1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2012,2013 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #ifndef __ARM64_KVM_MMU_H__ 8 #define __ARM64_KVM_MMU_H__ 9 10 #include <asm/page.h> 11 #include <asm/memory.h> 12 #include <asm/cpufeature.h> 13 14 /* 15 * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express 16 * "negative" addresses. This makes it impossible to directly share 17 * mappings with the kernel. 18 * 19 * Instead, give the HYP mode its own VA region at a fixed offset from 20 * the kernel by just masking the top bits (which are all ones for a 21 * kernel address). We need to find out how many bits to mask. 22 * 23 * We want to build a set of page tables that cover both parts of the 24 * idmap (the trampoline page used to initialize EL2), and our normal 25 * runtime VA space, at the same time. 26 * 27 * Given that the kernel uses VA_BITS for its entire address space, 28 * and that half of that space (VA_BITS - 1) is used for the linear 29 * mapping, we can also limit the EL2 space to (VA_BITS - 1). 30 * 31 * The main question is "Within the VA_BITS space, does EL2 use the 32 * top or the bottom half of that space to shadow the kernel's linear 33 * mapping?". As we need to idmap the trampoline page, this is 34 * determined by the range in which this page lives. 35 * 36 * If the page is in the bottom half, we have to use the top half. If 37 * the page is in the top half, we have to use the bottom half: 38 * 39 * T = __pa_symbol(__hyp_idmap_text_start) 40 * if (T & BIT(VA_BITS - 1)) 41 * HYP_VA_MIN = 0 //idmap in upper half 42 * else 43 * HYP_VA_MIN = 1 << (VA_BITS - 1) 44 * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1 45 * 46 * This of course assumes that the trampoline page exists within the 47 * VA_BITS range. If it doesn't, then it means we're in the odd case 48 * where the kernel idmap (as well as HYP) uses more levels than the 49 * kernel runtime page tables (as seen when the kernel is configured 50 * for 4k pages, 39bits VA, and yet memory lives just above that 51 * limit, forcing the idmap to use 4 levels of page tables while the 52 * kernel itself only uses 3). In this particular case, it doesn't 53 * matter which side of VA_BITS we use, as we're guaranteed not to 54 * conflict with anything. 55 * 56 * When using VHE, there are no separate hyp mappings and all KVM 57 * functionality is already mapped as part of the main kernel 58 * mappings, and none of this applies in that case. 59 */ 60 61 #ifdef __ASSEMBLY__ 62 63 #include <asm/alternative.h> 64 65 /* 66 * Convert a kernel VA into a HYP VA. 67 * reg: VA to be converted. 68 * 69 * The actual code generation takes place in kvm_update_va_mask, and 70 * the instructions below are only there to reserve the space and 71 * perform the register allocation (kvm_update_va_mask uses the 72 * specific registers encoded in the instructions). 73 */ 74 .macro kern_hyp_va reg 75 alternative_cb kvm_update_va_mask 76 and \reg, \reg, #1 /* mask with va_mask */ 77 ror \reg, \reg, #1 /* rotate to the first tag bit */ 78 add \reg, \reg, #0 /* insert the low 12 bits of the tag */ 79 add \reg, \reg, #0, lsl 12 /* insert the top 12 bits of the tag */ 80 ror \reg, \reg, #63 /* rotate back */ 81 alternative_cb_end 82 .endm 83 84 #else 85 86 #include <linux/pgtable.h> 87 #include <asm/pgalloc.h> 88 #include <asm/cache.h> 89 #include <asm/cacheflush.h> 90 #include <asm/mmu_context.h> 91 92 void kvm_update_va_mask(struct alt_instr *alt, 93 __le32 *origptr, __le32 *updptr, int nr_inst); 94 void kvm_compute_layout(void); 95 96 static __always_inline unsigned long __kern_hyp_va(unsigned long v) 97 { 98 asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n" 99 "ror %0, %0, #1\n" 100 "add %0, %0, #0\n" 101 "add %0, %0, #0, lsl 12\n" 102 "ror %0, %0, #63\n", 103 kvm_update_va_mask) 104 : "+r" (v)); 105 return v; 106 } 107 108 #define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v)))) 109 110 /* 111 * Obtain the PC-relative address of a kernel symbol 112 * s: symbol 113 * 114 * The goal of this macro is to return a symbol's address based on a 115 * PC-relative computation, as opposed to a loading the VA from a 116 * constant pool or something similar. This works well for HYP, as an 117 * absolute VA is guaranteed to be wrong. Only use this if trying to 118 * obtain the address of a symbol (i.e. not something you obtained by 119 * following a pointer). 120 */ 121 #define hyp_symbol_addr(s) \ 122 ({ \ 123 typeof(s) *addr; \ 124 asm("adrp %0, %1\n" \ 125 "add %0, %0, :lo12:%1\n" \ 126 : "=r" (addr) : "S" (&s)); \ 127 addr; \ 128 }) 129 130 /* 131 * We currently support using a VM-specified IPA size. For backward 132 * compatibility, the default IPA size is fixed to 40bits. 133 */ 134 #define KVM_PHYS_SHIFT (40) 135 136 #define kvm_phys_shift(kvm) VTCR_EL2_IPA(kvm->arch.vtcr) 137 #define kvm_phys_size(kvm) (_AC(1, ULL) << kvm_phys_shift(kvm)) 138 #define kvm_phys_mask(kvm) (kvm_phys_size(kvm) - _AC(1, ULL)) 139 140 static inline bool kvm_page_empty(void *ptr) 141 { 142 struct page *ptr_page = virt_to_page(ptr); 143 return page_count(ptr_page) == 1; 144 } 145 146 #include <asm/stage2_pgtable.h> 147 148 int create_hyp_mappings(void *from, void *to, pgprot_t prot); 149 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, 150 void __iomem **kaddr, 151 void __iomem **haddr); 152 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, 153 void **haddr); 154 void free_hyp_pgds(void); 155 156 void stage2_unmap_vm(struct kvm *kvm); 157 int kvm_alloc_stage2_pgd(struct kvm *kvm); 158 void kvm_free_stage2_pgd(struct kvm *kvm); 159 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, 160 phys_addr_t pa, unsigned long size, bool writable); 161 162 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run); 163 164 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu); 165 166 phys_addr_t kvm_mmu_get_httbr(void); 167 phys_addr_t kvm_get_idmap_vector(void); 168 int kvm_mmu_init(void); 169 void kvm_clear_hyp_idmap(void); 170 171 #define kvm_mk_pmd(ptep) \ 172 __pmd(__phys_to_pmd_val(__pa(ptep)) | PMD_TYPE_TABLE) 173 #define kvm_mk_pud(pmdp) \ 174 __pud(__phys_to_pud_val(__pa(pmdp)) | PMD_TYPE_TABLE) 175 #define kvm_mk_p4d(pmdp) \ 176 __p4d(__phys_to_p4d_val(__pa(pmdp)) | PUD_TYPE_TABLE) 177 178 #define kvm_set_pud(pudp, pud) set_pud(pudp, pud) 179 180 #define kvm_pfn_pte(pfn, prot) pfn_pte(pfn, prot) 181 #define kvm_pfn_pmd(pfn, prot) pfn_pmd(pfn, prot) 182 #define kvm_pfn_pud(pfn, prot) pfn_pud(pfn, prot) 183 184 #define kvm_pud_pfn(pud) pud_pfn(pud) 185 186 #define kvm_pmd_mkhuge(pmd) pmd_mkhuge(pmd) 187 #define kvm_pud_mkhuge(pud) pud_mkhuge(pud) 188 189 static inline pte_t kvm_s2pte_mkwrite(pte_t pte) 190 { 191 pte_val(pte) |= PTE_S2_RDWR; 192 return pte; 193 } 194 195 static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd) 196 { 197 pmd_val(pmd) |= PMD_S2_RDWR; 198 return pmd; 199 } 200 201 static inline pud_t kvm_s2pud_mkwrite(pud_t pud) 202 { 203 pud_val(pud) |= PUD_S2_RDWR; 204 return pud; 205 } 206 207 static inline pte_t kvm_s2pte_mkexec(pte_t pte) 208 { 209 pte_val(pte) &= ~PTE_S2_XN; 210 return pte; 211 } 212 213 static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd) 214 { 215 pmd_val(pmd) &= ~PMD_S2_XN; 216 return pmd; 217 } 218 219 static inline pud_t kvm_s2pud_mkexec(pud_t pud) 220 { 221 pud_val(pud) &= ~PUD_S2_XN; 222 return pud; 223 } 224 225 static inline void kvm_set_s2pte_readonly(pte_t *ptep) 226 { 227 pteval_t old_pteval, pteval; 228 229 pteval = READ_ONCE(pte_val(*ptep)); 230 do { 231 old_pteval = pteval; 232 pteval &= ~PTE_S2_RDWR; 233 pteval |= PTE_S2_RDONLY; 234 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval); 235 } while (pteval != old_pteval); 236 } 237 238 static inline bool kvm_s2pte_readonly(pte_t *ptep) 239 { 240 return (READ_ONCE(pte_val(*ptep)) & PTE_S2_RDWR) == PTE_S2_RDONLY; 241 } 242 243 static inline bool kvm_s2pte_exec(pte_t *ptep) 244 { 245 return !(READ_ONCE(pte_val(*ptep)) & PTE_S2_XN); 246 } 247 248 static inline void kvm_set_s2pmd_readonly(pmd_t *pmdp) 249 { 250 kvm_set_s2pte_readonly((pte_t *)pmdp); 251 } 252 253 static inline bool kvm_s2pmd_readonly(pmd_t *pmdp) 254 { 255 return kvm_s2pte_readonly((pte_t *)pmdp); 256 } 257 258 static inline bool kvm_s2pmd_exec(pmd_t *pmdp) 259 { 260 return !(READ_ONCE(pmd_val(*pmdp)) & PMD_S2_XN); 261 } 262 263 static inline void kvm_set_s2pud_readonly(pud_t *pudp) 264 { 265 kvm_set_s2pte_readonly((pte_t *)pudp); 266 } 267 268 static inline bool kvm_s2pud_readonly(pud_t *pudp) 269 { 270 return kvm_s2pte_readonly((pte_t *)pudp); 271 } 272 273 static inline bool kvm_s2pud_exec(pud_t *pudp) 274 { 275 return !(READ_ONCE(pud_val(*pudp)) & PUD_S2_XN); 276 } 277 278 static inline pud_t kvm_s2pud_mkyoung(pud_t pud) 279 { 280 return pud_mkyoung(pud); 281 } 282 283 static inline bool kvm_s2pud_young(pud_t pud) 284 { 285 return pud_young(pud); 286 } 287 288 #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep) 289 290 #ifdef __PAGETABLE_PMD_FOLDED 291 #define hyp_pmd_table_empty(pmdp) (0) 292 #else 293 #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp) 294 #endif 295 296 #ifdef __PAGETABLE_PUD_FOLDED 297 #define hyp_pud_table_empty(pudp) (0) 298 #else 299 #define hyp_pud_table_empty(pudp) kvm_page_empty(pudp) 300 #endif 301 302 #ifdef __PAGETABLE_P4D_FOLDED 303 #define hyp_p4d_table_empty(p4dp) (0) 304 #else 305 #define hyp_p4d_table_empty(p4dp) kvm_page_empty(p4dp) 306 #endif 307 308 struct kvm; 309 310 #define kvm_flush_dcache_to_poc(a,l) __flush_dcache_area((a), (l)) 311 312 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu) 313 { 314 return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101; 315 } 316 317 static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size) 318 { 319 void *va = page_address(pfn_to_page(pfn)); 320 321 /* 322 * With FWB, we ensure that the guest always accesses memory using 323 * cacheable attributes, and we don't have to clean to PoC when 324 * faulting in pages. Furthermore, FWB implies IDC, so cleaning to 325 * PoU is not required either in this case. 326 */ 327 if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) 328 return; 329 330 kvm_flush_dcache_to_poc(va, size); 331 } 332 333 static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn, 334 unsigned long size) 335 { 336 if (icache_is_aliasing()) { 337 /* any kind of VIPT cache */ 338 __flush_icache_all(); 339 } else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) { 340 /* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */ 341 void *va = page_address(pfn_to_page(pfn)); 342 343 invalidate_icache_range((unsigned long)va, 344 (unsigned long)va + size); 345 } 346 } 347 348 static inline void __kvm_flush_dcache_pte(pte_t pte) 349 { 350 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) { 351 struct page *page = pte_page(pte); 352 kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE); 353 } 354 } 355 356 static inline void __kvm_flush_dcache_pmd(pmd_t pmd) 357 { 358 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) { 359 struct page *page = pmd_page(pmd); 360 kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE); 361 } 362 } 363 364 static inline void __kvm_flush_dcache_pud(pud_t pud) 365 { 366 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) { 367 struct page *page = pud_page(pud); 368 kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE); 369 } 370 } 371 372 void kvm_set_way_flush(struct kvm_vcpu *vcpu); 373 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled); 374 375 static inline bool __kvm_cpu_uses_extended_idmap(void) 376 { 377 return __cpu_uses_extended_idmap_level(); 378 } 379 380 static inline unsigned long __kvm_idmap_ptrs_per_pgd(void) 381 { 382 return idmap_ptrs_per_pgd; 383 } 384 385 /* 386 * Can't use pgd_populate here, because the extended idmap adds an extra level 387 * above CONFIG_PGTABLE_LEVELS (which is 2 or 3 if we're using the extended 388 * idmap), and pgd_populate is only available if CONFIG_PGTABLE_LEVELS = 4. 389 */ 390 static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd, 391 pgd_t *hyp_pgd, 392 pgd_t *merged_hyp_pgd, 393 unsigned long hyp_idmap_start) 394 { 395 int idmap_idx; 396 u64 pgd_addr; 397 398 /* 399 * Use the first entry to access the HYP mappings. It is 400 * guaranteed to be free, otherwise we wouldn't use an 401 * extended idmap. 402 */ 403 VM_BUG_ON(pgd_val(merged_hyp_pgd[0])); 404 pgd_addr = __phys_to_pgd_val(__pa(hyp_pgd)); 405 merged_hyp_pgd[0] = __pgd(pgd_addr | PMD_TYPE_TABLE); 406 407 /* 408 * Create another extended level entry that points to the boot HYP map, 409 * which contains an ID mapping of the HYP init code. We essentially 410 * merge the boot and runtime HYP maps by doing so, but they don't 411 * overlap anyway, so this is fine. 412 */ 413 idmap_idx = hyp_idmap_start >> VA_BITS; 414 VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx])); 415 pgd_addr = __phys_to_pgd_val(__pa(boot_hyp_pgd)); 416 merged_hyp_pgd[idmap_idx] = __pgd(pgd_addr | PMD_TYPE_TABLE); 417 } 418 419 static inline unsigned int kvm_get_vmid_bits(void) 420 { 421 int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 422 423 return get_vmid_bits(reg); 424 } 425 426 /* 427 * We are not in the kvm->srcu critical section most of the time, so we take 428 * the SRCU read lock here. Since we copy the data from the user page, we 429 * can immediately drop the lock again. 430 */ 431 static inline int kvm_read_guest_lock(struct kvm *kvm, 432 gpa_t gpa, void *data, unsigned long len) 433 { 434 int srcu_idx = srcu_read_lock(&kvm->srcu); 435 int ret = kvm_read_guest(kvm, gpa, data, len); 436 437 srcu_read_unlock(&kvm->srcu, srcu_idx); 438 439 return ret; 440 } 441 442 static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa, 443 const void *data, unsigned long len) 444 { 445 int srcu_idx = srcu_read_lock(&kvm->srcu); 446 int ret = kvm_write_guest(kvm, gpa, data, len); 447 448 srcu_read_unlock(&kvm->srcu, srcu_idx); 449 450 return ret; 451 } 452 453 #ifdef CONFIG_KVM_INDIRECT_VECTORS 454 /* 455 * EL2 vectors can be mapped and rerouted in a number of ways, 456 * depending on the kernel configuration and CPU present: 457 * 458 * - If the CPU has the ARM64_HARDEN_BRANCH_PREDICTOR cap, the 459 * hardening sequence is placed in one of the vector slots, which is 460 * executed before jumping to the real vectors. 461 * 462 * - If the CPU has both the ARM64_HARDEN_EL2_VECTORS cap and the 463 * ARM64_HARDEN_BRANCH_PREDICTOR cap, the slot containing the 464 * hardening sequence is mapped next to the idmap page, and executed 465 * before jumping to the real vectors. 466 * 467 * - If the CPU only has the ARM64_HARDEN_EL2_VECTORS cap, then an 468 * empty slot is selected, mapped next to the idmap page, and 469 * executed before jumping to the real vectors. 470 * 471 * Note that ARM64_HARDEN_EL2_VECTORS is somewhat incompatible with 472 * VHE, as we don't have hypervisor-specific mappings. If the system 473 * is VHE and yet selects this capability, it will be ignored. 474 */ 475 #include <asm/mmu.h> 476 477 extern void *__kvm_bp_vect_base; 478 extern int __kvm_harden_el2_vector_slot; 479 480 /* This is called on both VHE and !VHE systems */ 481 static inline void *kvm_get_hyp_vector(void) 482 { 483 struct bp_hardening_data *data = arm64_get_bp_hardening_data(); 484 void *vect = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); 485 int slot = -1; 486 487 if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR) && data->fn) { 488 vect = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs)); 489 slot = data->hyp_vectors_slot; 490 } 491 492 if (this_cpu_has_cap(ARM64_HARDEN_EL2_VECTORS) && !has_vhe()) { 493 vect = __kvm_bp_vect_base; 494 if (slot == -1) 495 slot = __kvm_harden_el2_vector_slot; 496 } 497 498 if (slot != -1) 499 vect += slot * SZ_2K; 500 501 return vect; 502 } 503 504 /* This is only called on a !VHE system */ 505 static inline int kvm_map_vectors(void) 506 { 507 /* 508 * HBP = ARM64_HARDEN_BRANCH_PREDICTOR 509 * HEL2 = ARM64_HARDEN_EL2_VECTORS 510 * 511 * !HBP + !HEL2 -> use direct vectors 512 * HBP + !HEL2 -> use hardened vectors in place 513 * !HBP + HEL2 -> allocate one vector slot and use exec mapping 514 * HBP + HEL2 -> use hardened vertors and use exec mapping 515 */ 516 if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR)) { 517 __kvm_bp_vect_base = kvm_ksym_ref(__bp_harden_hyp_vecs); 518 __kvm_bp_vect_base = kern_hyp_va(__kvm_bp_vect_base); 519 } 520 521 if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) { 522 phys_addr_t vect_pa = __pa_symbol(__bp_harden_hyp_vecs); 523 unsigned long size = __BP_HARDEN_HYP_VECS_SZ; 524 525 /* 526 * Always allocate a spare vector slot, as we don't 527 * know yet which CPUs have a BP hardening slot that 528 * we can reuse. 529 */ 530 __kvm_harden_el2_vector_slot = atomic_inc_return(&arm64_el2_vector_last_slot); 531 BUG_ON(__kvm_harden_el2_vector_slot >= BP_HARDEN_EL2_SLOTS); 532 return create_hyp_exec_mappings(vect_pa, size, 533 &__kvm_bp_vect_base); 534 } 535 536 return 0; 537 } 538 #else 539 static inline void *kvm_get_hyp_vector(void) 540 { 541 return kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); 542 } 543 544 static inline int kvm_map_vectors(void) 545 { 546 return 0; 547 } 548 #endif 549 550 #ifdef CONFIG_ARM64_SSBD 551 DECLARE_PER_CPU_READ_MOSTLY(u64, arm64_ssbd_callback_required); 552 553 static inline int hyp_map_aux_data(void) 554 { 555 int cpu, err; 556 557 for_each_possible_cpu(cpu) { 558 u64 *ptr; 559 560 ptr = per_cpu_ptr(&arm64_ssbd_callback_required, cpu); 561 err = create_hyp_mappings(ptr, ptr + 1, PAGE_HYP); 562 if (err) 563 return err; 564 } 565 return 0; 566 } 567 #else 568 static inline int hyp_map_aux_data(void) 569 { 570 return 0; 571 } 572 #endif 573 574 #define kvm_phys_to_vttbr(addr) phys_to_ttbr(addr) 575 576 /* 577 * Get the magic number 'x' for VTTBR:BADDR of this KVM instance. 578 * With v8.2 LVA extensions, 'x' should be a minimum of 6 with 579 * 52bit IPS. 580 */ 581 static inline int arm64_vttbr_x(u32 ipa_shift, u32 levels) 582 { 583 int x = ARM64_VTTBR_X(ipa_shift, levels); 584 585 return (IS_ENABLED(CONFIG_ARM64_PA_BITS_52) && x < 6) ? 6 : x; 586 } 587 588 static inline u64 vttbr_baddr_mask(u32 ipa_shift, u32 levels) 589 { 590 unsigned int x = arm64_vttbr_x(ipa_shift, levels); 591 592 return GENMASK_ULL(PHYS_MASK_SHIFT - 1, x); 593 } 594 595 static inline u64 kvm_vttbr_baddr_mask(struct kvm *kvm) 596 { 597 return vttbr_baddr_mask(kvm_phys_shift(kvm), kvm_stage2_levels(kvm)); 598 } 599 600 static __always_inline u64 kvm_get_vttbr(struct kvm *kvm) 601 { 602 struct kvm_vmid *vmid = &kvm->arch.vmid; 603 u64 vmid_field, baddr; 604 u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0; 605 606 baddr = kvm->arch.pgd_phys; 607 vmid_field = (u64)vmid->vmid << VTTBR_VMID_SHIFT; 608 return kvm_phys_to_vttbr(baddr) | vmid_field | cnp; 609 } 610 611 /* 612 * Must be called from hyp code running at EL2 with an updated VTTBR 613 * and interrupts disabled. 614 */ 615 static __always_inline void __load_guest_stage2(struct kvm *kvm) 616 { 617 write_sysreg(kvm->arch.vtcr, vtcr_el2); 618 write_sysreg(kvm_get_vttbr(kvm), vttbr_el2); 619 620 /* 621 * ARM errata 1165522 and 1530923 require the actual execution of the 622 * above before we can switch to the EL1/EL0 translation regime used by 623 * the guest. 624 */ 625 asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT)); 626 } 627 628 #endif /* __ASSEMBLY__ */ 629 #endif /* __ARM64_KVM_MMU_H__ */ 630