xref: /openbmc/linux/arch/arm64/include/asm/kvm_mmu.h (revision b8d312aa)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #ifndef __ARM64_KVM_MMU_H__
8 #define __ARM64_KVM_MMU_H__
9 
10 #include <asm/page.h>
11 #include <asm/memory.h>
12 #include <asm/cpufeature.h>
13 
14 /*
15  * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
16  * "negative" addresses. This makes it impossible to directly share
17  * mappings with the kernel.
18  *
19  * Instead, give the HYP mode its own VA region at a fixed offset from
20  * the kernel by just masking the top bits (which are all ones for a
21  * kernel address). We need to find out how many bits to mask.
22  *
23  * We want to build a set of page tables that cover both parts of the
24  * idmap (the trampoline page used to initialize EL2), and our normal
25  * runtime VA space, at the same time.
26  *
27  * Given that the kernel uses VA_BITS for its entire address space,
28  * and that half of that space (VA_BITS - 1) is used for the linear
29  * mapping, we can also limit the EL2 space to (VA_BITS - 1).
30  *
31  * The main question is "Within the VA_BITS space, does EL2 use the
32  * top or the bottom half of that space to shadow the kernel's linear
33  * mapping?". As we need to idmap the trampoline page, this is
34  * determined by the range in which this page lives.
35  *
36  * If the page is in the bottom half, we have to use the top half. If
37  * the page is in the top half, we have to use the bottom half:
38  *
39  * T = __pa_symbol(__hyp_idmap_text_start)
40  * if (T & BIT(VA_BITS - 1))
41  *	HYP_VA_MIN = 0  //idmap in upper half
42  * else
43  *	HYP_VA_MIN = 1 << (VA_BITS - 1)
44  * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
45  *
46  * This of course assumes that the trampoline page exists within the
47  * VA_BITS range. If it doesn't, then it means we're in the odd case
48  * where the kernel idmap (as well as HYP) uses more levels than the
49  * kernel runtime page tables (as seen when the kernel is configured
50  * for 4k pages, 39bits VA, and yet memory lives just above that
51  * limit, forcing the idmap to use 4 levels of page tables while the
52  * kernel itself only uses 3). In this particular case, it doesn't
53  * matter which side of VA_BITS we use, as we're guaranteed not to
54  * conflict with anything.
55  *
56  * When using VHE, there are no separate hyp mappings and all KVM
57  * functionality is already mapped as part of the main kernel
58  * mappings, and none of this applies in that case.
59  */
60 
61 #ifdef __ASSEMBLY__
62 
63 #include <asm/alternative.h>
64 
65 /*
66  * Convert a kernel VA into a HYP VA.
67  * reg: VA to be converted.
68  *
69  * The actual code generation takes place in kvm_update_va_mask, and
70  * the instructions below are only there to reserve the space and
71  * perform the register allocation (kvm_update_va_mask uses the
72  * specific registers encoded in the instructions).
73  */
74 .macro kern_hyp_va	reg
75 alternative_cb kvm_update_va_mask
76 	and     \reg, \reg, #1		/* mask with va_mask */
77 	ror	\reg, \reg, #1		/* rotate to the first tag bit */
78 	add	\reg, \reg, #0		/* insert the low 12 bits of the tag */
79 	add	\reg, \reg, #0, lsl 12	/* insert the top 12 bits of the tag */
80 	ror	\reg, \reg, #63		/* rotate back */
81 alternative_cb_end
82 .endm
83 
84 #else
85 
86 #include <asm/pgalloc.h>
87 #include <asm/cache.h>
88 #include <asm/cacheflush.h>
89 #include <asm/mmu_context.h>
90 #include <asm/pgtable.h>
91 
92 void kvm_update_va_mask(struct alt_instr *alt,
93 			__le32 *origptr, __le32 *updptr, int nr_inst);
94 
95 static inline unsigned long __kern_hyp_va(unsigned long v)
96 {
97 	asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n"
98 				    "ror %0, %0, #1\n"
99 				    "add %0, %0, #0\n"
100 				    "add %0, %0, #0, lsl 12\n"
101 				    "ror %0, %0, #63\n",
102 				    kvm_update_va_mask)
103 		     : "+r" (v));
104 	return v;
105 }
106 
107 #define kern_hyp_va(v) 	((typeof(v))(__kern_hyp_va((unsigned long)(v))))
108 
109 /*
110  * Obtain the PC-relative address of a kernel symbol
111  * s: symbol
112  *
113  * The goal of this macro is to return a symbol's address based on a
114  * PC-relative computation, as opposed to a loading the VA from a
115  * constant pool or something similar. This works well for HYP, as an
116  * absolute VA is guaranteed to be wrong. Only use this if trying to
117  * obtain the address of a symbol (i.e. not something you obtained by
118  * following a pointer).
119  */
120 #define hyp_symbol_addr(s)						\
121 	({								\
122 		typeof(s) *addr;					\
123 		asm("adrp	%0, %1\n"				\
124 		    "add	%0, %0, :lo12:%1\n"			\
125 		    : "=r" (addr) : "S" (&s));				\
126 		addr;							\
127 	})
128 
129 /*
130  * We currently support using a VM-specified IPA size. For backward
131  * compatibility, the default IPA size is fixed to 40bits.
132  */
133 #define KVM_PHYS_SHIFT	(40)
134 
135 #define kvm_phys_shift(kvm)		VTCR_EL2_IPA(kvm->arch.vtcr)
136 #define kvm_phys_size(kvm)		(_AC(1, ULL) << kvm_phys_shift(kvm))
137 #define kvm_phys_mask(kvm)		(kvm_phys_size(kvm) - _AC(1, ULL))
138 
139 static inline bool kvm_page_empty(void *ptr)
140 {
141 	struct page *ptr_page = virt_to_page(ptr);
142 	return page_count(ptr_page) == 1;
143 }
144 
145 #include <asm/stage2_pgtable.h>
146 
147 int create_hyp_mappings(void *from, void *to, pgprot_t prot);
148 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
149 			   void __iomem **kaddr,
150 			   void __iomem **haddr);
151 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
152 			     void **haddr);
153 void free_hyp_pgds(void);
154 
155 void stage2_unmap_vm(struct kvm *kvm);
156 int kvm_alloc_stage2_pgd(struct kvm *kvm);
157 void kvm_free_stage2_pgd(struct kvm *kvm);
158 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
159 			  phys_addr_t pa, unsigned long size, bool writable);
160 
161 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
162 
163 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
164 
165 phys_addr_t kvm_mmu_get_httbr(void);
166 phys_addr_t kvm_get_idmap_vector(void);
167 int kvm_mmu_init(void);
168 void kvm_clear_hyp_idmap(void);
169 
170 #define kvm_mk_pmd(ptep)					\
171 	__pmd(__phys_to_pmd_val(__pa(ptep)) | PMD_TYPE_TABLE)
172 #define kvm_mk_pud(pmdp)					\
173 	__pud(__phys_to_pud_val(__pa(pmdp)) | PMD_TYPE_TABLE)
174 #define kvm_mk_pgd(pudp)					\
175 	__pgd(__phys_to_pgd_val(__pa(pudp)) | PUD_TYPE_TABLE)
176 
177 #define kvm_set_pud(pudp, pud)		set_pud(pudp, pud)
178 
179 #define kvm_pfn_pte(pfn, prot)		pfn_pte(pfn, prot)
180 #define kvm_pfn_pmd(pfn, prot)		pfn_pmd(pfn, prot)
181 #define kvm_pfn_pud(pfn, prot)		pfn_pud(pfn, prot)
182 
183 #define kvm_pud_pfn(pud)		pud_pfn(pud)
184 
185 #define kvm_pmd_mkhuge(pmd)		pmd_mkhuge(pmd)
186 #define kvm_pud_mkhuge(pud)		pud_mkhuge(pud)
187 
188 static inline pte_t kvm_s2pte_mkwrite(pte_t pte)
189 {
190 	pte_val(pte) |= PTE_S2_RDWR;
191 	return pte;
192 }
193 
194 static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd)
195 {
196 	pmd_val(pmd) |= PMD_S2_RDWR;
197 	return pmd;
198 }
199 
200 static inline pud_t kvm_s2pud_mkwrite(pud_t pud)
201 {
202 	pud_val(pud) |= PUD_S2_RDWR;
203 	return pud;
204 }
205 
206 static inline pte_t kvm_s2pte_mkexec(pte_t pte)
207 {
208 	pte_val(pte) &= ~PTE_S2_XN;
209 	return pte;
210 }
211 
212 static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd)
213 {
214 	pmd_val(pmd) &= ~PMD_S2_XN;
215 	return pmd;
216 }
217 
218 static inline pud_t kvm_s2pud_mkexec(pud_t pud)
219 {
220 	pud_val(pud) &= ~PUD_S2_XN;
221 	return pud;
222 }
223 
224 static inline void kvm_set_s2pte_readonly(pte_t *ptep)
225 {
226 	pteval_t old_pteval, pteval;
227 
228 	pteval = READ_ONCE(pte_val(*ptep));
229 	do {
230 		old_pteval = pteval;
231 		pteval &= ~PTE_S2_RDWR;
232 		pteval |= PTE_S2_RDONLY;
233 		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
234 	} while (pteval != old_pteval);
235 }
236 
237 static inline bool kvm_s2pte_readonly(pte_t *ptep)
238 {
239 	return (READ_ONCE(pte_val(*ptep)) & PTE_S2_RDWR) == PTE_S2_RDONLY;
240 }
241 
242 static inline bool kvm_s2pte_exec(pte_t *ptep)
243 {
244 	return !(READ_ONCE(pte_val(*ptep)) & PTE_S2_XN);
245 }
246 
247 static inline void kvm_set_s2pmd_readonly(pmd_t *pmdp)
248 {
249 	kvm_set_s2pte_readonly((pte_t *)pmdp);
250 }
251 
252 static inline bool kvm_s2pmd_readonly(pmd_t *pmdp)
253 {
254 	return kvm_s2pte_readonly((pte_t *)pmdp);
255 }
256 
257 static inline bool kvm_s2pmd_exec(pmd_t *pmdp)
258 {
259 	return !(READ_ONCE(pmd_val(*pmdp)) & PMD_S2_XN);
260 }
261 
262 static inline void kvm_set_s2pud_readonly(pud_t *pudp)
263 {
264 	kvm_set_s2pte_readonly((pte_t *)pudp);
265 }
266 
267 static inline bool kvm_s2pud_readonly(pud_t *pudp)
268 {
269 	return kvm_s2pte_readonly((pte_t *)pudp);
270 }
271 
272 static inline bool kvm_s2pud_exec(pud_t *pudp)
273 {
274 	return !(READ_ONCE(pud_val(*pudp)) & PUD_S2_XN);
275 }
276 
277 static inline pud_t kvm_s2pud_mkyoung(pud_t pud)
278 {
279 	return pud_mkyoung(pud);
280 }
281 
282 static inline bool kvm_s2pud_young(pud_t pud)
283 {
284 	return pud_young(pud);
285 }
286 
287 #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
288 
289 #ifdef __PAGETABLE_PMD_FOLDED
290 #define hyp_pmd_table_empty(pmdp) (0)
291 #else
292 #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
293 #endif
294 
295 #ifdef __PAGETABLE_PUD_FOLDED
296 #define hyp_pud_table_empty(pudp) (0)
297 #else
298 #define hyp_pud_table_empty(pudp) kvm_page_empty(pudp)
299 #endif
300 
301 struct kvm;
302 
303 #define kvm_flush_dcache_to_poc(a,l)	__flush_dcache_area((a), (l))
304 
305 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
306 {
307 	return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
308 }
309 
310 static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
311 {
312 	void *va = page_address(pfn_to_page(pfn));
313 
314 	/*
315 	 * With FWB, we ensure that the guest always accesses memory using
316 	 * cacheable attributes, and we don't have to clean to PoC when
317 	 * faulting in pages. Furthermore, FWB implies IDC, so cleaning to
318 	 * PoU is not required either in this case.
319 	 */
320 	if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
321 		return;
322 
323 	kvm_flush_dcache_to_poc(va, size);
324 }
325 
326 static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn,
327 						  unsigned long size)
328 {
329 	if (icache_is_aliasing()) {
330 		/* any kind of VIPT cache */
331 		__flush_icache_all();
332 	} else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
333 		/* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
334 		void *va = page_address(pfn_to_page(pfn));
335 
336 		invalidate_icache_range((unsigned long)va,
337 					(unsigned long)va + size);
338 	}
339 }
340 
341 static inline void __kvm_flush_dcache_pte(pte_t pte)
342 {
343 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
344 		struct page *page = pte_page(pte);
345 		kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE);
346 	}
347 }
348 
349 static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
350 {
351 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
352 		struct page *page = pmd_page(pmd);
353 		kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE);
354 	}
355 }
356 
357 static inline void __kvm_flush_dcache_pud(pud_t pud)
358 {
359 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
360 		struct page *page = pud_page(pud);
361 		kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE);
362 	}
363 }
364 
365 #define kvm_virt_to_phys(x)		__pa_symbol(x)
366 
367 void kvm_set_way_flush(struct kvm_vcpu *vcpu);
368 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
369 
370 static inline bool __kvm_cpu_uses_extended_idmap(void)
371 {
372 	return __cpu_uses_extended_idmap_level();
373 }
374 
375 static inline unsigned long __kvm_idmap_ptrs_per_pgd(void)
376 {
377 	return idmap_ptrs_per_pgd;
378 }
379 
380 /*
381  * Can't use pgd_populate here, because the extended idmap adds an extra level
382  * above CONFIG_PGTABLE_LEVELS (which is 2 or 3 if we're using the extended
383  * idmap), and pgd_populate is only available if CONFIG_PGTABLE_LEVELS = 4.
384  */
385 static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
386 				       pgd_t *hyp_pgd,
387 				       pgd_t *merged_hyp_pgd,
388 				       unsigned long hyp_idmap_start)
389 {
390 	int idmap_idx;
391 	u64 pgd_addr;
392 
393 	/*
394 	 * Use the first entry to access the HYP mappings. It is
395 	 * guaranteed to be free, otherwise we wouldn't use an
396 	 * extended idmap.
397 	 */
398 	VM_BUG_ON(pgd_val(merged_hyp_pgd[0]));
399 	pgd_addr = __phys_to_pgd_val(__pa(hyp_pgd));
400 	merged_hyp_pgd[0] = __pgd(pgd_addr | PMD_TYPE_TABLE);
401 
402 	/*
403 	 * Create another extended level entry that points to the boot HYP map,
404 	 * which contains an ID mapping of the HYP init code. We essentially
405 	 * merge the boot and runtime HYP maps by doing so, but they don't
406 	 * overlap anyway, so this is fine.
407 	 */
408 	idmap_idx = hyp_idmap_start >> VA_BITS;
409 	VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx]));
410 	pgd_addr = __phys_to_pgd_val(__pa(boot_hyp_pgd));
411 	merged_hyp_pgd[idmap_idx] = __pgd(pgd_addr | PMD_TYPE_TABLE);
412 }
413 
414 static inline unsigned int kvm_get_vmid_bits(void)
415 {
416 	int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
417 
418 	return (cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR1_VMIDBITS_SHIFT) == 2) ? 16 : 8;
419 }
420 
421 /*
422  * We are not in the kvm->srcu critical section most of the time, so we take
423  * the SRCU read lock here. Since we copy the data from the user page, we
424  * can immediately drop the lock again.
425  */
426 static inline int kvm_read_guest_lock(struct kvm *kvm,
427 				      gpa_t gpa, void *data, unsigned long len)
428 {
429 	int srcu_idx = srcu_read_lock(&kvm->srcu);
430 	int ret = kvm_read_guest(kvm, gpa, data, len);
431 
432 	srcu_read_unlock(&kvm->srcu, srcu_idx);
433 
434 	return ret;
435 }
436 
437 static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa,
438 				       const void *data, unsigned long len)
439 {
440 	int srcu_idx = srcu_read_lock(&kvm->srcu);
441 	int ret = kvm_write_guest(kvm, gpa, data, len);
442 
443 	srcu_read_unlock(&kvm->srcu, srcu_idx);
444 
445 	return ret;
446 }
447 
448 #ifdef CONFIG_KVM_INDIRECT_VECTORS
449 /*
450  * EL2 vectors can be mapped and rerouted in a number of ways,
451  * depending on the kernel configuration and CPU present:
452  *
453  * - If the CPU has the ARM64_HARDEN_BRANCH_PREDICTOR cap, the
454  *   hardening sequence is placed in one of the vector slots, which is
455  *   executed before jumping to the real vectors.
456  *
457  * - If the CPU has both the ARM64_HARDEN_EL2_VECTORS cap and the
458  *   ARM64_HARDEN_BRANCH_PREDICTOR cap, the slot containing the
459  *   hardening sequence is mapped next to the idmap page, and executed
460  *   before jumping to the real vectors.
461  *
462  * - If the CPU only has the ARM64_HARDEN_EL2_VECTORS cap, then an
463  *   empty slot is selected, mapped next to the idmap page, and
464  *   executed before jumping to the real vectors.
465  *
466  * Note that ARM64_HARDEN_EL2_VECTORS is somewhat incompatible with
467  * VHE, as we don't have hypervisor-specific mappings. If the system
468  * is VHE and yet selects this capability, it will be ignored.
469  */
470 #include <asm/mmu.h>
471 
472 extern void *__kvm_bp_vect_base;
473 extern int __kvm_harden_el2_vector_slot;
474 
475 static inline void *kvm_get_hyp_vector(void)
476 {
477 	struct bp_hardening_data *data = arm64_get_bp_hardening_data();
478 	void *vect = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
479 	int slot = -1;
480 
481 	if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR) && data->fn) {
482 		vect = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs_start));
483 		slot = data->hyp_vectors_slot;
484 	}
485 
486 	if (this_cpu_has_cap(ARM64_HARDEN_EL2_VECTORS) && !has_vhe()) {
487 		vect = __kvm_bp_vect_base;
488 		if (slot == -1)
489 			slot = __kvm_harden_el2_vector_slot;
490 	}
491 
492 	if (slot != -1)
493 		vect += slot * SZ_2K;
494 
495 	return vect;
496 }
497 
498 /*  This is only called on a !VHE system */
499 static inline int kvm_map_vectors(void)
500 {
501 	/*
502 	 * HBP  = ARM64_HARDEN_BRANCH_PREDICTOR
503 	 * HEL2 = ARM64_HARDEN_EL2_VECTORS
504 	 *
505 	 * !HBP + !HEL2 -> use direct vectors
506 	 *  HBP + !HEL2 -> use hardened vectors in place
507 	 * !HBP +  HEL2 -> allocate one vector slot and use exec mapping
508 	 *  HBP +  HEL2 -> use hardened vertors and use exec mapping
509 	 */
510 	if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR)) {
511 		__kvm_bp_vect_base = kvm_ksym_ref(__bp_harden_hyp_vecs_start);
512 		__kvm_bp_vect_base = kern_hyp_va(__kvm_bp_vect_base);
513 	}
514 
515 	if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) {
516 		phys_addr_t vect_pa = __pa_symbol(__bp_harden_hyp_vecs_start);
517 		unsigned long size = (__bp_harden_hyp_vecs_end -
518 				      __bp_harden_hyp_vecs_start);
519 
520 		/*
521 		 * Always allocate a spare vector slot, as we don't
522 		 * know yet which CPUs have a BP hardening slot that
523 		 * we can reuse.
524 		 */
525 		__kvm_harden_el2_vector_slot = atomic_inc_return(&arm64_el2_vector_last_slot);
526 		BUG_ON(__kvm_harden_el2_vector_slot >= BP_HARDEN_EL2_SLOTS);
527 		return create_hyp_exec_mappings(vect_pa, size,
528 						&__kvm_bp_vect_base);
529 	}
530 
531 	return 0;
532 }
533 #else
534 static inline void *kvm_get_hyp_vector(void)
535 {
536 	return kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
537 }
538 
539 static inline int kvm_map_vectors(void)
540 {
541 	return 0;
542 }
543 #endif
544 
545 #ifdef CONFIG_ARM64_SSBD
546 DECLARE_PER_CPU_READ_MOSTLY(u64, arm64_ssbd_callback_required);
547 
548 static inline int hyp_map_aux_data(void)
549 {
550 	int cpu, err;
551 
552 	for_each_possible_cpu(cpu) {
553 		u64 *ptr;
554 
555 		ptr = per_cpu_ptr(&arm64_ssbd_callback_required, cpu);
556 		err = create_hyp_mappings(ptr, ptr + 1, PAGE_HYP);
557 		if (err)
558 			return err;
559 	}
560 	return 0;
561 }
562 #else
563 static inline int hyp_map_aux_data(void)
564 {
565 	return 0;
566 }
567 #endif
568 
569 #define kvm_phys_to_vttbr(addr)		phys_to_ttbr(addr)
570 
571 /*
572  * Get the magic number 'x' for VTTBR:BADDR of this KVM instance.
573  * With v8.2 LVA extensions, 'x' should be a minimum of 6 with
574  * 52bit IPS.
575  */
576 static inline int arm64_vttbr_x(u32 ipa_shift, u32 levels)
577 {
578 	int x = ARM64_VTTBR_X(ipa_shift, levels);
579 
580 	return (IS_ENABLED(CONFIG_ARM64_PA_BITS_52) && x < 6) ? 6 : x;
581 }
582 
583 static inline u64 vttbr_baddr_mask(u32 ipa_shift, u32 levels)
584 {
585 	unsigned int x = arm64_vttbr_x(ipa_shift, levels);
586 
587 	return GENMASK_ULL(PHYS_MASK_SHIFT - 1, x);
588 }
589 
590 static inline u64 kvm_vttbr_baddr_mask(struct kvm *kvm)
591 {
592 	return vttbr_baddr_mask(kvm_phys_shift(kvm), kvm_stage2_levels(kvm));
593 }
594 
595 static __always_inline u64 kvm_get_vttbr(struct kvm *kvm)
596 {
597 	struct kvm_vmid *vmid = &kvm->arch.vmid;
598 	u64 vmid_field, baddr;
599 	u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0;
600 
601 	baddr = kvm->arch.pgd_phys;
602 	vmid_field = (u64)vmid->vmid << VTTBR_VMID_SHIFT;
603 	return kvm_phys_to_vttbr(baddr) | vmid_field | cnp;
604 }
605 
606 #endif /* __ASSEMBLY__ */
607 #endif /* __ARM64_KVM_MMU_H__ */
608