ \ 330 __typeof__(addr) __addr = addr; \ 331 __is_lm_address(__addr) && pfn_valid(virt_to_pfn(__addr)); \ 332 }) 333 334 #endif /* !ASSEMBLY */ 335 336 /* 337 * Given that the GIC architecture permits ITS implementations that can only be 338 * configured with a LPI table address once, GICv3 systems with many CPUs may 339 * end up reserving a lot of different regions after a kexec for their LPI 340 * tables (one per CPU), as we are forced to reuse the same memory after kexec 341 * (and thus reserve it persistently with EFI beforehand) 342 */ 343 #if defined(CONFIG_EFI) && defined(CONFIG_ARM_GIC_V3_ITS) 344 # define INIT_MEMBLOCK_RESERVED_REGIONS (INIT_MEMBLOCK_REGIONS + NR_CPUS + 1) 345 #endif 346 347 #include <asm-generic/memory_model.h> 348 349 #endif /* __ASM_MEMORY_H */ 350