xref: /openbmc/linux/arch/arm64/include/asm/memory.h (revision 276e552e)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Based on arch/arm/include/asm/memory.h
4  *
5  * Copyright (C) 2000-2002 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  *
8  * Note: this file should not be included by non-asm/.h files
9  */
10 #ifndef __ASM_MEMORY_H
11 #define __ASM_MEMORY_H
12 
13 #include <linux/const.h>
14 #include <linux/sizes.h>
15 #include <asm/page-def.h>
16 
17 /*
18  * Size of the PCI I/O space. This must remain a power of two so that
19  * IO_SPACE_LIMIT acts as a mask for the low bits of I/O addresses.
20  */
21 #define PCI_IO_SIZE		SZ_16M
22 
23 /*
24  * VMEMMAP_SIZE - allows the whole linear region to be covered by
25  *                a struct page array
26  *
27  * If we are configured with a 52-bit kernel VA then our VMEMMAP_SIZE
28  * needs to cover the memory region from the beginning of the 52-bit
29  * PAGE_OFFSET all the way to PAGE_END for 48-bit. This allows us to
30  * keep a constant PAGE_OFFSET and "fallback" to using the higher end
31  * of the VMEMMAP where 52-bit support is not available in hardware.
32  */
33 #define VMEMMAP_SHIFT	(PAGE_SHIFT - STRUCT_PAGE_MAX_SHIFT)
34 #define VMEMMAP_SIZE	((_PAGE_END(VA_BITS_MIN) - PAGE_OFFSET) >> VMEMMAP_SHIFT)
35 
36 /*
37  * PAGE_OFFSET - the virtual address of the start of the linear map, at the
38  *               start of the TTBR1 address space.
39  * PAGE_END - the end of the linear map, where all other kernel mappings begin.
40  * KIMAGE_VADDR - the virtual address of the start of the kernel image.
41  * VA_BITS - the maximum number of bits for virtual addresses.
42  */
43 #define VA_BITS			(CONFIG_ARM64_VA_BITS)
44 #define _PAGE_OFFSET(va)	(-(UL(1) << (va)))
45 #define PAGE_OFFSET		(_PAGE_OFFSET(VA_BITS))
46 #define KIMAGE_VADDR		(MODULES_END)
47 #define BPF_JIT_REGION_START	(_PAGE_END(VA_BITS_MIN))
48 #define BPF_JIT_REGION_SIZE	(SZ_128M)
49 #define BPF_JIT_REGION_END	(BPF_JIT_REGION_START + BPF_JIT_REGION_SIZE)
50 #define MODULES_END		(MODULES_VADDR + MODULES_VSIZE)
51 #define MODULES_VADDR		(BPF_JIT_REGION_END)
52 #define MODULES_VSIZE		(SZ_128M)
53 #define VMEMMAP_START		(-(UL(1) << (VA_BITS - VMEMMAP_SHIFT)))
54 #define VMEMMAP_END		(VMEMMAP_START + VMEMMAP_SIZE)
55 #define PCI_IO_END		(VMEMMAP_START - SZ_8M)
56 #define PCI_IO_START		(PCI_IO_END - PCI_IO_SIZE)
57 #define FIXADDR_TOP		(VMEMMAP_START - SZ_32M)
58 
59 #if VA_BITS > 48
60 #define VA_BITS_MIN		(48)
61 #else
62 #define VA_BITS_MIN		(VA_BITS)
63 #endif
64 
65 #define _PAGE_END(va)		(-(UL(1) << ((va) - 1)))
66 
67 #define KERNEL_START		_text
68 #define KERNEL_END		_end
69 
70 /*
71  * Generic and tag-based KASAN require 1/8th and 1/16th of the kernel virtual
72  * address space for the shadow region respectively. They can bloat the stack
73  * significantly, so double the (minimum) stack size when they are in use.
74  */
75 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
76 #define KASAN_SHADOW_OFFSET	_AC(CONFIG_KASAN_SHADOW_OFFSET, UL)
77 #define KASAN_SHADOW_END	((UL(1) << (64 - KASAN_SHADOW_SCALE_SHIFT)) \
78 					+ KASAN_SHADOW_OFFSET)
79 #define PAGE_END		(KASAN_SHADOW_END - (1UL << (vabits_actual - KASAN_SHADOW_SCALE_SHIFT)))
80 #define KASAN_THREAD_SHIFT	1
81 #else
82 #define KASAN_THREAD_SHIFT	0
83 #define PAGE_END		(_PAGE_END(VA_BITS_MIN))
84 #endif /* CONFIG_KASAN */
85 
86 #define MIN_THREAD_SHIFT	(14 + KASAN_THREAD_SHIFT)
87 
88 /*
89  * VMAP'd stacks are allocated at page granularity, so we must ensure that such
90  * stacks are a multiple of page size.
91  */
92 #if defined(CONFIG_VMAP_STACK) && (MIN_THREAD_SHIFT < PAGE_SHIFT)
93 #define THREAD_SHIFT		PAGE_SHIFT
94 #else
95 #define THREAD_SHIFT		MIN_THREAD_SHIFT
96 #endif
97 
98 #if THREAD_SHIFT >= PAGE_SHIFT
99 #define THREAD_SIZE_ORDER	(THREAD_SHIFT - PAGE_SHIFT)
100 #endif
101 
102 #define THREAD_SIZE		(UL(1) << THREAD_SHIFT)
103 
104 /*
105  * By aligning VMAP'd stacks to 2 * THREAD_SIZE, we can detect overflow by
106  * checking sp & (1 << THREAD_SHIFT), which we can do cheaply in the entry
107  * assembly.
108  */
109 #ifdef CONFIG_VMAP_STACK
110 #define THREAD_ALIGN		(2 * THREAD_SIZE)
111 #else
112 #define THREAD_ALIGN		THREAD_SIZE
113 #endif
114 
115 #define IRQ_STACK_SIZE		THREAD_SIZE
116 
117 #define OVERFLOW_STACK_SIZE	SZ_4K
118 
119 /*
120  * Alignment of kernel segments (e.g. .text, .data).
121  *
122  *  4 KB granule:  16 level 3 entries, with contiguous bit
123  * 16 KB granule:   4 level 3 entries, without contiguous bit
124  * 64 KB granule:   1 level 3 entry
125  */
126 #define SEGMENT_ALIGN		SZ_64K
127 
128 /*
129  * Memory types available.
130  *
131  * IMPORTANT: MT_NORMAL must be index 0 since vm_get_page_prot() may 'or' in
132  *	      the MT_NORMAL_TAGGED memory type for PROT_MTE mappings. Note
133  *	      that protection_map[] only contains MT_NORMAL attributes.
134  */
135 #define MT_NORMAL		0
136 #define MT_NORMAL_TAGGED	1
137 #define MT_NORMAL_NC		2
138 #define MT_NORMAL_WT		3
139 #define MT_DEVICE_nGnRnE	4
140 #define MT_DEVICE_nGnRE		5
141 #define MT_DEVICE_GRE		6
142 
143 /*
144  * Memory types for Stage-2 translation
145  */
146 #define MT_S2_NORMAL		0xf
147 #define MT_S2_DEVICE_nGnRE	0x1
148 
149 /*
150  * Memory types for Stage-2 translation when ID_AA64MMFR2_EL1.FWB is 0001
151  * Stage-2 enforces Normal-WB and Device-nGnRE
152  */
153 #define MT_S2_FWB_NORMAL	6
154 #define MT_S2_FWB_DEVICE_nGnRE	1
155 
156 #ifdef CONFIG_ARM64_4K_PAGES
157 #define IOREMAP_MAX_ORDER	(PUD_SHIFT)
158 #else
159 #define IOREMAP_MAX_ORDER	(PMD_SHIFT)
160 #endif
161 
162 /*
163  *  Open-coded (swapper_pg_dir - reserved_pg_dir) as this cannot be calculated
164  *  until link time.
165  */
166 #define RESERVED_SWAPPER_OFFSET	(PAGE_SIZE)
167 
168 /*
169  *  Open-coded (swapper_pg_dir - tramp_pg_dir) as this cannot be calculated
170  *  until link time.
171  */
172 #define TRAMP_SWAPPER_OFFSET	(2 * PAGE_SIZE)
173 
174 #ifndef __ASSEMBLY__
175 
176 #include <linux/bitops.h>
177 #include <linux/compiler.h>
178 #include <linux/mmdebug.h>
179 #include <linux/types.h>
180 #include <asm/bug.h>
181 
182 extern u64			vabits_actual;
183 
184 extern s64			memstart_addr;
185 /* PHYS_OFFSET - the physical address of the start of memory. */
186 #define PHYS_OFFSET		({ VM_BUG_ON(memstart_addr & 1); memstart_addr; })
187 
188 /* the virtual base of the kernel image */
189 extern u64			kimage_vaddr;
190 
191 /* the offset between the kernel virtual and physical mappings */
192 extern u64			kimage_voffset;
193 
194 static inline unsigned long kaslr_offset(void)
195 {
196 	return kimage_vaddr - KIMAGE_VADDR;
197 }
198 
199 /*
200  * Allow all memory at the discovery stage. We will clip it later.
201  */
202 #define MIN_MEMBLOCK_ADDR	0
203 #define MAX_MEMBLOCK_ADDR	U64_MAX
204 
205 /*
206  * PFNs are used to describe any physical page; this means
207  * PFN 0 == physical address 0.
208  *
209  * This is the PFN of the first RAM page in the kernel
210  * direct-mapped view.  We assume this is the first page
211  * of RAM in the mem_map as well.
212  */
213 #define PHYS_PFN_OFFSET	(PHYS_OFFSET >> PAGE_SHIFT)
214 
215 /*
216  * When dealing with data aborts, watchpoints, or instruction traps we may end
217  * up with a tagged userland pointer. Clear the tag to get a sane pointer to
218  * pass on to access_ok(), for instance.
219  */
220 #define __untagged_addr(addr)	\
221 	((__force __typeof__(addr))sign_extend64((__force u64)(addr), 55))
222 
223 #define untagged_addr(addr)	({					\
224 	u64 __addr = (__force u64)(addr);					\
225 	__addr &= __untagged_addr(__addr);				\
226 	(__force __typeof__(addr))__addr;				\
227 })
228 
229 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
230 #define __tag_shifted(tag)	((u64)(tag) << 56)
231 #define __tag_reset(addr)	__untagged_addr(addr)
232 #define __tag_get(addr)		(__u8)((u64)(addr) >> 56)
233 #else
234 #define __tag_shifted(tag)	0UL
235 #define __tag_reset(addr)	(addr)
236 #define __tag_get(addr)		0
237 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
238 
239 static inline const void *__tag_set(const void *addr, u8 tag)
240 {
241 	u64 __addr = (u64)addr & ~__tag_shifted(0xff);
242 	return (const void *)(__addr | __tag_shifted(tag));
243 }
244 
245 #ifdef CONFIG_KASAN_HW_TAGS
246 #define arch_enable_tagging_sync()		mte_enable_kernel_sync()
247 #define arch_enable_tagging_async()		mte_enable_kernel_async()
248 #define arch_set_tagging_report_once(state)	mte_set_report_once(state)
249 #define arch_force_async_tag_fault()		mte_check_tfsr_exit()
250 #define arch_init_tags(max_tag)			mte_init_tags(max_tag)
251 #define arch_get_random_tag()			mte_get_random_tag()
252 #define arch_get_mem_tag(addr)			mte_get_mem_tag(addr)
253 #define arch_set_mem_tag_range(addr, size, tag, init)	\
254 			mte_set_mem_tag_range((addr), (size), (tag), (init))
255 #endif /* CONFIG_KASAN_HW_TAGS */
256 
257 /*
258  * Physical vs virtual RAM address space conversion.  These are
259  * private definitions which should NOT be used outside memory.h
260  * files.  Use virt_to_phys/phys_to_virt/__pa/__va instead.
261  */
262 
263 
264 /*
265  * Check whether an arbitrary address is within the linear map, which
266  * lives in the [PAGE_OFFSET, PAGE_END) interval at the bottom of the
267  * kernel's TTBR1 address range.
268  */
269 #define __is_lm_address(addr)	(((u64)(addr) - PAGE_OFFSET) < (PAGE_END - PAGE_OFFSET))
270 
271 #define __lm_to_phys(addr)	(((addr) - PAGE_OFFSET) + PHYS_OFFSET)
272 #define __kimg_to_phys(addr)	((addr) - kimage_voffset)
273 
274 #define __virt_to_phys_nodebug(x) ({					\
275 	phys_addr_t __x = (phys_addr_t)(__tag_reset(x));		\
276 	__is_lm_address(__x) ? __lm_to_phys(__x) : __kimg_to_phys(__x);	\
277 })
278 
279 #define __pa_symbol_nodebug(x)	__kimg_to_phys((phys_addr_t)(x))
280 
281 #ifdef CONFIG_DEBUG_VIRTUAL
282 extern phys_addr_t __virt_to_phys(unsigned long x);
283 extern phys_addr_t __phys_addr_symbol(unsigned long x);
284 #else
285 #define __virt_to_phys(x)	__virt_to_phys_nodebug(x)
286 #define __phys_addr_symbol(x)	__pa_symbol_nodebug(x)
287 #endif /* CONFIG_DEBUG_VIRTUAL */
288 
289 #define __phys_to_virt(x)	((unsigned long)((x) - PHYS_OFFSET) | PAGE_OFFSET)
290 #define __phys_to_kimg(x)	((unsigned long)((x) + kimage_voffset))
291 
292 /*
293  * Convert a page to/from a physical address
294  */
295 #define page_to_phys(page)	(__pfn_to_phys(page_to_pfn(page)))
296 #define phys_to_page(phys)	(pfn_to_page(__phys_to_pfn(phys)))
297 
298 /*
299  * Note: Drivers should NOT use these.  They are the wrong
300  * translation for translating DMA addresses.  Use the driver
301  * DMA support - see dma-mapping.h.
302  */
303 #define virt_to_phys virt_to_phys
304 static inline phys_addr_t virt_to_phys(const volatile void *x)
305 {
306 	return __virt_to_phys((unsigned long)(x));
307 }
308 
309 #define phys_to_virt phys_to_virt
310 static inline void *phys_to_virt(phys_addr_t x)
311 {
312 	return (void *)(__phys_to_virt(x));
313 }
314 
315 /*
316  * Drivers should NOT use these either.
317  */
318 #define __pa(x)			__virt_to_phys((unsigned long)(x))
319 #define __pa_symbol(x)		__phys_addr_symbol(RELOC_HIDE((unsigned long)(x), 0))
320 #define __pa_nodebug(x)		__virt_to_phys_nodebug((unsigned long)(x))
321 #define __va(x)			((void *)__phys_to_virt((phys_addr_t)(x)))
322 #define pfn_to_kaddr(pfn)	__va((pfn) << PAGE_SHIFT)
323 #define virt_to_pfn(x)		__phys_to_pfn(__virt_to_phys((unsigned long)(x)))
324 #define sym_to_pfn(x)		__phys_to_pfn(__pa_symbol(x))
325 
326 #ifdef CONFIG_CFI_CLANG
327 /*
328  * With CONFIG_CFI_CLANG, the compiler replaces function address
329  * references with the address of the function's CFI jump table
330  * entry. The function_nocfi macro always returns the address of the
331  * actual function instead.
332  */
333 #define function_nocfi(x) ({						\
334 	void *addr;							\
335 	asm("adrp %0, " __stringify(x) "\n\t"				\
336 	    "add  %0, %0, :lo12:" __stringify(x)			\
337 	    : "=r" (addr));						\
338 	addr;								\
339 })
340 #endif
341 
342 /*
343  *  virt_to_page(x)	convert a _valid_ virtual address to struct page *
344  *  virt_addr_valid(x)	indicates whether a virtual address is valid
345  */
346 #define ARCH_PFN_OFFSET		((unsigned long)PHYS_PFN_OFFSET)
347 
348 #if defined(CONFIG_DEBUG_VIRTUAL)
349 #define page_to_virt(x)	({						\
350 	__typeof__(x) __page = x;					\
351 	void *__addr = __va(page_to_phys(__page));			\
352 	(void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\
353 })
354 #define virt_to_page(x)		pfn_to_page(virt_to_pfn(x))
355 #else
356 #define page_to_virt(x)	({						\
357 	__typeof__(x) __page = x;					\
358 	u64 __idx = ((u64)__page - VMEMMAP_START) / sizeof(struct page);\
359 	u64 __addr = PAGE_OFFSET + (__idx * PAGE_SIZE);			\
360 	(void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\
361 })
362 
363 #define virt_to_page(x)	({						\
364 	u64 __idx = (__tag_reset((u64)x) - PAGE_OFFSET) / PAGE_SIZE;	\
365 	u64 __addr = VMEMMAP_START + (__idx * sizeof(struct page));	\
366 	(struct page *)__addr;						\
367 })
368 #endif /* CONFIG_DEBUG_VIRTUAL */
369 
370 #define virt_addr_valid(addr)	({					\
371 	__typeof__(addr) __addr = __tag_reset(addr);			\
372 	__is_lm_address(__addr) && pfn_valid(virt_to_pfn(__addr));	\
373 })
374 
375 void dump_mem_limit(void);
376 #endif /* !ASSEMBLY */
377 
378 /*
379  * Given that the GIC architecture permits ITS implementations that can only be
380  * configured with a LPI table address once, GICv3 systems with many CPUs may
381  * end up reserving a lot of different regions after a kexec for their LPI
382  * tables (one per CPU), as we are forced to reuse the same memory after kexec
383  * (and thus reserve it persistently with EFI beforehand)
384  */
385 #if defined(CONFIG_EFI) && defined(CONFIG_ARM_GIC_V3_ITS)
386 # define INIT_MEMBLOCK_RESERVED_REGIONS	(INIT_MEMBLOCK_REGIONS + NR_CPUS + 1)
387 #endif
388 
389 #include <asm-generic/memory_model.h>
390 
391 #endif /* __ASM_MEMORY_H */
392