1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Based on arch/arm/include/asm/memory.h 4 * 5 * Copyright (C) 2000-2002 Russell King 6 * Copyright (C) 2012 ARM Ltd. 7 * 8 * Note: this file should not be included by non-asm/.h files 9 */ 10 #ifndef __ASM_MEMORY_H 11 #define __ASM_MEMORY_H 12 13 #include <linux/const.h> 14 #include <linux/sizes.h> 15 #include <asm/page-def.h> 16 17 /* 18 * Size of the PCI I/O space. This must remain a power of two so that 19 * IO_SPACE_LIMIT acts as a mask for the low bits of I/O addresses. 20 */ 21 #define PCI_IO_SIZE SZ_16M 22 23 /* 24 * VMEMMAP_SIZE - allows the whole linear region to be covered by 25 * a struct page array 26 * 27 * If we are configured with a 52-bit kernel VA then our VMEMMAP_SIZE 28 * needs to cover the memory region from the beginning of the 52-bit 29 * PAGE_OFFSET all the way to PAGE_END for 48-bit. This allows us to 30 * keep a constant PAGE_OFFSET and "fallback" to using the higher end 31 * of the VMEMMAP where 52-bit support is not available in hardware. 32 */ 33 #define VMEMMAP_SIZE ((_PAGE_END(VA_BITS_MIN) - PAGE_OFFSET) \ 34 >> (PAGE_SHIFT - STRUCT_PAGE_MAX_SHIFT)) 35 36 /* 37 * PAGE_OFFSET - the virtual address of the start of the linear map, at the 38 * start of the TTBR1 address space. 39 * PAGE_END - the end of the linear map, where all other kernel mappings begin. 40 * KIMAGE_VADDR - the virtual address of the start of the kernel image. 41 * VA_BITS - the maximum number of bits for virtual addresses. 42 */ 43 #define VA_BITS (CONFIG_ARM64_VA_BITS) 44 #define _PAGE_OFFSET(va) (-(UL(1) << (va))) 45 #define PAGE_OFFSET (_PAGE_OFFSET(VA_BITS)) 46 #define KIMAGE_VADDR (MODULES_END) 47 #define BPF_JIT_REGION_START (KASAN_SHADOW_END) 48 #define BPF_JIT_REGION_SIZE (SZ_128M) 49 #define BPF_JIT_REGION_END (BPF_JIT_REGION_START + BPF_JIT_REGION_SIZE) 50 #define MODULES_END (MODULES_VADDR + MODULES_VSIZE) 51 #define MODULES_VADDR (BPF_JIT_REGION_END) 52 #define MODULES_VSIZE (SZ_128M) 53 #define VMEMMAP_START (-VMEMMAP_SIZE - SZ_2M) 54 #define VMEMMAP_END (VMEMMAP_START + VMEMMAP_SIZE) 55 #define PCI_IO_END (VMEMMAP_START - SZ_2M) 56 #define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE) 57 #define FIXADDR_TOP (PCI_IO_START - SZ_2M) 58 59 #if VA_BITS > 48 60 #define VA_BITS_MIN (48) 61 #else 62 #define VA_BITS_MIN (VA_BITS) 63 #endif 64 65 #define _PAGE_END(va) (-(UL(1) << ((va) - 1))) 66 67 #define KERNEL_START _text 68 #define KERNEL_END _end 69 70 /* 71 * Generic and tag-based KASAN require 1/8th and 1/16th of the kernel virtual 72 * address space for the shadow region respectively. They can bloat the stack 73 * significantly, so double the (minimum) stack size when they are in use. 74 */ 75 #ifdef CONFIG_KASAN 76 #define KASAN_SHADOW_OFFSET _AC(CONFIG_KASAN_SHADOW_OFFSET, UL) 77 #define KASAN_SHADOW_END ((UL(1) << (64 - KASAN_SHADOW_SCALE_SHIFT)) \ 78 + KASAN_SHADOW_OFFSET) 79 #define KASAN_THREAD_SHIFT 1 80 #else 81 #define KASAN_THREAD_SHIFT 0 82 #define KASAN_SHADOW_END (_PAGE_END(VA_BITS_MIN)) 83 #endif /* CONFIG_KASAN */ 84 85 #define MIN_THREAD_SHIFT (14 + KASAN_THREAD_SHIFT) 86 87 /* 88 * VMAP'd stacks are allocated at page granularity, so we must ensure that such 89 * stacks are a multiple of page size. 90 */ 91 #if defined(CONFIG_VMAP_STACK) && (MIN_THREAD_SHIFT < PAGE_SHIFT) 92 #define THREAD_SHIFT PAGE_SHIFT 93 #else 94 #define THREAD_SHIFT MIN_THREAD_SHIFT 95 #endif 96 97 #if THREAD_SHIFT >= PAGE_SHIFT 98 #define THREAD_SIZE_ORDER (THREAD_SHIFT - PAGE_SHIFT) 99 #endif 100 101 #define THREAD_SIZE (UL(1) << THREAD_SHIFT) 102 103 /* 104 * By aligning VMAP'd stacks to 2 * THREAD_SIZE, we can detect overflow by 105 * checking sp & (1 << THREAD_SHIFT), which we can do cheaply in the entry 106 * assembly. 107 */ 108 #ifdef CONFIG_VMAP_STACK 109 #define THREAD_ALIGN (2 * THREAD_SIZE) 110 #else 111 #define THREAD_ALIGN THREAD_SIZE 112 #endif 113 114 #define IRQ_STACK_SIZE THREAD_SIZE 115 116 #define OVERFLOW_STACK_SIZE SZ_4K 117 118 /* 119 * Alignment of kernel segments (e.g. .text, .data). 120 * 121 * 4 KB granule: 16 level 3 entries, with contiguous bit 122 * 16 KB granule: 4 level 3 entries, without contiguous bit 123 * 64 KB granule: 1 level 3 entry 124 */ 125 #define SEGMENT_ALIGN SZ_64K 126 127 /* 128 * Memory types available. 129 */ 130 #define MT_DEVICE_nGnRnE 0 131 #define MT_DEVICE_nGnRE 1 132 #define MT_DEVICE_GRE 2 133 #define MT_NORMAL_NC 3 134 #define MT_NORMAL 4 135 #define MT_NORMAL_WT 5 136 137 /* 138 * Memory types for Stage-2 translation 139 */ 140 #define MT_S2_NORMAL 0xf 141 #define MT_S2_DEVICE_nGnRE 0x1 142 143 /* 144 * Memory types for Stage-2 translation when ID_AA64MMFR2_EL1.FWB is 0001 145 * Stage-2 enforces Normal-WB and Device-nGnRE 146 */ 147 #define MT_S2_FWB_NORMAL 6 148 #define MT_S2_FWB_DEVICE_nGnRE 1 149 150 #ifdef CONFIG_ARM64_4K_PAGES 151 #define IOREMAP_MAX_ORDER (PUD_SHIFT) 152 #else 153 #define IOREMAP_MAX_ORDER (PMD_SHIFT) 154 #endif 155 156 #ifndef __ASSEMBLY__ 157 158 #include <linux/bitops.h> 159 #include <linux/compiler.h> 160 #include <linux/mmdebug.h> 161 #include <linux/types.h> 162 #include <asm/bug.h> 163 164 extern u64 vabits_actual; 165 #define PAGE_END (_PAGE_END(vabits_actual)) 166 167 extern s64 physvirt_offset; 168 extern s64 memstart_addr; 169 /* PHYS_OFFSET - the physical address of the start of memory. */ 170 #define PHYS_OFFSET ({ VM_BUG_ON(memstart_addr & 1); memstart_addr; }) 171 172 /* the virtual base of the kernel image (minus TEXT_OFFSET) */ 173 extern u64 kimage_vaddr; 174 175 /* the offset between the kernel virtual and physical mappings */ 176 extern u64 kimage_voffset; 177 178 static inline unsigned long kaslr_offset(void) 179 { 180 return kimage_vaddr - KIMAGE_VADDR; 181 } 182 183 /* 184 * Allow all memory at the discovery stage. We will clip it later. 185 */ 186 #define MIN_MEMBLOCK_ADDR 0 187 #define MAX_MEMBLOCK_ADDR U64_MAX 188 189 /* 190 * PFNs are used to describe any physical page; this means 191 * PFN 0 == physical address 0. 192 * 193 * This is the PFN of the first RAM page in the kernel 194 * direct-mapped view. We assume this is the first page 195 * of RAM in the mem_map as well. 196 */ 197 #define PHYS_PFN_OFFSET (PHYS_OFFSET >> PAGE_SHIFT) 198 199 /* 200 * When dealing with data aborts, watchpoints, or instruction traps we may end 201 * up with a tagged userland pointer. Clear the tag to get a sane pointer to 202 * pass on to access_ok(), for instance. 203 */ 204 #define __untagged_addr(addr) \ 205 ((__force __typeof__(addr))sign_extend64((__force u64)(addr), 55)) 206 207 #define untagged_addr(addr) ({ \ 208 u64 __addr = (__force u64)(addr); \ 209 __addr &= __untagged_addr(__addr); \ 210 (__force __typeof__(addr))__addr; \ 211 }) 212 213 #ifdef CONFIG_KASAN_SW_TAGS 214 #define __tag_shifted(tag) ((u64)(tag) << 56) 215 #define __tag_reset(addr) __untagged_addr(addr) 216 #define __tag_get(addr) (__u8)((u64)(addr) >> 56) 217 #else 218 #define __tag_shifted(tag) 0UL 219 #define __tag_reset(addr) (addr) 220 #define __tag_get(addr) 0 221 #endif /* CONFIG_KASAN_SW_TAGS */ 222 223 static inline const void *__tag_set(const void *addr, u8 tag) 224 { 225 u64 __addr = (u64)addr & ~__tag_shifted(0xff); 226 return (const void *)(__addr | __tag_shifted(tag)); 227 } 228 229 /* 230 * Physical vs virtual RAM address space conversion. These are 231 * private definitions which should NOT be used outside memory.h 232 * files. Use virt_to_phys/phys_to_virt/__pa/__va instead. 233 */ 234 235 236 /* 237 * The linear kernel range starts at the bottom of the virtual address 238 * space. Testing the top bit for the start of the region is a 239 * sufficient check and avoids having to worry about the tag. 240 */ 241 #define __is_lm_address(addr) (!(((u64)addr) & BIT(vabits_actual - 1))) 242 243 #define __lm_to_phys(addr) (((addr) + physvirt_offset)) 244 #define __kimg_to_phys(addr) ((addr) - kimage_voffset) 245 246 #define __virt_to_phys_nodebug(x) ({ \ 247 phys_addr_t __x = (phys_addr_t)(__tag_reset(x)); \ 248 __is_lm_address(__x) ? __lm_to_phys(__x) : __kimg_to_phys(__x); \ 249 }) 250 251 #define __pa_symbol_nodebug(x) __kimg_to_phys((phys_addr_t)(x)) 252 253 #ifdef CONFIG_DEBUG_VIRTUAL 254 extern phys_addr_t __virt_to_phys(unsigned long x); 255 extern phys_addr_t __phys_addr_symbol(unsigned long x); 256 #else 257 #define __virt_to_phys(x) __virt_to_phys_nodebug(x) 258 #define __phys_addr_symbol(x) __pa_symbol_nodebug(x) 259 #endif /* CONFIG_DEBUG_VIRTUAL */ 260 261 #define __phys_to_virt(x) ((unsigned long)((x) - physvirt_offset)) 262 #define __phys_to_kimg(x) ((unsigned long)((x) + kimage_voffset)) 263 264 /* 265 * Convert a page to/from a physical address 266 */ 267 #define page_to_phys(page) (__pfn_to_phys(page_to_pfn(page))) 268 #define phys_to_page(phys) (pfn_to_page(__phys_to_pfn(phys))) 269 270 /* 271 * Note: Drivers should NOT use these. They are the wrong 272 * translation for translating DMA addresses. Use the driver 273 * DMA support - see dma-mapping.h. 274 */ 275 #define virt_to_phys virt_to_phys 276 static inline phys_addr_t virt_to_phys(const volatile void *x) 277 { 278 return __virt_to_phys((unsigned long)(x)); 279 } 280 281 #define phys_to_virt phys_to_virt 282 static inline void *phys_to_virt(phys_addr_t x) 283 { 284 return (void *)(__phys_to_virt(x)); 285 } 286 287 /* 288 * Drivers should NOT use these either. 289 */ 290 #define __pa(x) __virt_to_phys((unsigned long)(x)) 291 #define __pa_symbol(x) __phys_addr_symbol(RELOC_HIDE((unsigned long)(x), 0)) 292 #define __pa_nodebug(x) __virt_to_phys_nodebug((unsigned long)(x)) 293 #define __va(x) ((void *)__phys_to_virt((phys_addr_t)(x))) 294 #define pfn_to_kaddr(pfn) __va((pfn) << PAGE_SHIFT) 295 #define virt_to_pfn(x) __phys_to_pfn(__virt_to_phys((unsigned long)(x))) 296 #define sym_to_pfn(x) __phys_to_pfn(__pa_symbol(x)) 297 298 /* 299 * virt_to_page(x) convert a _valid_ virtual address to struct page * 300 * virt_addr_valid(x) indicates whether a virtual address is valid 301 */ 302 #define ARCH_PFN_OFFSET ((unsigned long)PHYS_PFN_OFFSET) 303 304 #if !defined(CONFIG_SPARSEMEM_VMEMMAP) || defined(CONFIG_DEBUG_VIRTUAL) 305 #define virt_to_page(x) pfn_to_page(virt_to_pfn(x)) 306 #else 307 #define page_to_virt(x) ({ \ 308 __typeof__(x) __page = x; \ 309 u64 __idx = ((u64)__page - VMEMMAP_START) / sizeof(struct page);\ 310 u64 __addr = PAGE_OFFSET + (__idx * PAGE_SIZE); \ 311 (void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\ 312 }) 313 314 #define virt_to_page(x) ({ \ 315 u64 __idx = (__tag_reset((u64)x) - PAGE_OFFSET) / PAGE_SIZE; \ 316 u64 __addr = VMEMMAP_START + (__idx * sizeof(struct page)); \ 317 (struct page *)__addr; \ 318 }) 319 #endif /* !CONFIG_SPARSEMEM_VMEMMAP || CONFIG_DEBUG_VIRTUAL */ 320 321 #define virt_addr_valid(addr) ({ \ 322 __typeof__(addr) __addr = addr; \ 323 __is_lm_address(__addr) && pfn_valid(virt_to_pfn(__addr)); \ 324 }) 325 326 void dump_mem_limit(void); 327 #endif /* !ASSEMBLY */ 328 329 /* 330 * Given that the GIC architecture permits ITS implementations that can only be 331 * configured with a LPI table address once, GICv3 systems with many CPUs may 332 * end up reserving a lot of different regions after a kexec for their LPI 333 * tables (one per CPU), as we are forced to reuse the same memory after kexec 334 * (and thus reserve it persistently with EFI beforehand) 335 */ 336 #if defined(CONFIG_EFI) && defined(CONFIG_ARM_GIC_V3_ITS) 337 # define INIT_MEMBLOCK_RESERVED_REGIONS (INIT_MEMBLOCK_REGIONS + NR_CPUS + 1) 338 #endif 339 340 #include <asm-generic/memory_model.h> 341 342 #endif /* __ASM_MEMORY_H */ 343