1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Based on arch/arm/include/asm/memory.h 4 * 5 * Copyright (C) 2000-2002 Russell King 6 * Copyright (C) 2012 ARM Ltd. 7 * 8 * Note: this file should not be included by non-asm/.h files 9 */ 10 #ifndef __ASM_MEMORY_H 11 #define __ASM_MEMORY_H 12 13 #include <linux/const.h> 14 #include <linux/sizes.h> 15 #include <asm/page-def.h> 16 17 /* 18 * Size of the PCI I/O space. This must remain a power of two so that 19 * IO_SPACE_LIMIT acts as a mask for the low bits of I/O addresses. 20 */ 21 #define PCI_IO_SIZE SZ_16M 22 23 /* 24 * VMEMMAP_SIZE - allows the whole linear region to be covered by 25 * a struct page array 26 * 27 * If we are configured with a 52-bit kernel VA then our VMEMMAP_SIZE 28 * needs to cover the memory region from the beginning of the 52-bit 29 * PAGE_OFFSET all the way to PAGE_END for 48-bit. This allows us to 30 * keep a constant PAGE_OFFSET and "fallback" to using the higher end 31 * of the VMEMMAP where 52-bit support is not available in hardware. 32 */ 33 #define VMEMMAP_SIZE ((_PAGE_END(VA_BITS_MIN) - PAGE_OFFSET) \ 34 >> (PAGE_SHIFT - STRUCT_PAGE_MAX_SHIFT)) 35 36 /* 37 * PAGE_OFFSET - the virtual address of the start of the linear map, at the 38 * start of the TTBR1 address space. 39 * PAGE_END - the end of the linear map, where all other kernel mappings begin. 40 * KIMAGE_VADDR - the virtual address of the start of the kernel image. 41 * VA_BITS - the maximum number of bits for virtual addresses. 42 */ 43 #define VA_BITS (CONFIG_ARM64_VA_BITS) 44 #define _PAGE_OFFSET(va) (-(UL(1) << (va))) 45 #define PAGE_OFFSET (_PAGE_OFFSET(VA_BITS)) 46 #define KIMAGE_VADDR (MODULES_END) 47 #define BPF_JIT_REGION_START (KASAN_SHADOW_END) 48 #define BPF_JIT_REGION_SIZE (SZ_128M) 49 #define BPF_JIT_REGION_END (BPF_JIT_REGION_START + BPF_JIT_REGION_SIZE) 50 #define MODULES_END (MODULES_VADDR + MODULES_VSIZE) 51 #define MODULES_VADDR (BPF_JIT_REGION_END) 52 #define MODULES_VSIZE (SZ_128M) 53 #define VMEMMAP_START (-VMEMMAP_SIZE - SZ_2M) 54 #define VMEMMAP_END (VMEMMAP_START + VMEMMAP_SIZE) 55 #define PCI_IO_END (VMEMMAP_START - SZ_2M) 56 #define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE) 57 #define FIXADDR_TOP (PCI_IO_START - SZ_2M) 58 59 #if VA_BITS > 48 60 #define VA_BITS_MIN (48) 61 #else 62 #define VA_BITS_MIN (VA_BITS) 63 #endif 64 65 #define _PAGE_END(va) (-(UL(1) << ((va) - 1))) 66 67 #define KERNEL_START _text 68 #define KERNEL_END _end 69 70 /* 71 * Generic and tag-based KASAN require 1/8th and 1/16th of the kernel virtual 72 * address space for the shadow region respectively. They can bloat the stack 73 * significantly, so double the (minimum) stack size when they are in use. 74 */ 75 #ifdef CONFIG_KASAN 76 #define KASAN_SHADOW_OFFSET _AC(CONFIG_KASAN_SHADOW_OFFSET, UL) 77 #define KASAN_SHADOW_END ((UL(1) << (64 - KASAN_SHADOW_SCALE_SHIFT)) \ 78 + KASAN_SHADOW_OFFSET) 79 #define KASAN_THREAD_SHIFT 1 80 #else 81 #define KASAN_THREAD_SHIFT 0 82 #define KASAN_SHADOW_END (_PAGE_END(VA_BITS_MIN)) 83 #endif /* CONFIG_KASAN */ 84 85 #define MIN_THREAD_SHIFT (14 + KASAN_THREAD_SHIFT) 86 87 /* 88 * VMAP'd stacks are allocated at page granularity, so we must ensure that such 89 * stacks are a multiple of page size. 90 */ 91 #if defined(CONFIG_VMAP_STACK) && (MIN_THREAD_SHIFT < PAGE_SHIFT) 92 #define THREAD_SHIFT PAGE_SHIFT 93 #else 94 #define THREAD_SHIFT MIN_THREAD_SHIFT 95 #endif 96 97 #if THREAD_SHIFT >= PAGE_SHIFT 98 #define THREAD_SIZE_ORDER (THREAD_SHIFT - PAGE_SHIFT) 99 #endif 100 101 #define THREAD_SIZE (UL(1) << THREAD_SHIFT) 102 103 /* 104 * By aligning VMAP'd stacks to 2 * THREAD_SIZE, we can detect overflow by 105 * checking sp & (1 << THREAD_SHIFT), which we can do cheaply in the entry 106 * assembly. 107 */ 108 #ifdef CONFIG_VMAP_STACK 109 #define THREAD_ALIGN (2 * THREAD_SIZE) 110 #else 111 #define THREAD_ALIGN THREAD_SIZE 112 #endif 113 114 #define IRQ_STACK_SIZE THREAD_SIZE 115 116 #define OVERFLOW_STACK_SIZE SZ_4K 117 118 /* 119 * Alignment of kernel segments (e.g. .text, .data). 120 * 121 * 4 KB granule: 16 level 3 entries, with contiguous bit 122 * 16 KB granule: 4 level 3 entries, without contiguous bit 123 * 64 KB granule: 1 level 3 entry 124 */ 125 #define SEGMENT_ALIGN SZ_64K 126 127 /* 128 * Memory types available. 129 * 130 * IMPORTANT: MT_NORMAL must be index 0 since vm_get_page_prot() may 'or' in 131 * the MT_NORMAL_TAGGED memory type for PROT_MTE mappings. Note 132 * that protection_map[] only contains MT_NORMAL attributes. 133 */ 134 #define MT_NORMAL 0 135 #define MT_NORMAL_TAGGED 1 136 #define MT_NORMAL_NC 2 137 #define MT_NORMAL_WT 3 138 #define MT_DEVICE_nGnRnE 4 139 #define MT_DEVICE_nGnRE 5 140 #define MT_DEVICE_GRE 6 141 142 /* 143 * Memory types for Stage-2 translation 144 */ 145 #define MT_S2_NORMAL 0xf 146 #define MT_S2_DEVICE_nGnRE 0x1 147 148 /* 149 * Memory types for Stage-2 translation when ID_AA64MMFR2_EL1.FWB is 0001 150 * Stage-2 enforces Normal-WB and Device-nGnRE 151 */ 152 #define MT_S2_FWB_NORMAL 6 153 #define MT_S2_FWB_DEVICE_nGnRE 1 154 155 #ifdef CONFIG_ARM64_4K_PAGES 156 #define IOREMAP_MAX_ORDER (PUD_SHIFT) 157 #else 158 #define IOREMAP_MAX_ORDER (PMD_SHIFT) 159 #endif 160 161 #ifndef __ASSEMBLY__ 162 163 #include <linux/bitops.h> 164 #include <linux/compiler.h> 165 #include <linux/mmdebug.h> 166 #include <linux/types.h> 167 #include <asm/bug.h> 168 169 extern u64 vabits_actual; 170 #define PAGE_END (_PAGE_END(vabits_actual)) 171 172 extern s64 memstart_addr; 173 /* PHYS_OFFSET - the physical address of the start of memory. */ 174 #define PHYS_OFFSET ({ VM_BUG_ON(memstart_addr & 1); memstart_addr; }) 175 176 /* the virtual base of the kernel image */ 177 extern u64 kimage_vaddr; 178 179 /* the offset between the kernel virtual and physical mappings */ 180 extern u64 kimage_voffset; 181 182 static inline unsigned long kaslr_offset(void) 183 { 184 return kimage_vaddr - KIMAGE_VADDR; 185 } 186 187 /* 188 * Allow all memory at the discovery stage. We will clip it later. 189 */ 190 #define MIN_MEMBLOCK_ADDR 0 191 #define MAX_MEMBLOCK_ADDR U64_MAX 192 193 /* 194 * PFNs are used to describe any physical page; this means 195 * PFN 0 == physical address 0. 196 * 197 * This is the PFN of the first RAM page in the kernel 198 * direct-mapped view. We assume this is the first page 199 * of RAM in the mem_map as well. 200 */ 201 #define PHYS_PFN_OFFSET (PHYS_OFFSET >> PAGE_SHIFT) 202 203 /* 204 * When dealing with data aborts, watchpoints, or instruction traps we may end 205 * up with a tagged userland pointer. Clear the tag to get a sane pointer to 206 * pass on to access_ok(), for instance. 207 */ 208 #define __untagged_addr(addr) \ 209 ((__force __typeof__(addr))sign_extend64((__force u64)(addr), 55)) 210 211 #define untagged_addr(addr) ({ \ 212 u64 __addr = (__force u64)(addr); \ 213 __addr &= __untagged_addr(__addr); \ 214 (__force __typeof__(addr))__addr; \ 215 }) 216 217 #ifdef CONFIG_KASAN_SW_TAGS 218 #define __tag_shifted(tag) ((u64)(tag) << 56) 219 #define __tag_reset(addr) __untagged_addr(addr) 220 #define __tag_get(addr) (__u8)((u64)(addr) >> 56) 221 #else 222 #define __tag_shifted(tag) 0UL 223 #define __tag_reset(addr) (addr) 224 #define __tag_get(addr) 0 225 #endif /* CONFIG_KASAN_SW_TAGS */ 226 227 static inline const void *__tag_set(const void *addr, u8 tag) 228 { 229 u64 __addr = (u64)addr & ~__tag_shifted(0xff); 230 return (const void *)(__addr | __tag_shifted(tag)); 231 } 232 233 /* 234 * Physical vs virtual RAM address space conversion. These are 235 * private definitions which should NOT be used outside memory.h 236 * files. Use virt_to_phys/phys_to_virt/__pa/__va instead. 237 */ 238 239 240 /* 241 * The linear kernel range starts at the bottom of the virtual address 242 * space. Testing the top bit for the start of the region is a 243 * sufficient check and avoids having to worry about the tag. 244 */ 245 #define __is_lm_address(addr) (!(((u64)addr) & BIT(vabits_actual - 1))) 246 247 #define __lm_to_phys(addr) (((addr) & ~PAGE_OFFSET) + PHYS_OFFSET) 248 #define __kimg_to_phys(addr) ((addr) - kimage_voffset) 249 250 #define __virt_to_phys_nodebug(x) ({ \ 251 phys_addr_t __x = (phys_addr_t)(__tag_reset(x)); \ 252 __is_lm_address(__x) ? __lm_to_phys(__x) : __kimg_to_phys(__x); \ 253 }) 254 255 #define __pa_symbol_nodebug(x) __kimg_to_phys((phys_addr_t)(x)) 256 257 #ifdef CONFIG_DEBUG_VIRTUAL 258 extern phys_addr_t __virt_to_phys(unsigned long x); 259 extern phys_addr_t __phys_addr_symbol(unsigned long x); 260 #else 261 #define __virt_to_phys(x) __virt_to_phys_nodebug(x) 262 #define __phys_addr_symbol(x) __pa_symbol_nodebug(x) 263 #endif /* CONFIG_DEBUG_VIRTUAL */ 264 265 #define __phys_to_virt(x) ((unsigned long)((x) - PHYS_OFFSET) | PAGE_OFFSET) 266 #define __phys_to_kimg(x) ((unsigned long)((x) + kimage_voffset)) 267 268 /* 269 * Convert a page to/from a physical address 270 */ 271 #define page_to_phys(page) (__pfn_to_phys(page_to_pfn(page))) 272 #define phys_to_page(phys) (pfn_to_page(__phys_to_pfn(phys))) 273 274 /* 275 * Note: Drivers should NOT use these. They are the wrong 276 * translation for translating DMA addresses. Use the driver 277 * DMA support - see dma-mapping.h. 278 */ 279 #define virt_to_phys virt_to_phys 280 static inline phys_addr_t virt_to_phys(const volatile void *x) 281 { 282 return __virt_to_phys((unsigned long)(x)); 283 } 284 285 #define phys_to_virt phys_to_virt 286 static inline void *phys_to_virt(phys_addr_t x) 287 { 288 return (void *)(__phys_to_virt(x)); 289 } 290 291 /* 292 * Drivers should NOT use these either. 293 */ 294 #define __pa(x) __virt_to_phys((unsigned long)(x)) 295 #define __pa_symbol(x) __phys_addr_symbol(RELOC_HIDE((unsigned long)(x), 0)) 296 #define __pa_nodebug(x) __virt_to_phys_nodebug((unsigned long)(x)) 297 #define __va(x) ((void *)__phys_to_virt((phys_addr_t)(x))) 298 #define pfn_to_kaddr(pfn) __va((pfn) << PAGE_SHIFT) 299 #define virt_to_pfn(x) __phys_to_pfn(__virt_to_phys((unsigned long)(x))) 300 #define sym_to_pfn(x) __phys_to_pfn(__pa_symbol(x)) 301 302 /* 303 * virt_to_page(x) convert a _valid_ virtual address to struct page * 304 * virt_addr_valid(x) indicates whether a virtual address is valid 305 */ 306 #define ARCH_PFN_OFFSET ((unsigned long)PHYS_PFN_OFFSET) 307 308 #if !defined(CONFIG_SPARSEMEM_VMEMMAP) || defined(CONFIG_DEBUG_VIRTUAL) 309 #define virt_to_page(x) pfn_to_page(virt_to_pfn(x)) 310 #else 311 #define page_to_virt(x) ({ \ 312 __typeof__(x) __page = x; \ 313 u64 __idx = ((u64)__page - VMEMMAP_START) / sizeof(struct page);\ 314 u64 __addr = PAGE_OFFSET + (__idx * PAGE_SIZE); \ 315 (void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\ 316 }) 317 318 #define virt_to_page(x) ({ \ 319 u64 __idx = (__tag_reset((u64)x) - PAGE_OFFSET) / PAGE_SIZE; \ 320 u64 __addr = VMEMMAP_START + (__idx * sizeof(struct page)); \ 321 (struct page *)__addr; \ 322 }) 323 #endif /* !CONFIG_SPARSEMEM_VMEMMAP || CONFIG_DEBUG_VIRTUAL */ 324 325 #define virt_addr_valid(addr) ({ \ 326 __typeof__(addr) __addr = addr; \ 327 __is_lm_address(__addr) && pfn_valid(virt_to_pfn(__addr)); \ 328 }) 329 330 void dump_mem_limit(void); 331 #endif /* !ASSEMBLY */ 332 333 /* 334 * Given that the GIC architecture permits ITS implementations that can only be 335 * configured with a LPI table address once, GICv3 systems with many CPUs may 336 * end up reserving a lot of different regions after a kexec for their LPI 337 * tables (one per CPU), as we are forced to reuse the same memory after kexec 338 * (and thus reserve it persistently with EFI beforehand) 339 */ 340 #if defined(CONFIG_EFI) && defined(CONFIG_ARM_GIC_V3_ITS) 341 # define INIT_MEMBLOCK_RESERVED_REGIONS (INIT_MEMBLOCK_REGIONS + NR_CPUS + 1) 342 #endif 343 344 #include <asm-generic/memory_model.h> 345 346 #endif /* __ASM_MEMORY_H */ 347