1 /* 2 * Copyright (C) 2012,2013 - ARM Ltd 3 * Author: Marc Zyngier <marc.zyngier@arm.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #ifndef __ARM64_KVM_MMU_H__ 19 #define __ARM64_KVM_MMU_H__ 20 21 #include <asm/page.h> 22 #include <asm/memory.h> 23 #include <asm/cpufeature.h> 24 25 /* 26 * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express 27 * "negative" addresses. This makes it impossible to directly share 28 * mappings with the kernel. 29 * 30 * Instead, give the HYP mode its own VA region at a fixed offset from 31 * the kernel by just masking the top bits (which are all ones for a 32 * kernel address). We need to find out how many bits to mask. 33 * 34 * We want to build a set of page tables that cover both parts of the 35 * idmap (the trampoline page used to initialize EL2), and our normal 36 * runtime VA space, at the same time. 37 * 38 * Given that the kernel uses VA_BITS for its entire address space, 39 * and that half of that space (VA_BITS - 1) is used for the linear 40 * mapping, we can also limit the EL2 space to (VA_BITS - 1). 41 * 42 * The main question is "Within the VA_BITS space, does EL2 use the 43 * top or the bottom half of that space to shadow the kernel's linear 44 * mapping?". As we need to idmap the trampoline page, this is 45 * determined by the range in which this page lives. 46 * 47 * If the page is in the bottom half, we have to use the top half. If 48 * the page is in the top half, we have to use the bottom half: 49 * 50 * T = __pa_symbol(__hyp_idmap_text_start) 51 * if (T & BIT(VA_BITS - 1)) 52 * HYP_VA_MIN = 0 //idmap in upper half 53 * else 54 * HYP_VA_MIN = 1 << (VA_BITS - 1) 55 * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1 56 * 57 * This of course assumes that the trampoline page exists within the 58 * VA_BITS range. If it doesn't, then it means we're in the odd case 59 * where the kernel idmap (as well as HYP) uses more levels than the 60 * kernel runtime page tables (as seen when the kernel is configured 61 * for 4k pages, 39bits VA, and yet memory lives just above that 62 * limit, forcing the idmap to use 4 levels of page tables while the 63 * kernel itself only uses 3). In this particular case, it doesn't 64 * matter which side of VA_BITS we use, as we're guaranteed not to 65 * conflict with anything. 66 * 67 * When using VHE, there are no separate hyp mappings and all KVM 68 * functionality is already mapped as part of the main kernel 69 * mappings, and none of this applies in that case. 70 */ 71 72 #ifdef __ASSEMBLY__ 73 74 #include <asm/alternative.h> 75 76 /* 77 * Convert a kernel VA into a HYP VA. 78 * reg: VA to be converted. 79 * 80 * The actual code generation takes place in kvm_update_va_mask, and 81 * the instructions below are only there to reserve the space and 82 * perform the register allocation (kvm_update_va_mask uses the 83 * specific registers encoded in the instructions). 84 */ 85 .macro kern_hyp_va reg 86 alternative_cb kvm_update_va_mask 87 and \reg, \reg, #1 /* mask with va_mask */ 88 ror \reg, \reg, #1 /* rotate to the first tag bit */ 89 add \reg, \reg, #0 /* insert the low 12 bits of the tag */ 90 add \reg, \reg, #0, lsl 12 /* insert the top 12 bits of the tag */ 91 ror \reg, \reg, #63 /* rotate back */ 92 alternative_cb_end 93 .endm 94 95 #else 96 97 #include <asm/pgalloc.h> 98 #include <asm/cache.h> 99 #include <asm/cacheflush.h> 100 #include <asm/mmu_context.h> 101 #include <asm/pgtable.h> 102 103 void kvm_update_va_mask(struct alt_instr *alt, 104 __le32 *origptr, __le32 *updptr, int nr_inst); 105 106 static inline unsigned long __kern_hyp_va(unsigned long v) 107 { 108 asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n" 109 "ror %0, %0, #1\n" 110 "add %0, %0, #0\n" 111 "add %0, %0, #0, lsl 12\n" 112 "ror %0, %0, #63\n", 113 kvm_update_va_mask) 114 : "+r" (v)); 115 return v; 116 } 117 118 #define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v)))) 119 120 /* 121 * Obtain the PC-relative address of a kernel symbol 122 * s: symbol 123 * 124 * The goal of this macro is to return a symbol's address based on a 125 * PC-relative computation, as opposed to a loading the VA from a 126 * constant pool or something similar. This works well for HYP, as an 127 * absolute VA is guaranteed to be wrong. Only use this if trying to 128 * obtain the address of a symbol (i.e. not something you obtained by 129 * following a pointer). 130 */ 131 #define hyp_symbol_addr(s) \ 132 ({ \ 133 typeof(s) *addr; \ 134 asm("adrp %0, %1\n" \ 135 "add %0, %0, :lo12:%1\n" \ 136 : "=r" (addr) : "S" (&s)); \ 137 addr; \ 138 }) 139 140 /* 141 * We currently only support a 40bit IPA. 142 */ 143 #define KVM_PHYS_SHIFT (40) 144 #define KVM_PHYS_SIZE (1UL << KVM_PHYS_SHIFT) 145 #define KVM_PHYS_MASK (KVM_PHYS_SIZE - 1UL) 146 147 #include <asm/stage2_pgtable.h> 148 149 int create_hyp_mappings(void *from, void *to, pgprot_t prot); 150 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, 151 void __iomem **kaddr, 152 void __iomem **haddr); 153 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, 154 void **haddr); 155 void free_hyp_pgds(void); 156 157 void stage2_unmap_vm(struct kvm *kvm); 158 int kvm_alloc_stage2_pgd(struct kvm *kvm); 159 void kvm_free_stage2_pgd(struct kvm *kvm); 160 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, 161 phys_addr_t pa, unsigned long size, bool writable); 162 163 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run); 164 165 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu); 166 167 phys_addr_t kvm_mmu_get_httbr(void); 168 phys_addr_t kvm_get_idmap_vector(void); 169 int kvm_mmu_init(void); 170 void kvm_clear_hyp_idmap(void); 171 172 #define kvm_mk_pmd(ptep) \ 173 __pmd(__phys_to_pmd_val(__pa(ptep)) | PMD_TYPE_TABLE) 174 #define kvm_mk_pud(pmdp) \ 175 __pud(__phys_to_pud_val(__pa(pmdp)) | PMD_TYPE_TABLE) 176 #define kvm_mk_pgd(pudp) \ 177 __pgd(__phys_to_pgd_val(__pa(pudp)) | PUD_TYPE_TABLE) 178 179 static inline pte_t kvm_s2pte_mkwrite(pte_t pte) 180 { 181 pte_val(pte) |= PTE_S2_RDWR; 182 return pte; 183 } 184 185 static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd) 186 { 187 pmd_val(pmd) |= PMD_S2_RDWR; 188 return pmd; 189 } 190 191 static inline pte_t kvm_s2pte_mkexec(pte_t pte) 192 { 193 pte_val(pte) &= ~PTE_S2_XN; 194 return pte; 195 } 196 197 static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd) 198 { 199 pmd_val(pmd) &= ~PMD_S2_XN; 200 return pmd; 201 } 202 203 static inline void kvm_set_s2pte_readonly(pte_t *ptep) 204 { 205 pteval_t old_pteval, pteval; 206 207 pteval = READ_ONCE(pte_val(*ptep)); 208 do { 209 old_pteval = pteval; 210 pteval &= ~PTE_S2_RDWR; 211 pteval |= PTE_S2_RDONLY; 212 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval); 213 } while (pteval != old_pteval); 214 } 215 216 static inline bool kvm_s2pte_readonly(pte_t *ptep) 217 { 218 return (READ_ONCE(pte_val(*ptep)) & PTE_S2_RDWR) == PTE_S2_RDONLY; 219 } 220 221 static inline bool kvm_s2pte_exec(pte_t *ptep) 222 { 223 return !(READ_ONCE(pte_val(*ptep)) & PTE_S2_XN); 224 } 225 226 static inline void kvm_set_s2pmd_readonly(pmd_t *pmdp) 227 { 228 kvm_set_s2pte_readonly((pte_t *)pmdp); 229 } 230 231 static inline bool kvm_s2pmd_readonly(pmd_t *pmdp) 232 { 233 return kvm_s2pte_readonly((pte_t *)pmdp); 234 } 235 236 static inline bool kvm_s2pmd_exec(pmd_t *pmdp) 237 { 238 return !(READ_ONCE(pmd_val(*pmdp)) & PMD_S2_XN); 239 } 240 241 static inline bool kvm_page_empty(void *ptr) 242 { 243 struct page *ptr_page = virt_to_page(ptr); 244 return page_count(ptr_page) == 1; 245 } 246 247 #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep) 248 249 #ifdef __PAGETABLE_PMD_FOLDED 250 #define hyp_pmd_table_empty(pmdp) (0) 251 #else 252 #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp) 253 #endif 254 255 #ifdef __PAGETABLE_PUD_FOLDED 256 #define hyp_pud_table_empty(pudp) (0) 257 #else 258 #define hyp_pud_table_empty(pudp) kvm_page_empty(pudp) 259 #endif 260 261 struct kvm; 262 263 #define kvm_flush_dcache_to_poc(a,l) __flush_dcache_area((a), (l)) 264 265 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu) 266 { 267 return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101; 268 } 269 270 static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size) 271 { 272 void *va = page_address(pfn_to_page(pfn)); 273 274 /* 275 * With FWB, we ensure that the guest always accesses memory using 276 * cacheable attributes, and we don't have to clean to PoC when 277 * faulting in pages. Furthermore, FWB implies IDC, so cleaning to 278 * PoU is not required either in this case. 279 */ 280 if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) 281 return; 282 283 kvm_flush_dcache_to_poc(va, size); 284 } 285 286 static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn, 287 unsigned long size) 288 { 289 if (icache_is_aliasing()) { 290 /* any kind of VIPT cache */ 291 __flush_icache_all(); 292 } else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) { 293 /* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */ 294 void *va = page_address(pfn_to_page(pfn)); 295 296 invalidate_icache_range((unsigned long)va, 297 (unsigned long)va + size); 298 } 299 } 300 301 static inline void __kvm_flush_dcache_pte(pte_t pte) 302 { 303 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) { 304 struct page *page = pte_page(pte); 305 kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE); 306 } 307 } 308 309 static inline void __kvm_flush_dcache_pmd(pmd_t pmd) 310 { 311 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) { 312 struct page *page = pmd_page(pmd); 313 kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE); 314 } 315 } 316 317 static inline void __kvm_flush_dcache_pud(pud_t pud) 318 { 319 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) { 320 struct page *page = pud_page(pud); 321 kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE); 322 } 323 } 324 325 #define kvm_virt_to_phys(x) __pa_symbol(x) 326 327 void kvm_set_way_flush(struct kvm_vcpu *vcpu); 328 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled); 329 330 static inline bool __kvm_cpu_uses_extended_idmap(void) 331 { 332 return __cpu_uses_extended_idmap_level(); 333 } 334 335 static inline unsigned long __kvm_idmap_ptrs_per_pgd(void) 336 { 337 return idmap_ptrs_per_pgd; 338 } 339 340 /* 341 * Can't use pgd_populate here, because the extended idmap adds an extra level 342 * above CONFIG_PGTABLE_LEVELS (which is 2 or 3 if we're using the extended 343 * idmap), and pgd_populate is only available if CONFIG_PGTABLE_LEVELS = 4. 344 */ 345 static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd, 346 pgd_t *hyp_pgd, 347 pgd_t *merged_hyp_pgd, 348 unsigned long hyp_idmap_start) 349 { 350 int idmap_idx; 351 u64 pgd_addr; 352 353 /* 354 * Use the first entry to access the HYP mappings. It is 355 * guaranteed to be free, otherwise we wouldn't use an 356 * extended idmap. 357 */ 358 VM_BUG_ON(pgd_val(merged_hyp_pgd[0])); 359 pgd_addr = __phys_to_pgd_val(__pa(hyp_pgd)); 360 merged_hyp_pgd[0] = __pgd(pgd_addr | PMD_TYPE_TABLE); 361 362 /* 363 * Create another extended level entry that points to the boot HYP map, 364 * which contains an ID mapping of the HYP init code. We essentially 365 * merge the boot and runtime HYP maps by doing so, but they don't 366 * overlap anyway, so this is fine. 367 */ 368 idmap_idx = hyp_idmap_start >> VA_BITS; 369 VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx])); 370 pgd_addr = __phys_to_pgd_val(__pa(boot_hyp_pgd)); 371 merged_hyp_pgd[idmap_idx] = __pgd(pgd_addr | PMD_TYPE_TABLE); 372 } 373 374 static inline unsigned int kvm_get_vmid_bits(void) 375 { 376 int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 377 378 return (cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR1_VMIDBITS_SHIFT) == 2) ? 16 : 8; 379 } 380 381 /* 382 * We are not in the kvm->srcu critical section most of the time, so we take 383 * the SRCU read lock here. Since we copy the data from the user page, we 384 * can immediately drop the lock again. 385 */ 386 static inline int kvm_read_guest_lock(struct kvm *kvm, 387 gpa_t gpa, void *data, unsigned long len) 388 { 389 int srcu_idx = srcu_read_lock(&kvm->srcu); 390 int ret = kvm_read_guest(kvm, gpa, data, len); 391 392 srcu_read_unlock(&kvm->srcu, srcu_idx); 393 394 return ret; 395 } 396 397 #ifdef CONFIG_KVM_INDIRECT_VECTORS 398 /* 399 * EL2 vectors can be mapped and rerouted in a number of ways, 400 * depending on the kernel configuration and CPU present: 401 * 402 * - If the CPU has the ARM64_HARDEN_BRANCH_PREDICTOR cap, the 403 * hardening sequence is placed in one of the vector slots, which is 404 * executed before jumping to the real vectors. 405 * 406 * - If the CPU has both the ARM64_HARDEN_EL2_VECTORS cap and the 407 * ARM64_HARDEN_BRANCH_PREDICTOR cap, the slot containing the 408 * hardening sequence is mapped next to the idmap page, and executed 409 * before jumping to the real vectors. 410 * 411 * - If the CPU only has the ARM64_HARDEN_EL2_VECTORS cap, then an 412 * empty slot is selected, mapped next to the idmap page, and 413 * executed before jumping to the real vectors. 414 * 415 * Note that ARM64_HARDEN_EL2_VECTORS is somewhat incompatible with 416 * VHE, as we don't have hypervisor-specific mappings. If the system 417 * is VHE and yet selects this capability, it will be ignored. 418 */ 419 #include <asm/mmu.h> 420 421 extern void *__kvm_bp_vect_base; 422 extern int __kvm_harden_el2_vector_slot; 423 424 static inline void *kvm_get_hyp_vector(void) 425 { 426 struct bp_hardening_data *data = arm64_get_bp_hardening_data(); 427 void *vect = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); 428 int slot = -1; 429 430 if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR) && data->fn) { 431 vect = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs_start)); 432 slot = data->hyp_vectors_slot; 433 } 434 435 if (this_cpu_has_cap(ARM64_HARDEN_EL2_VECTORS) && !has_vhe()) { 436 vect = __kvm_bp_vect_base; 437 if (slot == -1) 438 slot = __kvm_harden_el2_vector_slot; 439 } 440 441 if (slot != -1) 442 vect += slot * SZ_2K; 443 444 return vect; 445 } 446 447 /* This is only called on a !VHE system */ 448 static inline int kvm_map_vectors(void) 449 { 450 /* 451 * HBP = ARM64_HARDEN_BRANCH_PREDICTOR 452 * HEL2 = ARM64_HARDEN_EL2_VECTORS 453 * 454 * !HBP + !HEL2 -> use direct vectors 455 * HBP + !HEL2 -> use hardened vectors in place 456 * !HBP + HEL2 -> allocate one vector slot and use exec mapping 457 * HBP + HEL2 -> use hardened vertors and use exec mapping 458 */ 459 if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR)) { 460 __kvm_bp_vect_base = kvm_ksym_ref(__bp_harden_hyp_vecs_start); 461 __kvm_bp_vect_base = kern_hyp_va(__kvm_bp_vect_base); 462 } 463 464 if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) { 465 phys_addr_t vect_pa = __pa_symbol(__bp_harden_hyp_vecs_start); 466 unsigned long size = (__bp_harden_hyp_vecs_end - 467 __bp_harden_hyp_vecs_start); 468 469 /* 470 * Always allocate a spare vector slot, as we don't 471 * know yet which CPUs have a BP hardening slot that 472 * we can reuse. 473 */ 474 __kvm_harden_el2_vector_slot = atomic_inc_return(&arm64_el2_vector_last_slot); 475 BUG_ON(__kvm_harden_el2_vector_slot >= BP_HARDEN_EL2_SLOTS); 476 return create_hyp_exec_mappings(vect_pa, size, 477 &__kvm_bp_vect_base); 478 } 479 480 return 0; 481 } 482 #else 483 static inline void *kvm_get_hyp_vector(void) 484 { 485 return kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); 486 } 487 488 static inline int kvm_map_vectors(void) 489 { 490 return 0; 491 } 492 #endif 493 494 #ifdef CONFIG_ARM64_SSBD 495 DECLARE_PER_CPU_READ_MOSTLY(u64, arm64_ssbd_callback_required); 496 497 static inline int hyp_map_aux_data(void) 498 { 499 int cpu, err; 500 501 for_each_possible_cpu(cpu) { 502 u64 *ptr; 503 504 ptr = per_cpu_ptr(&arm64_ssbd_callback_required, cpu); 505 err = create_hyp_mappings(ptr, ptr + 1, PAGE_HYP); 506 if (err) 507 return err; 508 } 509 return 0; 510 } 511 #else 512 static inline int hyp_map_aux_data(void) 513 { 514 return 0; 515 } 516 #endif 517 518 #define kvm_phys_to_vttbr(addr) phys_to_ttbr(addr) 519 520 #endif /* __ASSEMBLY__ */ 521 #endif /* __ARM64_KVM_MMU_H__ */ 522