xref: /openbmc/linux/arch/arm64/include/asm/kvm_mmu.h (revision f220d3eb)
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #ifndef __ARM64_KVM_MMU_H__
19 #define __ARM64_KVM_MMU_H__
20 
21 #include <asm/page.h>
22 #include <asm/memory.h>
23 #include <asm/cpufeature.h>
24 
25 /*
26  * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
27  * "negative" addresses. This makes it impossible to directly share
28  * mappings with the kernel.
29  *
30  * Instead, give the HYP mode its own VA region at a fixed offset from
31  * the kernel by just masking the top bits (which are all ones for a
32  * kernel address). We need to find out how many bits to mask.
33  *
34  * We want to build a set of page tables that cover both parts of the
35  * idmap (the trampoline page used to initialize EL2), and our normal
36  * runtime VA space, at the same time.
37  *
38  * Given that the kernel uses VA_BITS for its entire address space,
39  * and that half of that space (VA_BITS - 1) is used for the linear
40  * mapping, we can also limit the EL2 space to (VA_BITS - 1).
41  *
42  * The main question is "Within the VA_BITS space, does EL2 use the
43  * top or the bottom half of that space to shadow the kernel's linear
44  * mapping?". As we need to idmap the trampoline page, this is
45  * determined by the range in which this page lives.
46  *
47  * If the page is in the bottom half, we have to use the top half. If
48  * the page is in the top half, we have to use the bottom half:
49  *
50  * T = __pa_symbol(__hyp_idmap_text_start)
51  * if (T & BIT(VA_BITS - 1))
52  *	HYP_VA_MIN = 0  //idmap in upper half
53  * else
54  *	HYP_VA_MIN = 1 << (VA_BITS - 1)
55  * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
56  *
57  * This of course assumes that the trampoline page exists within the
58  * VA_BITS range. If it doesn't, then it means we're in the odd case
59  * where the kernel idmap (as well as HYP) uses more levels than the
60  * kernel runtime page tables (as seen when the kernel is configured
61  * for 4k pages, 39bits VA, and yet memory lives just above that
62  * limit, forcing the idmap to use 4 levels of page tables while the
63  * kernel itself only uses 3). In this particular case, it doesn't
64  * matter which side of VA_BITS we use, as we're guaranteed not to
65  * conflict with anything.
66  *
67  * When using VHE, there are no separate hyp mappings and all KVM
68  * functionality is already mapped as part of the main kernel
69  * mappings, and none of this applies in that case.
70  */
71 
72 #ifdef __ASSEMBLY__
73 
74 #include <asm/alternative.h>
75 
76 /*
77  * Convert a kernel VA into a HYP VA.
78  * reg: VA to be converted.
79  *
80  * The actual code generation takes place in kvm_update_va_mask, and
81  * the instructions below are only there to reserve the space and
82  * perform the register allocation (kvm_update_va_mask uses the
83  * specific registers encoded in the instructions).
84  */
85 .macro kern_hyp_va	reg
86 alternative_cb kvm_update_va_mask
87 	and     \reg, \reg, #1		/* mask with va_mask */
88 	ror	\reg, \reg, #1		/* rotate to the first tag bit */
89 	add	\reg, \reg, #0		/* insert the low 12 bits of the tag */
90 	add	\reg, \reg, #0, lsl 12	/* insert the top 12 bits of the tag */
91 	ror	\reg, \reg, #63		/* rotate back */
92 alternative_cb_end
93 .endm
94 
95 #else
96 
97 #include <asm/pgalloc.h>
98 #include <asm/cache.h>
99 #include <asm/cacheflush.h>
100 #include <asm/mmu_context.h>
101 #include <asm/pgtable.h>
102 
103 void kvm_update_va_mask(struct alt_instr *alt,
104 			__le32 *origptr, __le32 *updptr, int nr_inst);
105 
106 static inline unsigned long __kern_hyp_va(unsigned long v)
107 {
108 	asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n"
109 				    "ror %0, %0, #1\n"
110 				    "add %0, %0, #0\n"
111 				    "add %0, %0, #0, lsl 12\n"
112 				    "ror %0, %0, #63\n",
113 				    kvm_update_va_mask)
114 		     : "+r" (v));
115 	return v;
116 }
117 
118 #define kern_hyp_va(v) 	((typeof(v))(__kern_hyp_va((unsigned long)(v))))
119 
120 /*
121  * Obtain the PC-relative address of a kernel symbol
122  * s: symbol
123  *
124  * The goal of this macro is to return a symbol's address based on a
125  * PC-relative computation, as opposed to a loading the VA from a
126  * constant pool or something similar. This works well for HYP, as an
127  * absolute VA is guaranteed to be wrong. Only use this if trying to
128  * obtain the address of a symbol (i.e. not something you obtained by
129  * following a pointer).
130  */
131 #define hyp_symbol_addr(s)						\
132 	({								\
133 		typeof(s) *addr;					\
134 		asm("adrp	%0, %1\n"				\
135 		    "add	%0, %0, :lo12:%1\n"			\
136 		    : "=r" (addr) : "S" (&s));				\
137 		addr;							\
138 	})
139 
140 /*
141  * We currently only support a 40bit IPA.
142  */
143 #define KVM_PHYS_SHIFT	(40)
144 #define KVM_PHYS_SIZE	(1UL << KVM_PHYS_SHIFT)
145 #define KVM_PHYS_MASK	(KVM_PHYS_SIZE - 1UL)
146 
147 #include <asm/stage2_pgtable.h>
148 
149 int create_hyp_mappings(void *from, void *to, pgprot_t prot);
150 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
151 			   void __iomem **kaddr,
152 			   void __iomem **haddr);
153 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
154 			     void **haddr);
155 void free_hyp_pgds(void);
156 
157 void stage2_unmap_vm(struct kvm *kvm);
158 int kvm_alloc_stage2_pgd(struct kvm *kvm);
159 void kvm_free_stage2_pgd(struct kvm *kvm);
160 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
161 			  phys_addr_t pa, unsigned long size, bool writable);
162 
163 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
164 
165 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
166 
167 phys_addr_t kvm_mmu_get_httbr(void);
168 phys_addr_t kvm_get_idmap_vector(void);
169 int kvm_mmu_init(void);
170 void kvm_clear_hyp_idmap(void);
171 
172 #define kvm_mk_pmd(ptep)					\
173 	__pmd(__phys_to_pmd_val(__pa(ptep)) | PMD_TYPE_TABLE)
174 #define kvm_mk_pud(pmdp)					\
175 	__pud(__phys_to_pud_val(__pa(pmdp)) | PMD_TYPE_TABLE)
176 #define kvm_mk_pgd(pudp)					\
177 	__pgd(__phys_to_pgd_val(__pa(pudp)) | PUD_TYPE_TABLE)
178 
179 static inline pte_t kvm_s2pte_mkwrite(pte_t pte)
180 {
181 	pte_val(pte) |= PTE_S2_RDWR;
182 	return pte;
183 }
184 
185 static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd)
186 {
187 	pmd_val(pmd) |= PMD_S2_RDWR;
188 	return pmd;
189 }
190 
191 static inline pte_t kvm_s2pte_mkexec(pte_t pte)
192 {
193 	pte_val(pte) &= ~PTE_S2_XN;
194 	return pte;
195 }
196 
197 static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd)
198 {
199 	pmd_val(pmd) &= ~PMD_S2_XN;
200 	return pmd;
201 }
202 
203 static inline void kvm_set_s2pte_readonly(pte_t *ptep)
204 {
205 	pteval_t old_pteval, pteval;
206 
207 	pteval = READ_ONCE(pte_val(*ptep));
208 	do {
209 		old_pteval = pteval;
210 		pteval &= ~PTE_S2_RDWR;
211 		pteval |= PTE_S2_RDONLY;
212 		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
213 	} while (pteval != old_pteval);
214 }
215 
216 static inline bool kvm_s2pte_readonly(pte_t *ptep)
217 {
218 	return (READ_ONCE(pte_val(*ptep)) & PTE_S2_RDWR) == PTE_S2_RDONLY;
219 }
220 
221 static inline bool kvm_s2pte_exec(pte_t *ptep)
222 {
223 	return !(READ_ONCE(pte_val(*ptep)) & PTE_S2_XN);
224 }
225 
226 static inline void kvm_set_s2pmd_readonly(pmd_t *pmdp)
227 {
228 	kvm_set_s2pte_readonly((pte_t *)pmdp);
229 }
230 
231 static inline bool kvm_s2pmd_readonly(pmd_t *pmdp)
232 {
233 	return kvm_s2pte_readonly((pte_t *)pmdp);
234 }
235 
236 static inline bool kvm_s2pmd_exec(pmd_t *pmdp)
237 {
238 	return !(READ_ONCE(pmd_val(*pmdp)) & PMD_S2_XN);
239 }
240 
241 static inline bool kvm_page_empty(void *ptr)
242 {
243 	struct page *ptr_page = virt_to_page(ptr);
244 	return page_count(ptr_page) == 1;
245 }
246 
247 #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
248 
249 #ifdef __PAGETABLE_PMD_FOLDED
250 #define hyp_pmd_table_empty(pmdp) (0)
251 #else
252 #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
253 #endif
254 
255 #ifdef __PAGETABLE_PUD_FOLDED
256 #define hyp_pud_table_empty(pudp) (0)
257 #else
258 #define hyp_pud_table_empty(pudp) kvm_page_empty(pudp)
259 #endif
260 
261 struct kvm;
262 
263 #define kvm_flush_dcache_to_poc(a,l)	__flush_dcache_area((a), (l))
264 
265 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
266 {
267 	return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
268 }
269 
270 static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
271 {
272 	void *va = page_address(pfn_to_page(pfn));
273 
274 	/*
275 	 * With FWB, we ensure that the guest always accesses memory using
276 	 * cacheable attributes, and we don't have to clean to PoC when
277 	 * faulting in pages. Furthermore, FWB implies IDC, so cleaning to
278 	 * PoU is not required either in this case.
279 	 */
280 	if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
281 		return;
282 
283 	kvm_flush_dcache_to_poc(va, size);
284 }
285 
286 static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn,
287 						  unsigned long size)
288 {
289 	if (icache_is_aliasing()) {
290 		/* any kind of VIPT cache */
291 		__flush_icache_all();
292 	} else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
293 		/* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
294 		void *va = page_address(pfn_to_page(pfn));
295 
296 		invalidate_icache_range((unsigned long)va,
297 					(unsigned long)va + size);
298 	}
299 }
300 
301 static inline void __kvm_flush_dcache_pte(pte_t pte)
302 {
303 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
304 		struct page *page = pte_page(pte);
305 		kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE);
306 	}
307 }
308 
309 static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
310 {
311 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
312 		struct page *page = pmd_page(pmd);
313 		kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE);
314 	}
315 }
316 
317 static inline void __kvm_flush_dcache_pud(pud_t pud)
318 {
319 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
320 		struct page *page = pud_page(pud);
321 		kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE);
322 	}
323 }
324 
325 #define kvm_virt_to_phys(x)		__pa_symbol(x)
326 
327 void kvm_set_way_flush(struct kvm_vcpu *vcpu);
328 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
329 
330 static inline bool __kvm_cpu_uses_extended_idmap(void)
331 {
332 	return __cpu_uses_extended_idmap_level();
333 }
334 
335 static inline unsigned long __kvm_idmap_ptrs_per_pgd(void)
336 {
337 	return idmap_ptrs_per_pgd;
338 }
339 
340 /*
341  * Can't use pgd_populate here, because the extended idmap adds an extra level
342  * above CONFIG_PGTABLE_LEVELS (which is 2 or 3 if we're using the extended
343  * idmap), and pgd_populate is only available if CONFIG_PGTABLE_LEVELS = 4.
344  */
345 static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
346 				       pgd_t *hyp_pgd,
347 				       pgd_t *merged_hyp_pgd,
348 				       unsigned long hyp_idmap_start)
349 {
350 	int idmap_idx;
351 	u64 pgd_addr;
352 
353 	/*
354 	 * Use the first entry to access the HYP mappings. It is
355 	 * guaranteed to be free, otherwise we wouldn't use an
356 	 * extended idmap.
357 	 */
358 	VM_BUG_ON(pgd_val(merged_hyp_pgd[0]));
359 	pgd_addr = __phys_to_pgd_val(__pa(hyp_pgd));
360 	merged_hyp_pgd[0] = __pgd(pgd_addr | PMD_TYPE_TABLE);
361 
362 	/*
363 	 * Create another extended level entry that points to the boot HYP map,
364 	 * which contains an ID mapping of the HYP init code. We essentially
365 	 * merge the boot and runtime HYP maps by doing so, but they don't
366 	 * overlap anyway, so this is fine.
367 	 */
368 	idmap_idx = hyp_idmap_start >> VA_BITS;
369 	VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx]));
370 	pgd_addr = __phys_to_pgd_val(__pa(boot_hyp_pgd));
371 	merged_hyp_pgd[idmap_idx] = __pgd(pgd_addr | PMD_TYPE_TABLE);
372 }
373 
374 static inline unsigned int kvm_get_vmid_bits(void)
375 {
376 	int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
377 
378 	return (cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR1_VMIDBITS_SHIFT) == 2) ? 16 : 8;
379 }
380 
381 /*
382  * We are not in the kvm->srcu critical section most of the time, so we take
383  * the SRCU read lock here. Since we copy the data from the user page, we
384  * can immediately drop the lock again.
385  */
386 static inline int kvm_read_guest_lock(struct kvm *kvm,
387 				      gpa_t gpa, void *data, unsigned long len)
388 {
389 	int srcu_idx = srcu_read_lock(&kvm->srcu);
390 	int ret = kvm_read_guest(kvm, gpa, data, len);
391 
392 	srcu_read_unlock(&kvm->srcu, srcu_idx);
393 
394 	return ret;
395 }
396 
397 #ifdef CONFIG_KVM_INDIRECT_VECTORS
398 /*
399  * EL2 vectors can be mapped and rerouted in a number of ways,
400  * depending on the kernel configuration and CPU present:
401  *
402  * - If the CPU has the ARM64_HARDEN_BRANCH_PREDICTOR cap, the
403  *   hardening sequence is placed in one of the vector slots, which is
404  *   executed before jumping to the real vectors.
405  *
406  * - If the CPU has both the ARM64_HARDEN_EL2_VECTORS cap and the
407  *   ARM64_HARDEN_BRANCH_PREDICTOR cap, the slot containing the
408  *   hardening sequence is mapped next to the idmap page, and executed
409  *   before jumping to the real vectors.
410  *
411  * - If the CPU only has the ARM64_HARDEN_EL2_VECTORS cap, then an
412  *   empty slot is selected, mapped next to the idmap page, and
413  *   executed before jumping to the real vectors.
414  *
415  * Note that ARM64_HARDEN_EL2_VECTORS is somewhat incompatible with
416  * VHE, as we don't have hypervisor-specific mappings. If the system
417  * is VHE and yet selects this capability, it will be ignored.
418  */
419 #include <asm/mmu.h>
420 
421 extern void *__kvm_bp_vect_base;
422 extern int __kvm_harden_el2_vector_slot;
423 
424 static inline void *kvm_get_hyp_vector(void)
425 {
426 	struct bp_hardening_data *data = arm64_get_bp_hardening_data();
427 	void *vect = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
428 	int slot = -1;
429 
430 	if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR) && data->fn) {
431 		vect = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs_start));
432 		slot = data->hyp_vectors_slot;
433 	}
434 
435 	if (this_cpu_has_cap(ARM64_HARDEN_EL2_VECTORS) && !has_vhe()) {
436 		vect = __kvm_bp_vect_base;
437 		if (slot == -1)
438 			slot = __kvm_harden_el2_vector_slot;
439 	}
440 
441 	if (slot != -1)
442 		vect += slot * SZ_2K;
443 
444 	return vect;
445 }
446 
447 /*  This is only called on a !VHE system */
448 static inline int kvm_map_vectors(void)
449 {
450 	/*
451 	 * HBP  = ARM64_HARDEN_BRANCH_PREDICTOR
452 	 * HEL2 = ARM64_HARDEN_EL2_VECTORS
453 	 *
454 	 * !HBP + !HEL2 -> use direct vectors
455 	 *  HBP + !HEL2 -> use hardened vectors in place
456 	 * !HBP +  HEL2 -> allocate one vector slot and use exec mapping
457 	 *  HBP +  HEL2 -> use hardened vertors and use exec mapping
458 	 */
459 	if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR)) {
460 		__kvm_bp_vect_base = kvm_ksym_ref(__bp_harden_hyp_vecs_start);
461 		__kvm_bp_vect_base = kern_hyp_va(__kvm_bp_vect_base);
462 	}
463 
464 	if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) {
465 		phys_addr_t vect_pa = __pa_symbol(__bp_harden_hyp_vecs_start);
466 		unsigned long size = (__bp_harden_hyp_vecs_end -
467 				      __bp_harden_hyp_vecs_start);
468 
469 		/*
470 		 * Always allocate a spare vector slot, as we don't
471 		 * know yet which CPUs have a BP hardening slot that
472 		 * we can reuse.
473 		 */
474 		__kvm_harden_el2_vector_slot = atomic_inc_return(&arm64_el2_vector_last_slot);
475 		BUG_ON(__kvm_harden_el2_vector_slot >= BP_HARDEN_EL2_SLOTS);
476 		return create_hyp_exec_mappings(vect_pa, size,
477 						&__kvm_bp_vect_base);
478 	}
479 
480 	return 0;
481 }
482 #else
483 static inline void *kvm_get_hyp_vector(void)
484 {
485 	return kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
486 }
487 
488 static inline int kvm_map_vectors(void)
489 {
490 	return 0;
491 }
492 #endif
493 
494 #ifdef CONFIG_ARM64_SSBD
495 DECLARE_PER_CPU_READ_MOSTLY(u64, arm64_ssbd_callback_required);
496 
497 static inline int hyp_map_aux_data(void)
498 {
499 	int cpu, err;
500 
501 	for_each_possible_cpu(cpu) {
502 		u64 *ptr;
503 
504 		ptr = per_cpu_ptr(&arm64_ssbd_callback_required, cpu);
505 		err = create_hyp_mappings(ptr, ptr + 1, PAGE_HYP);
506 		if (err)
507 			return err;
508 	}
509 	return 0;
510 }
511 #else
512 static inline int hyp_map_aux_data(void)
513 {
514 	return 0;
515 }
516 #endif
517 
518 #define kvm_phys_to_vttbr(addr)		phys_to_ttbr(addr)
519 
520 #endif /* __ASSEMBLY__ */
521 #endif /* __ARM64_KVM_MMU_H__ */
522