1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Based on arch/arm/include/asm/memory.h 4 * 5 * Copyright (C) 2000-2002 Russell King 6 * Copyright (C) 2012 ARM Ltd. 7 * 8 * Note: this file should not be included by non-asm/.h files 9 */ 10 #ifndef __ASM_MEMORY_H 11 #define __ASM_MEMORY_H 12 13 #include <linux/compiler.h> 14 #include <linux/const.h> 15 #include <linux/sizes.h> 16 #include <linux/types.h> 17 #include <asm/bug.h> 18 #include <asm/page-def.h> 19 20 /* 21 * Size of the PCI I/O space. This must remain a power of two so that 22 * IO_SPACE_LIMIT acts as a mask for the low bits of I/O addresses. 23 */ 24 #define PCI_IO_SIZE SZ_16M 25 26 /* 27 * VMEMMAP_SIZE - allows the whole linear region to be covered by 28 * a struct page array 29 * 30 * If we are configured with a 52-bit kernel VA then our VMEMMAP_SIZE 31 * needs to cover the memory region from the beginning of the 52-bit 32 * PAGE_OFFSET all the way to PAGE_END for 48-bit. This allows us to 33 * keep a constant PAGE_OFFSET and "fallback" to using the higher end 34 * of the VMEMMAP where 52-bit support is not available in hardware. 35 */ 36 #define VMEMMAP_SIZE ((_PAGE_END(VA_BITS_MIN) - PAGE_OFFSET) \ 37 >> (PAGE_SHIFT - STRUCT_PAGE_MAX_SHIFT)) 38 39 /* 40 * PAGE_OFFSET - the virtual address of the start of the linear map, at the 41 * start of the TTBR1 address space. 42 * PAGE_END - the end of the linear map, where all other kernel mappings begin. 43 * KIMAGE_VADDR - the virtual address of the start of the kernel image. 44 * VA_BITS - the maximum number of bits for virtual addresses. 45 */ 46 #define VA_BITS (CONFIG_ARM64_VA_BITS) 47 #define _PAGE_OFFSET(va) (-(UL(1) << (va))) 48 #define PAGE_OFFSET (_PAGE_OFFSET(VA_BITS)) 49 #define KIMAGE_VADDR (MODULES_END) 50 #define BPF_JIT_REGION_START (KASAN_SHADOW_END) 51 #define BPF_JIT_REGION_SIZE (SZ_128M) 52 #define BPF_JIT_REGION_END (BPF_JIT_REGION_START + BPF_JIT_REGION_SIZE) 53 #define MODULES_END (MODULES_VADDR + MODULES_VSIZE) 54 #define MODULES_VADDR (BPF_JIT_REGION_END) 55 #define MODULES_VSIZE (SZ_128M) 56 #define VMEMMAP_START (-VMEMMAP_SIZE - SZ_2M) 57 #define VMEMMAP_END (VMEMMAP_START + VMEMMAP_SIZE) 58 #define PCI_IO_END (VMEMMAP_START - SZ_2M) 59 #define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE) 60 #define FIXADDR_TOP (PCI_IO_START - SZ_2M) 61 62 #if VA_BITS > 48 63 #define VA_BITS_MIN (48) 64 #else 65 #define VA_BITS_MIN (VA_BITS) 66 #endif 67 68 #define _PAGE_END(va) (-(UL(1) << ((va) - 1))) 69 70 #define KERNEL_START _text 71 #define KERNEL_END _end 72 73 /* 74 * Generic and tag-based KASAN require 1/8th and 1/16th of the kernel virtual 75 * address space for the shadow region respectively. They can bloat the stack 76 * significantly, so double the (minimum) stack size when they are in use. 77 */ 78 #ifdef CONFIG_KASAN 79 #define KASAN_SHADOW_OFFSET _AC(CONFIG_KASAN_SHADOW_OFFSET, UL) 80 #define KASAN_SHADOW_END ((UL(1) << (64 - KASAN_SHADOW_SCALE_SHIFT)) \ 81 + KASAN_SHADOW_OFFSET) 82 #define KASAN_THREAD_SHIFT 1 83 #else 84 #define KASAN_THREAD_SHIFT 0 85 #define KASAN_SHADOW_END (_PAGE_END(VA_BITS_MIN)) 86 #endif /* CONFIG_KASAN */ 87 88 #define MIN_THREAD_SHIFT (14 + KASAN_THREAD_SHIFT) 89 90 /* 91 * VMAP'd stacks are allocated at page granularity, so we must ensure that such 92 * stacks are a multiple of page size. 93 */ 94 #if defined(CONFIG_VMAP_STACK) && (MIN_THREAD_SHIFT < PAGE_SHIFT) 95 #define THREAD_SHIFT PAGE_SHIFT 96 #else 97 #define THREAD_SHIFT MIN_THREAD_SHIFT 98 #endif 99 100 #if THREAD_SHIFT >= PAGE_SHIFT 101 #define THREAD_SIZE_ORDER (THREAD_SHIFT - PAGE_SHIFT) 102 #endif 103 104 #define THREAD_SIZE (UL(1) << THREAD_SHIFT) 105 106 /* 107 * By aligning VMAP'd stacks to 2 * THREAD_SIZE, we can detect overflow by 108 * checking sp & (1 << THREAD_SHIFT), which we can do cheaply in the entry 109 * assembly. 110 */ 111 #ifdef CONFIG_VMAP_STACK 112 #define THREAD_ALIGN (2 * THREAD_SIZE) 113 #else 114 #define THREAD_ALIGN THREAD_SIZE 115 #endif 116 117 #define IRQ_STACK_SIZE THREAD_SIZE 118 119 #define OVERFLOW_STACK_SIZE SZ_4K 120 121 /* 122 * Alignment of kernel segments (e.g. .text, .data). 123 * 124 * 4 KB granule: 16 level 3 entries, with contiguous bit 125 * 16 KB granule: 4 level 3 entries, without contiguous bit 126 * 64 KB granule: 1 level 3 entry 127 */ 128 #define SEGMENT_ALIGN SZ_64K 129 130 /* 131 * Memory types available. 132 */ 133 #define MT_DEVICE_nGnRnE 0 134 #define MT_DEVICE_nGnRE 1 135 #define MT_DEVICE_GRE 2 136 #define MT_NORMAL_NC 3 137 #define MT_NORMAL 4 138 #define MT_NORMAL_WT 5 139 140 /* 141 * Memory types for Stage-2 translation 142 */ 143 #define MT_S2_NORMAL 0xf 144 #define MT_S2_DEVICE_nGnRE 0x1 145 146 /* 147 * Memory types for Stage-2 translation when ID_AA64MMFR2_EL1.FWB is 0001 148 * Stage-2 enforces Normal-WB and Device-nGnRE 149 */ 150 #define MT_S2_FWB_NORMAL 6 151 #define MT_S2_FWB_DEVICE_nGnRE 1 152 153 #ifdef CONFIG_ARM64_4K_PAGES 154 #define IOREMAP_MAX_ORDER (PUD_SHIFT) 155 #else 156 #define IOREMAP_MAX_ORDER (PMD_SHIFT) 157 #endif 158 159 #ifndef __ASSEMBLY__ 160 extern u64 vabits_actual; 161 #define PAGE_END (_PAGE_END(vabits_actual)) 162 163 #include <linux/bitops.h> 164 #include <linux/mmdebug.h> 165 166 extern s64 physvirt_offset; 167 extern s64 memstart_addr; 168 /* PHYS_OFFSET - the physical address of the start of memory. */ 169 #define PHYS_OFFSET ({ VM_BUG_ON(memstart_addr & 1); memstart_addr; }) 170 171 /* the virtual base of the kernel image (minus TEXT_OFFSET) */ 172 extern u64 kimage_vaddr; 173 174 /* the offset between the kernel virtual and physical mappings */ 175 extern u64 kimage_voffset; 176 177 static inline unsigned long kaslr_offset(void) 178 { 179 return kimage_vaddr - KIMAGE_VADDR; 180 } 181 182 /* 183 * Allow all memory at the discovery stage. We will clip it later. 184 */ 185 #define MIN_MEMBLOCK_ADDR 0 186 #define MAX_MEMBLOCK_ADDR U64_MAX 187 188 /* 189 * PFNs are used to describe any physical page; this means 190 * PFN 0 == physical address 0. 191 * 192 * This is the PFN of the first RAM page in the kernel 193 * direct-mapped view. We assume this is the first page 194 * of RAM in the mem_map as well. 195 */ 196 #define PHYS_PFN_OFFSET (PHYS_OFFSET >> PAGE_SHIFT) 197 198 /* 199 * When dealing with data aborts, watchpoints, or instruction traps we may end 200 * up with a tagged userland pointer. Clear the tag to get a sane pointer to 201 * pass on to access_ok(), for instance. 202 */ 203 #define __untagged_addr(addr) \ 204 ((__force __typeof__(addr))sign_extend64((__force u64)(addr), 55)) 205 206 #define untagged_addr(addr) ({ \ 207 u64 __addr = (__force u64)(addr); \ 208 __addr &= __untagged_addr(__addr); \ 209 (__force __typeof__(addr))__addr; \ 210 }) 211 212 #ifdef CONFIG_KASAN_SW_TAGS 213 #define __tag_shifted(tag) ((u64)(tag) << 56) 214 #define __tag_reset(addr) __untagged_addr(addr) 215 #define __tag_get(addr) (__u8)((u64)(addr) >> 56) 216 #else 217 #define __tag_shifted(tag) 0UL 218 #define __tag_reset(addr) (addr) 219 #define __tag_get(addr) 0 220 #endif /* CONFIG_KASAN_SW_TAGS */ 221 222 static inline const void *__tag_set(const void *addr, u8 tag) 223 { 224 u64 __addr = (u64)addr & ~__tag_shifted(0xff); 225 return (const void *)(__addr | __tag_shifted(tag)); 226 } 227 228 /* 229 * Physical vs virtual RAM address space conversion. These are 230 * private definitions which should NOT be used outside memory.h 231 * files. Use virt_to_phys/phys_to_virt/__pa/__va instead. 232 */ 233 234 235 /* 236 * The linear kernel range starts at the bottom of the virtual address 237 * space. Testing the top bit for the start of the region is a 238 * sufficient check and avoids having to worry about the tag. 239 */ 240 #define __is_lm_address(addr) (!(((u64)addr) & BIT(vabits_actual - 1))) 241 242 #define __lm_to_phys(addr) (((addr) + physvirt_offset)) 243 #define __kimg_to_phys(addr) ((addr) - kimage_voffset) 244 245 #define __virt_to_phys_nodebug(x) ({ \ 246 phys_addr_t __x = (phys_addr_t)(__tag_reset(x)); \ 247 __is_lm_address(__x) ? __lm_to_phys(__x) : __kimg_to_phys(__x); \ 248 }) 249 250 #define __pa_symbol_nodebug(x) __kimg_to_phys((phys_addr_t)(x)) 251 252 #ifdef CONFIG_DEBUG_VIRTUAL 253 extern phys_addr_t __virt_to_phys(unsigned long x); 254 extern phys_addr_t __phys_addr_symbol(unsigned long x); 255 #else 256 #define __virt_to_phys(x) __virt_to_phys_nodebug(x) 257 #define __phys_addr_symbol(x) __pa_symbol_nodebug(x) 258 #endif /* CONFIG_DEBUG_VIRTUAL */ 259 260 #define __phys_to_virt(x) ((unsigned long)((x) - physvirt_offset)) 261 #define __phys_to_kimg(x) ((unsigned long)((x) + kimage_voffset)) 262 263 /* 264 * Convert a page to/from a physical address 265 */ 266 #define page_to_phys(page) (__pfn_to_phys(page_to_pfn(page))) 267 #define phys_to_page(phys) (pfn_to_page(__phys_to_pfn(phys))) 268 269 /* 270 * Note: Drivers should NOT use these. They are the wrong 271 * translation for translating DMA addresses. Use the driver 272 * DMA support - see dma-mapping.h. 273 */ 274 #define virt_to_phys virt_to_phys 275 static inline phys_addr_t virt_to_phys(const volatile void *x) 276 { 277 return __virt_to_phys((unsigned long)(x)); 278 } 279 280 #define phys_to_virt phys_to_virt 281 static inline void *phys_to_virt(phys_addr_t x) 282 { 283 return (void *)(__phys_to_virt(x)); 284 } 285 286 /* 287 * Drivers should NOT use these either. 288 */ 289 #define __pa(x) __virt_to_phys((unsigned long)(x)) 290 #define __pa_symbol(x) __phys_addr_symbol(RELOC_HIDE((unsigned long)(x), 0)) 291 #define __pa_nodebug(x) __virt_to_phys_nodebug((unsigned long)(x)) 292 #define __va(x) ((void *)__phys_to_virt((phys_addr_t)(x))) 293 #define pfn_to_kaddr(pfn) __va((pfn) << PAGE_SHIFT) 294 #define virt_to_pfn(x) __phys_to_pfn(__virt_to_phys((unsigned long)(x))) 295 #define sym_to_pfn(x) __phys_to_pfn(__pa_symbol(x)) 296 297 /* 298 * virt_to_page(x) convert a _valid_ virtual address to struct page * 299 * virt_addr_valid(x) indicates whether a virtual address is valid 300 */ 301 #define ARCH_PFN_OFFSET ((unsigned long)PHYS_PFN_OFFSET) 302 303 #if !defined(CONFIG_SPARSEMEM_VMEMMAP) || defined(CONFIG_DEBUG_VIRTUAL) 304 #define virt_to_page(x) pfn_to_page(virt_to_pfn(x)) 305 #else 306 #define page_to_virt(x) ({ \ 307 __typeof__(x) __page = x; \ 308 u64 __idx = ((u64)__page - VMEMMAP_START) / sizeof(struct page);\ 309 u64 __addr = PAGE_OFFSET + (__idx * PAGE_SIZE); \ 310 (void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\ 311 }) 312 313 #define virt_to_page(x) ({ \ 314 u64 __idx = (__tag_reset((u64)x) - PAGE_OFFSET) / PAGE_SIZE; \ 315 u64 __addr = VMEMMAP_START + (__idx * sizeof(struct page)); \ 316 (struct page *)__addr; \ 317 }) 318 #endif /* !CONFIG_SPARSEMEM_VMEMMAP || CONFIG_DEBUG_VIRTUAL */ 319 320 #define virt_addr_valid(addr) ({ \ 321 __typeof__(addr) __addr = addr; \ 322 __is_lm_address(__addr) && pfn_valid(virt_to_pfn(__addr)); \ 323 }) 324 325 #endif /* !ASSEMBLY */ 326 327 /* 328 * Given that the GIC architecture permits ITS implementations that can only be 329 * configured with a LPI table address once, GICv3 systems with many CPUs may 330 * end up reserving a lot of different regions after a kexec for their LPI 331 * tables (one per CPU), as we are forced to reuse the same memory after kexec 332 * (and thus reserve it persistently with EFI beforehand) 333 */ 334 #if defined(CONFIG_EFI) && defined(CONFIG_ARM_GIC_V3_ITS) 335 # define INIT_MEMBLOCK_RESERVED_REGIONS (INIT_MEMBLOCK_REGIONS + NR_CPUS + 1) 336 #endif 337 338 #include <asm-generic/memory_model.h> 339 340 #endif /* __ASM_MEMORY_H */ 341