xref: /openbmc/linux/arch/arm64/include/asm/kvm_mmu.h (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #ifndef __ARM64_KVM_MMU_H__
19 #define __ARM64_KVM_MMU_H__
20 
21 #include <asm/page.h>
22 #include <asm/memory.h>
23 
24 /*
25  * As we only have the TTBR0_EL2 register, we cannot express
26  * "negative" addresses. This makes it impossible to directly share
27  * mappings with the kernel.
28  *
29  * Instead, give the HYP mode its own VA region at a fixed offset from
30  * the kernel by just masking the top bits (which are all ones for a
31  * kernel address).
32  */
33 #define HYP_PAGE_OFFSET_SHIFT	VA_BITS
34 #define HYP_PAGE_OFFSET_MASK	((UL(1) << HYP_PAGE_OFFSET_SHIFT) - 1)
35 #define HYP_PAGE_OFFSET		(PAGE_OFFSET & HYP_PAGE_OFFSET_MASK)
36 
37 /*
38  * Our virtual mapping for the idmap-ed MMU-enable code. Must be
39  * shared across all the page-tables. Conveniently, we use the last
40  * possible page, where no kernel mapping will ever exist.
41  */
42 #define TRAMPOLINE_VA		(HYP_PAGE_OFFSET_MASK & PAGE_MASK)
43 
44 /*
45  * KVM_MMU_CACHE_MIN_PAGES is the number of stage2 page table translation
46  * levels in addition to the PGD and potentially the PUD which are
47  * pre-allocated (we pre-allocate the fake PGD and the PUD when the Stage-2
48  * tables use one level of tables less than the kernel.
49  */
50 #ifdef CONFIG_ARM64_64K_PAGES
51 #define KVM_MMU_CACHE_MIN_PAGES	1
52 #else
53 #define KVM_MMU_CACHE_MIN_PAGES	2
54 #endif
55 
56 #ifdef __ASSEMBLY__
57 
58 /*
59  * Convert a kernel VA into a HYP VA.
60  * reg: VA to be converted.
61  */
62 .macro kern_hyp_va	reg
63 	and	\reg, \reg, #HYP_PAGE_OFFSET_MASK
64 .endm
65 
66 #else
67 
68 #include <asm/pgalloc.h>
69 #include <asm/cachetype.h>
70 #include <asm/cacheflush.h>
71 #include <asm/mmu_context.h>
72 #include <asm/pgtable.h>
73 
74 #define KERN_TO_HYP(kva)	((unsigned long)kva - PAGE_OFFSET + HYP_PAGE_OFFSET)
75 
76 /*
77  * We currently only support a 40bit IPA.
78  */
79 #define KVM_PHYS_SHIFT	(40)
80 #define KVM_PHYS_SIZE	(1UL << KVM_PHYS_SHIFT)
81 #define KVM_PHYS_MASK	(KVM_PHYS_SIZE - 1UL)
82 
83 int create_hyp_mappings(void *from, void *to);
84 int create_hyp_io_mappings(void *from, void *to, phys_addr_t);
85 void free_boot_hyp_pgd(void);
86 void free_hyp_pgds(void);
87 
88 void stage2_unmap_vm(struct kvm *kvm);
89 int kvm_alloc_stage2_pgd(struct kvm *kvm);
90 void kvm_free_stage2_pgd(struct kvm *kvm);
91 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
92 			  phys_addr_t pa, unsigned long size, bool writable);
93 
94 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
95 
96 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
97 
98 phys_addr_t kvm_mmu_get_httbr(void);
99 phys_addr_t kvm_mmu_get_boot_httbr(void);
100 phys_addr_t kvm_get_idmap_vector(void);
101 int kvm_mmu_init(void);
102 void kvm_clear_hyp_idmap(void);
103 
104 #define	kvm_set_pte(ptep, pte)		set_pte(ptep, pte)
105 #define	kvm_set_pmd(pmdp, pmd)		set_pmd(pmdp, pmd)
106 
107 static inline void kvm_clean_pgd(pgd_t *pgd) {}
108 static inline void kvm_clean_pmd(pmd_t *pmd) {}
109 static inline void kvm_clean_pmd_entry(pmd_t *pmd) {}
110 static inline void kvm_clean_pte(pte_t *pte) {}
111 static inline void kvm_clean_pte_entry(pte_t *pte) {}
112 
113 static inline void kvm_set_s2pte_writable(pte_t *pte)
114 {
115 	pte_val(*pte) |= PTE_S2_RDWR;
116 }
117 
118 static inline void kvm_set_s2pmd_writable(pmd_t *pmd)
119 {
120 	pmd_val(*pmd) |= PMD_S2_RDWR;
121 }
122 
123 static inline void kvm_set_s2pte_readonly(pte_t *pte)
124 {
125 	pte_val(*pte) = (pte_val(*pte) & ~PTE_S2_RDWR) | PTE_S2_RDONLY;
126 }
127 
128 static inline bool kvm_s2pte_readonly(pte_t *pte)
129 {
130 	return (pte_val(*pte) & PTE_S2_RDWR) == PTE_S2_RDONLY;
131 }
132 
133 static inline void kvm_set_s2pmd_readonly(pmd_t *pmd)
134 {
135 	pmd_val(*pmd) = (pmd_val(*pmd) & ~PMD_S2_RDWR) | PMD_S2_RDONLY;
136 }
137 
138 static inline bool kvm_s2pmd_readonly(pmd_t *pmd)
139 {
140 	return (pmd_val(*pmd) & PMD_S2_RDWR) == PMD_S2_RDONLY;
141 }
142 
143 
144 #define kvm_pgd_addr_end(addr, end)	pgd_addr_end(addr, end)
145 #define kvm_pud_addr_end(addr, end)	pud_addr_end(addr, end)
146 #define kvm_pmd_addr_end(addr, end)	pmd_addr_end(addr, end)
147 
148 /*
149  * In the case where PGDIR_SHIFT is larger than KVM_PHYS_SHIFT, we can address
150  * the entire IPA input range with a single pgd entry, and we would only need
151  * one pgd entry.  Note that in this case, the pgd is actually not used by
152  * the MMU for Stage-2 translations, but is merely a fake pgd used as a data
153  * structure for the kernel pgtable macros to work.
154  */
155 #if PGDIR_SHIFT > KVM_PHYS_SHIFT
156 #define PTRS_PER_S2_PGD_SHIFT	0
157 #else
158 #define PTRS_PER_S2_PGD_SHIFT	(KVM_PHYS_SHIFT - PGDIR_SHIFT)
159 #endif
160 #define PTRS_PER_S2_PGD		(1 << PTRS_PER_S2_PGD_SHIFT)
161 #define S2_PGD_ORDER		get_order(PTRS_PER_S2_PGD * sizeof(pgd_t))
162 
163 #define kvm_pgd_index(addr)	(((addr) >> PGDIR_SHIFT) & (PTRS_PER_S2_PGD - 1))
164 
165 /*
166  * If we are concatenating first level stage-2 page tables, we would have less
167  * than or equal to 16 pointers in the fake PGD, because that's what the
168  * architecture allows.  In this case, (4 - CONFIG_PGTABLE_LEVELS)
169  * represents the first level for the host, and we add 1 to go to the next
170  * level (which uses contatenation) for the stage-2 tables.
171  */
172 #if PTRS_PER_S2_PGD <= 16
173 #define KVM_PREALLOC_LEVEL	(4 - CONFIG_PGTABLE_LEVELS + 1)
174 #else
175 #define KVM_PREALLOC_LEVEL	(0)
176 #endif
177 
178 static inline void *kvm_get_hwpgd(struct kvm *kvm)
179 {
180 	pgd_t *pgd = kvm->arch.pgd;
181 	pud_t *pud;
182 
183 	if (KVM_PREALLOC_LEVEL == 0)
184 		return pgd;
185 
186 	pud = pud_offset(pgd, 0);
187 	if (KVM_PREALLOC_LEVEL == 1)
188 		return pud;
189 
190 	BUG_ON(KVM_PREALLOC_LEVEL != 2);
191 	return pmd_offset(pud, 0);
192 }
193 
194 static inline unsigned int kvm_get_hwpgd_size(void)
195 {
196 	if (KVM_PREALLOC_LEVEL > 0)
197 		return PTRS_PER_S2_PGD * PAGE_SIZE;
198 	return PTRS_PER_S2_PGD * sizeof(pgd_t);
199 }
200 
201 static inline bool kvm_page_empty(void *ptr)
202 {
203 	struct page *ptr_page = virt_to_page(ptr);
204 	return page_count(ptr_page) == 1;
205 }
206 
207 #define kvm_pte_table_empty(kvm, ptep) kvm_page_empty(ptep)
208 
209 #ifdef __PAGETABLE_PMD_FOLDED
210 #define kvm_pmd_table_empty(kvm, pmdp) (0)
211 #else
212 #define kvm_pmd_table_empty(kvm, pmdp) \
213 	(kvm_page_empty(pmdp) && (!(kvm) || KVM_PREALLOC_LEVEL < 2))
214 #endif
215 
216 #ifdef __PAGETABLE_PUD_FOLDED
217 #define kvm_pud_table_empty(kvm, pudp) (0)
218 #else
219 #define kvm_pud_table_empty(kvm, pudp) \
220 	(kvm_page_empty(pudp) && (!(kvm) || KVM_PREALLOC_LEVEL < 1))
221 #endif
222 
223 
224 struct kvm;
225 
226 #define kvm_flush_dcache_to_poc(a,l)	__flush_dcache_area((a), (l))
227 
228 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
229 {
230 	return (vcpu_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
231 }
232 
233 static inline void __coherent_cache_guest_page(struct kvm_vcpu *vcpu, pfn_t pfn,
234 					       unsigned long size,
235 					       bool ipa_uncached)
236 {
237 	void *va = page_address(pfn_to_page(pfn));
238 
239 	if (!vcpu_has_cache_enabled(vcpu) || ipa_uncached)
240 		kvm_flush_dcache_to_poc(va, size);
241 
242 	if (!icache_is_aliasing()) {		/* PIPT */
243 		flush_icache_range((unsigned long)va,
244 				   (unsigned long)va + size);
245 	} else if (!icache_is_aivivt()) {	/* non ASID-tagged VIVT */
246 		/* any kind of VIPT cache */
247 		__flush_icache_all();
248 	}
249 }
250 
251 static inline void __kvm_flush_dcache_pte(pte_t pte)
252 {
253 	struct page *page = pte_page(pte);
254 	kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE);
255 }
256 
257 static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
258 {
259 	struct page *page = pmd_page(pmd);
260 	kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE);
261 }
262 
263 static inline void __kvm_flush_dcache_pud(pud_t pud)
264 {
265 	struct page *page = pud_page(pud);
266 	kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE);
267 }
268 
269 #define kvm_virt_to_phys(x)		__virt_to_phys((unsigned long)(x))
270 
271 void kvm_set_way_flush(struct kvm_vcpu *vcpu);
272 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
273 
274 static inline bool __kvm_cpu_uses_extended_idmap(void)
275 {
276 	return __cpu_uses_extended_idmap();
277 }
278 
279 static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
280 				       pgd_t *hyp_pgd,
281 				       pgd_t *merged_hyp_pgd,
282 				       unsigned long hyp_idmap_start)
283 {
284 	int idmap_idx;
285 
286 	/*
287 	 * Use the first entry to access the HYP mappings. It is
288 	 * guaranteed to be free, otherwise we wouldn't use an
289 	 * extended idmap.
290 	 */
291 	VM_BUG_ON(pgd_val(merged_hyp_pgd[0]));
292 	merged_hyp_pgd[0] = __pgd(__pa(hyp_pgd) | PMD_TYPE_TABLE);
293 
294 	/*
295 	 * Create another extended level entry that points to the boot HYP map,
296 	 * which contains an ID mapping of the HYP init code. We essentially
297 	 * merge the boot and runtime HYP maps by doing so, but they don't
298 	 * overlap anyway, so this is fine.
299 	 */
300 	idmap_idx = hyp_idmap_start >> VA_BITS;
301 	VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx]));
302 	merged_hyp_pgd[idmap_idx] = __pgd(__pa(boot_hyp_pgd) | PMD_TYPE_TABLE);
303 }
304 
305 #endif /* __ASSEMBLY__ */
306 #endif /* __ARM64_KVM_MMU_H__ */
307