xref: /openbmc/linux/arch/arm64/include/asm/kvm_mmu.h (revision ba61bb17)
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #ifndef __ARM64_KVM_MMU_H__
19 #define __ARM64_KVM_MMU_H__
20 
21 #include <asm/page.h>
22 #include <asm/memory.h>
23 #include <asm/cpufeature.h>
24 
25 /*
26  * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
27  * "negative" addresses. This makes it impossible to directly share
28  * mappings with the kernel.
29  *
30  * Instead, give the HYP mode its own VA region at a fixed offset from
31  * the kernel by just masking the top bits (which are all ones for a
32  * kernel address). We need to find out how many bits to mask.
33  *
34  * We want to build a set of page tables that cover both parts of the
35  * idmap (the trampoline page used to initialize EL2), and our normal
36  * runtime VA space, at the same time.
37  *
38  * Given that the kernel uses VA_BITS for its entire address space,
39  * and that half of that space (VA_BITS - 1) is used for the linear
40  * mapping, we can also limit the EL2 space to (VA_BITS - 1).
41  *
42  * The main question is "Within the VA_BITS space, does EL2 use the
43  * top or the bottom half of that space to shadow the kernel's linear
44  * mapping?". As we need to idmap the trampoline page, this is
45  * determined by the range in which this page lives.
46  *
47  * If the page is in the bottom half, we have to use the top half. If
48  * the page is in the top half, we have to use the bottom half:
49  *
50  * T = __pa_symbol(__hyp_idmap_text_start)
51  * if (T & BIT(VA_BITS - 1))
52  *	HYP_VA_MIN = 0  //idmap in upper half
53  * else
54  *	HYP_VA_MIN = 1 << (VA_BITS - 1)
55  * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
56  *
57  * This of course assumes that the trampoline page exists within the
58  * VA_BITS range. If it doesn't, then it means we're in the odd case
59  * where the kernel idmap (as well as HYP) uses more levels than the
60  * kernel runtime page tables (as seen when the kernel is configured
61  * for 4k pages, 39bits VA, and yet memory lives just above that
62  * limit, forcing the idmap to use 4 levels of page tables while the
63  * kernel itself only uses 3). In this particular case, it doesn't
64  * matter which side of VA_BITS we use, as we're guaranteed not to
65  * conflict with anything.
66  *
67  * When using VHE, there are no separate hyp mappings and all KVM
68  * functionality is already mapped as part of the main kernel
69  * mappings, and none of this applies in that case.
70  */
71 
72 #ifdef __ASSEMBLY__
73 
74 #include <asm/alternative.h>
75 
76 /*
77  * Convert a kernel VA into a HYP VA.
78  * reg: VA to be converted.
79  *
80  * The actual code generation takes place in kvm_update_va_mask, and
81  * the instructions below are only there to reserve the space and
82  * perform the register allocation (kvm_update_va_mask uses the
83  * specific registers encoded in the instructions).
84  */
85 .macro kern_hyp_va	reg
86 alternative_cb kvm_update_va_mask
87 	and     \reg, \reg, #1		/* mask with va_mask */
88 	ror	\reg, \reg, #1		/* rotate to the first tag bit */
89 	add	\reg, \reg, #0		/* insert the low 12 bits of the tag */
90 	add	\reg, \reg, #0, lsl 12	/* insert the top 12 bits of the tag */
91 	ror	\reg, \reg, #63		/* rotate back */
92 alternative_cb_end
93 .endm
94 
95 #else
96 
97 #include <asm/pgalloc.h>
98 #include <asm/cache.h>
99 #include <asm/cacheflush.h>
100 #include <asm/mmu_context.h>
101 #include <asm/pgtable.h>
102 
103 void kvm_update_va_mask(struct alt_instr *alt,
104 			__le32 *origptr, __le32 *updptr, int nr_inst);
105 
106 static inline unsigned long __kern_hyp_va(unsigned long v)
107 {
108 	asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n"
109 				    "ror %0, %0, #1\n"
110 				    "add %0, %0, #0\n"
111 				    "add %0, %0, #0, lsl 12\n"
112 				    "ror %0, %0, #63\n",
113 				    kvm_update_va_mask)
114 		     : "+r" (v));
115 	return v;
116 }
117 
118 #define kern_hyp_va(v) 	((typeof(v))(__kern_hyp_va((unsigned long)(v))))
119 
120 /*
121  * Obtain the PC-relative address of a kernel symbol
122  * s: symbol
123  *
124  * The goal of this macro is to return a symbol's address based on a
125  * PC-relative computation, as opposed to a loading the VA from a
126  * constant pool or something similar. This works well for HYP, as an
127  * absolute VA is guaranteed to be wrong. Only use this if trying to
128  * obtain the address of a symbol (i.e. not something you obtained by
129  * following a pointer).
130  */
131 #define hyp_symbol_addr(s)						\
132 	({								\
133 		typeof(s) *addr;					\
134 		asm("adrp	%0, %1\n"				\
135 		    "add	%0, %0, :lo12:%1\n"			\
136 		    : "=r" (addr) : "S" (&s));				\
137 		addr;							\
138 	})
139 
140 /*
141  * We currently only support a 40bit IPA.
142  */
143 #define KVM_PHYS_SHIFT	(40)
144 #define KVM_PHYS_SIZE	(1UL << KVM_PHYS_SHIFT)
145 #define KVM_PHYS_MASK	(KVM_PHYS_SIZE - 1UL)
146 
147 #include <asm/stage2_pgtable.h>
148 
149 int create_hyp_mappings(void *from, void *to, pgprot_t prot);
150 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
151 			   void __iomem **kaddr,
152 			   void __iomem **haddr);
153 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
154 			     void **haddr);
155 void free_hyp_pgds(void);
156 
157 void stage2_unmap_vm(struct kvm *kvm);
158 int kvm_alloc_stage2_pgd(struct kvm *kvm);
159 void kvm_free_stage2_pgd(struct kvm *kvm);
160 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
161 			  phys_addr_t pa, unsigned long size, bool writable);
162 
163 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
164 
165 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
166 
167 phys_addr_t kvm_mmu_get_httbr(void);
168 phys_addr_t kvm_get_idmap_vector(void);
169 int kvm_mmu_init(void);
170 void kvm_clear_hyp_idmap(void);
171 
172 #define	kvm_set_pte(ptep, pte)		set_pte(ptep, pte)
173 #define	kvm_set_pmd(pmdp, pmd)		set_pmd(pmdp, pmd)
174 
175 static inline pte_t kvm_s2pte_mkwrite(pte_t pte)
176 {
177 	pte_val(pte) |= PTE_S2_RDWR;
178 	return pte;
179 }
180 
181 static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd)
182 {
183 	pmd_val(pmd) |= PMD_S2_RDWR;
184 	return pmd;
185 }
186 
187 static inline pte_t kvm_s2pte_mkexec(pte_t pte)
188 {
189 	pte_val(pte) &= ~PTE_S2_XN;
190 	return pte;
191 }
192 
193 static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd)
194 {
195 	pmd_val(pmd) &= ~PMD_S2_XN;
196 	return pmd;
197 }
198 
199 static inline void kvm_set_s2pte_readonly(pte_t *ptep)
200 {
201 	pteval_t old_pteval, pteval;
202 
203 	pteval = READ_ONCE(pte_val(*ptep));
204 	do {
205 		old_pteval = pteval;
206 		pteval &= ~PTE_S2_RDWR;
207 		pteval |= PTE_S2_RDONLY;
208 		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
209 	} while (pteval != old_pteval);
210 }
211 
212 static inline bool kvm_s2pte_readonly(pte_t *ptep)
213 {
214 	return (READ_ONCE(pte_val(*ptep)) & PTE_S2_RDWR) == PTE_S2_RDONLY;
215 }
216 
217 static inline bool kvm_s2pte_exec(pte_t *ptep)
218 {
219 	return !(READ_ONCE(pte_val(*ptep)) & PTE_S2_XN);
220 }
221 
222 static inline void kvm_set_s2pmd_readonly(pmd_t *pmdp)
223 {
224 	kvm_set_s2pte_readonly((pte_t *)pmdp);
225 }
226 
227 static inline bool kvm_s2pmd_readonly(pmd_t *pmdp)
228 {
229 	return kvm_s2pte_readonly((pte_t *)pmdp);
230 }
231 
232 static inline bool kvm_s2pmd_exec(pmd_t *pmdp)
233 {
234 	return !(READ_ONCE(pmd_val(*pmdp)) & PMD_S2_XN);
235 }
236 
237 static inline bool kvm_page_empty(void *ptr)
238 {
239 	struct page *ptr_page = virt_to_page(ptr);
240 	return page_count(ptr_page) == 1;
241 }
242 
243 #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
244 
245 #ifdef __PAGETABLE_PMD_FOLDED
246 #define hyp_pmd_table_empty(pmdp) (0)
247 #else
248 #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
249 #endif
250 
251 #ifdef __PAGETABLE_PUD_FOLDED
252 #define hyp_pud_table_empty(pudp) (0)
253 #else
254 #define hyp_pud_table_empty(pudp) kvm_page_empty(pudp)
255 #endif
256 
257 struct kvm;
258 
259 #define kvm_flush_dcache_to_poc(a,l)	__flush_dcache_area((a), (l))
260 
261 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
262 {
263 	return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
264 }
265 
266 static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
267 {
268 	void *va = page_address(pfn_to_page(pfn));
269 
270 	kvm_flush_dcache_to_poc(va, size);
271 }
272 
273 static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn,
274 						  unsigned long size)
275 {
276 	if (icache_is_aliasing()) {
277 		/* any kind of VIPT cache */
278 		__flush_icache_all();
279 	} else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
280 		/* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
281 		void *va = page_address(pfn_to_page(pfn));
282 
283 		invalidate_icache_range((unsigned long)va,
284 					(unsigned long)va + size);
285 	}
286 }
287 
288 static inline void __kvm_flush_dcache_pte(pte_t pte)
289 {
290 	struct page *page = pte_page(pte);
291 	kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE);
292 }
293 
294 static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
295 {
296 	struct page *page = pmd_page(pmd);
297 	kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE);
298 }
299 
300 static inline void __kvm_flush_dcache_pud(pud_t pud)
301 {
302 	struct page *page = pud_page(pud);
303 	kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE);
304 }
305 
306 #define kvm_virt_to_phys(x)		__pa_symbol(x)
307 
308 void kvm_set_way_flush(struct kvm_vcpu *vcpu);
309 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
310 
311 static inline bool __kvm_cpu_uses_extended_idmap(void)
312 {
313 	return __cpu_uses_extended_idmap_level();
314 }
315 
316 static inline unsigned long __kvm_idmap_ptrs_per_pgd(void)
317 {
318 	return idmap_ptrs_per_pgd;
319 }
320 
321 /*
322  * Can't use pgd_populate here, because the extended idmap adds an extra level
323  * above CONFIG_PGTABLE_LEVELS (which is 2 or 3 if we're using the extended
324  * idmap), and pgd_populate is only available if CONFIG_PGTABLE_LEVELS = 4.
325  */
326 static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
327 				       pgd_t *hyp_pgd,
328 				       pgd_t *merged_hyp_pgd,
329 				       unsigned long hyp_idmap_start)
330 {
331 	int idmap_idx;
332 	u64 pgd_addr;
333 
334 	/*
335 	 * Use the first entry to access the HYP mappings. It is
336 	 * guaranteed to be free, otherwise we wouldn't use an
337 	 * extended idmap.
338 	 */
339 	VM_BUG_ON(pgd_val(merged_hyp_pgd[0]));
340 	pgd_addr = __phys_to_pgd_val(__pa(hyp_pgd));
341 	merged_hyp_pgd[0] = __pgd(pgd_addr | PMD_TYPE_TABLE);
342 
343 	/*
344 	 * Create another extended level entry that points to the boot HYP map,
345 	 * which contains an ID mapping of the HYP init code. We essentially
346 	 * merge the boot and runtime HYP maps by doing so, but they don't
347 	 * overlap anyway, so this is fine.
348 	 */
349 	idmap_idx = hyp_idmap_start >> VA_BITS;
350 	VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx]));
351 	pgd_addr = __phys_to_pgd_val(__pa(boot_hyp_pgd));
352 	merged_hyp_pgd[idmap_idx] = __pgd(pgd_addr | PMD_TYPE_TABLE);
353 }
354 
355 static inline unsigned int kvm_get_vmid_bits(void)
356 {
357 	int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
358 
359 	return (cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR1_VMIDBITS_SHIFT) == 2) ? 16 : 8;
360 }
361 
362 /*
363  * We are not in the kvm->srcu critical section most of the time, so we take
364  * the SRCU read lock here. Since we copy the data from the user page, we
365  * can immediately drop the lock again.
366  */
367 static inline int kvm_read_guest_lock(struct kvm *kvm,
368 				      gpa_t gpa, void *data, unsigned long len)
369 {
370 	int srcu_idx = srcu_read_lock(&kvm->srcu);
371 	int ret = kvm_read_guest(kvm, gpa, data, len);
372 
373 	srcu_read_unlock(&kvm->srcu, srcu_idx);
374 
375 	return ret;
376 }
377 
378 #ifdef CONFIG_KVM_INDIRECT_VECTORS
379 /*
380  * EL2 vectors can be mapped and rerouted in a number of ways,
381  * depending on the kernel configuration and CPU present:
382  *
383  * - If the CPU has the ARM64_HARDEN_BRANCH_PREDICTOR cap, the
384  *   hardening sequence is placed in one of the vector slots, which is
385  *   executed before jumping to the real vectors.
386  *
387  * - If the CPU has both the ARM64_HARDEN_EL2_VECTORS cap and the
388  *   ARM64_HARDEN_BRANCH_PREDICTOR cap, the slot containing the
389  *   hardening sequence is mapped next to the idmap page, and executed
390  *   before jumping to the real vectors.
391  *
392  * - If the CPU only has the ARM64_HARDEN_EL2_VECTORS cap, then an
393  *   empty slot is selected, mapped next to the idmap page, and
394  *   executed before jumping to the real vectors.
395  *
396  * Note that ARM64_HARDEN_EL2_VECTORS is somewhat incompatible with
397  * VHE, as we don't have hypervisor-specific mappings. If the system
398  * is VHE and yet selects this capability, it will be ignored.
399  */
400 #include <asm/mmu.h>
401 
402 extern void *__kvm_bp_vect_base;
403 extern int __kvm_harden_el2_vector_slot;
404 
405 static inline void *kvm_get_hyp_vector(void)
406 {
407 	struct bp_hardening_data *data = arm64_get_bp_hardening_data();
408 	void *vect = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
409 	int slot = -1;
410 
411 	if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR) && data->fn) {
412 		vect = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs_start));
413 		slot = data->hyp_vectors_slot;
414 	}
415 
416 	if (this_cpu_has_cap(ARM64_HARDEN_EL2_VECTORS) && !has_vhe()) {
417 		vect = __kvm_bp_vect_base;
418 		if (slot == -1)
419 			slot = __kvm_harden_el2_vector_slot;
420 	}
421 
422 	if (slot != -1)
423 		vect += slot * SZ_2K;
424 
425 	return vect;
426 }
427 
428 /*  This is only called on a !VHE system */
429 static inline int kvm_map_vectors(void)
430 {
431 	/*
432 	 * HBP  = ARM64_HARDEN_BRANCH_PREDICTOR
433 	 * HEL2 = ARM64_HARDEN_EL2_VECTORS
434 	 *
435 	 * !HBP + !HEL2 -> use direct vectors
436 	 *  HBP + !HEL2 -> use hardened vectors in place
437 	 * !HBP +  HEL2 -> allocate one vector slot and use exec mapping
438 	 *  HBP +  HEL2 -> use hardened vertors and use exec mapping
439 	 */
440 	if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR)) {
441 		__kvm_bp_vect_base = kvm_ksym_ref(__bp_harden_hyp_vecs_start);
442 		__kvm_bp_vect_base = kern_hyp_va(__kvm_bp_vect_base);
443 	}
444 
445 	if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) {
446 		phys_addr_t vect_pa = __pa_symbol(__bp_harden_hyp_vecs_start);
447 		unsigned long size = (__bp_harden_hyp_vecs_end -
448 				      __bp_harden_hyp_vecs_start);
449 
450 		/*
451 		 * Always allocate a spare vector slot, as we don't
452 		 * know yet which CPUs have a BP hardening slot that
453 		 * we can reuse.
454 		 */
455 		__kvm_harden_el2_vector_slot = atomic_inc_return(&arm64_el2_vector_last_slot);
456 		BUG_ON(__kvm_harden_el2_vector_slot >= BP_HARDEN_EL2_SLOTS);
457 		return create_hyp_exec_mappings(vect_pa, size,
458 						&__kvm_bp_vect_base);
459 	}
460 
461 	return 0;
462 }
463 #else
464 static inline void *kvm_get_hyp_vector(void)
465 {
466 	return kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
467 }
468 
469 static inline int kvm_map_vectors(void)
470 {
471 	return 0;
472 }
473 #endif
474 
475 #ifdef CONFIG_ARM64_SSBD
476 DECLARE_PER_CPU_READ_MOSTLY(u64, arm64_ssbd_callback_required);
477 
478 static inline int hyp_map_aux_data(void)
479 {
480 	int cpu, err;
481 
482 	for_each_possible_cpu(cpu) {
483 		u64 *ptr;
484 
485 		ptr = per_cpu_ptr(&arm64_ssbd_callback_required, cpu);
486 		err = create_hyp_mappings(ptr, ptr + 1, PAGE_HYP);
487 		if (err)
488 			return err;
489 	}
490 	return 0;
491 }
492 #else
493 static inline int hyp_map_aux_data(void)
494 {
495 	return 0;
496 }
497 #endif
498 
499 #define kvm_phys_to_vttbr(addr)		phys_to_ttbr(addr)
500 
501 #endif /* __ASSEMBLY__ */
502 #endif /* __ARM64_KVM_MMU_H__ */
503