xref: /openbmc/linux/arch/arm64/include/asm/kvm_mmu.h (revision b296a6d5)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #ifndef __ARM64_KVM_MMU_H__
8 #define __ARM64_KVM_MMU_H__
9 
10 #include <asm/page.h>
11 #include <asm/memory.h>
12 #include <asm/mmu.h>
13 #include <asm/cpufeature.h>
14 
15 /*
16  * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
17  * "negative" addresses. This makes it impossible to directly share
18  * mappings with the kernel.
19  *
20  * Instead, give the HYP mode its own VA region at a fixed offset from
21  * the kernel by just masking the top bits (which are all ones for a
22  * kernel address). We need to find out how many bits to mask.
23  *
24  * We want to build a set of page tables that cover both parts of the
25  * idmap (the trampoline page used to initialize EL2), and our normal
26  * runtime VA space, at the same time.
27  *
28  * Given that the kernel uses VA_BITS for its entire address space,
29  * and that half of that space (VA_BITS - 1) is used for the linear
30  * mapping, we can also limit the EL2 space to (VA_BITS - 1).
31  *
32  * The main question is "Within the VA_BITS space, does EL2 use the
33  * top or the bottom half of that space to shadow the kernel's linear
34  * mapping?". As we need to idmap the trampoline page, this is
35  * determined by the range in which this page lives.
36  *
37  * If the page is in the bottom half, we have to use the top half. If
38  * the page is in the top half, we have to use the bottom half:
39  *
40  * T = __pa_symbol(__hyp_idmap_text_start)
41  * if (T & BIT(VA_BITS - 1))
42  *	HYP_VA_MIN = 0  //idmap in upper half
43  * else
44  *	HYP_VA_MIN = 1 << (VA_BITS - 1)
45  * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
46  *
47  * This of course assumes that the trampoline page exists within the
48  * VA_BITS range. If it doesn't, then it means we're in the odd case
49  * where the kernel idmap (as well as HYP) uses more levels than the
50  * kernel runtime page tables (as seen when the kernel is configured
51  * for 4k pages, 39bits VA, and yet memory lives just above that
52  * limit, forcing the idmap to use 4 levels of page tables while the
53  * kernel itself only uses 3). In this particular case, it doesn't
54  * matter which side of VA_BITS we use, as we're guaranteed not to
55  * conflict with anything.
56  *
57  * When using VHE, there are no separate hyp mappings and all KVM
58  * functionality is already mapped as part of the main kernel
59  * mappings, and none of this applies in that case.
60  */
61 
62 #ifdef __ASSEMBLY__
63 
64 #include <asm/alternative.h>
65 
66 /*
67  * Convert a kernel VA into a HYP VA.
68  * reg: VA to be converted.
69  *
70  * The actual code generation takes place in kvm_update_va_mask, and
71  * the instructions below are only there to reserve the space and
72  * perform the register allocation (kvm_update_va_mask uses the
73  * specific registers encoded in the instructions).
74  */
75 .macro kern_hyp_va	reg
76 alternative_cb kvm_update_va_mask
77 	and     \reg, \reg, #1		/* mask with va_mask */
78 	ror	\reg, \reg, #1		/* rotate to the first tag bit */
79 	add	\reg, \reg, #0		/* insert the low 12 bits of the tag */
80 	add	\reg, \reg, #0, lsl 12	/* insert the top 12 bits of the tag */
81 	ror	\reg, \reg, #63		/* rotate back */
82 alternative_cb_end
83 .endm
84 
85 #else
86 
87 #include <linux/pgtable.h>
88 #include <asm/pgalloc.h>
89 #include <asm/cache.h>
90 #include <asm/cacheflush.h>
91 #include <asm/mmu_context.h>
92 
93 void kvm_update_va_mask(struct alt_instr *alt,
94 			__le32 *origptr, __le32 *updptr, int nr_inst);
95 void kvm_compute_layout(void);
96 
97 static __always_inline unsigned long __kern_hyp_va(unsigned long v)
98 {
99 	asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n"
100 				    "ror %0, %0, #1\n"
101 				    "add %0, %0, #0\n"
102 				    "add %0, %0, #0, lsl 12\n"
103 				    "ror %0, %0, #63\n",
104 				    kvm_update_va_mask)
105 		     : "+r" (v));
106 	return v;
107 }
108 
109 #define kern_hyp_va(v) 	((typeof(v))(__kern_hyp_va((unsigned long)(v))))
110 
111 /*
112  * We currently support using a VM-specified IPA size. For backward
113  * compatibility, the default IPA size is fixed to 40bits.
114  */
115 #define KVM_PHYS_SHIFT	(40)
116 
117 #define kvm_phys_shift(kvm)		VTCR_EL2_IPA(kvm->arch.vtcr)
118 #define kvm_phys_size(kvm)		(_AC(1, ULL) << kvm_phys_shift(kvm))
119 #define kvm_phys_mask(kvm)		(kvm_phys_size(kvm) - _AC(1, ULL))
120 
121 static inline bool kvm_page_empty(void *ptr)
122 {
123 	struct page *ptr_page = virt_to_page(ptr);
124 	return page_count(ptr_page) == 1;
125 }
126 
127 #include <asm/stage2_pgtable.h>
128 
129 int create_hyp_mappings(void *from, void *to, pgprot_t prot);
130 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
131 			   void __iomem **kaddr,
132 			   void __iomem **haddr);
133 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
134 			     void **haddr);
135 void free_hyp_pgds(void);
136 
137 void stage2_unmap_vm(struct kvm *kvm);
138 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu);
139 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu);
140 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
141 			  phys_addr_t pa, unsigned long size, bool writable);
142 
143 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu);
144 
145 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
146 
147 phys_addr_t kvm_mmu_get_httbr(void);
148 phys_addr_t kvm_get_idmap_vector(void);
149 int kvm_mmu_init(void);
150 void kvm_clear_hyp_idmap(void);
151 
152 #define kvm_mk_pmd(ptep)					\
153 	__pmd(__phys_to_pmd_val(__pa(ptep)) | PMD_TYPE_TABLE)
154 #define kvm_mk_pud(pmdp)					\
155 	__pud(__phys_to_pud_val(__pa(pmdp)) | PMD_TYPE_TABLE)
156 #define kvm_mk_p4d(pmdp)					\
157 	__p4d(__phys_to_p4d_val(__pa(pmdp)) | PUD_TYPE_TABLE)
158 
159 #define kvm_set_pud(pudp, pud)		set_pud(pudp, pud)
160 
161 #define kvm_pfn_pte(pfn, prot)		pfn_pte(pfn, prot)
162 #define kvm_pfn_pmd(pfn, prot)		pfn_pmd(pfn, prot)
163 #define kvm_pfn_pud(pfn, prot)		pfn_pud(pfn, prot)
164 
165 #define kvm_pud_pfn(pud)		pud_pfn(pud)
166 
167 #define kvm_pmd_mkhuge(pmd)		pmd_mkhuge(pmd)
168 #define kvm_pud_mkhuge(pud)		pud_mkhuge(pud)
169 
170 static inline pte_t kvm_s2pte_mkwrite(pte_t pte)
171 {
172 	pte_val(pte) |= PTE_S2_RDWR;
173 	return pte;
174 }
175 
176 static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd)
177 {
178 	pmd_val(pmd) |= PMD_S2_RDWR;
179 	return pmd;
180 }
181 
182 static inline pud_t kvm_s2pud_mkwrite(pud_t pud)
183 {
184 	pud_val(pud) |= PUD_S2_RDWR;
185 	return pud;
186 }
187 
188 static inline pte_t kvm_s2pte_mkexec(pte_t pte)
189 {
190 	pte_val(pte) &= ~PTE_S2_XN;
191 	return pte;
192 }
193 
194 static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd)
195 {
196 	pmd_val(pmd) &= ~PMD_S2_XN;
197 	return pmd;
198 }
199 
200 static inline pud_t kvm_s2pud_mkexec(pud_t pud)
201 {
202 	pud_val(pud) &= ~PUD_S2_XN;
203 	return pud;
204 }
205 
206 static inline void kvm_set_s2pte_readonly(pte_t *ptep)
207 {
208 	pteval_t old_pteval, pteval;
209 
210 	pteval = READ_ONCE(pte_val(*ptep));
211 	do {
212 		old_pteval = pteval;
213 		pteval &= ~PTE_S2_RDWR;
214 		pteval |= PTE_S2_RDONLY;
215 		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
216 	} while (pteval != old_pteval);
217 }
218 
219 static inline bool kvm_s2pte_readonly(pte_t *ptep)
220 {
221 	return (READ_ONCE(pte_val(*ptep)) & PTE_S2_RDWR) == PTE_S2_RDONLY;
222 }
223 
224 static inline bool kvm_s2pte_exec(pte_t *ptep)
225 {
226 	return !(READ_ONCE(pte_val(*ptep)) & PTE_S2_XN);
227 }
228 
229 static inline void kvm_set_s2pmd_readonly(pmd_t *pmdp)
230 {
231 	kvm_set_s2pte_readonly((pte_t *)pmdp);
232 }
233 
234 static inline bool kvm_s2pmd_readonly(pmd_t *pmdp)
235 {
236 	return kvm_s2pte_readonly((pte_t *)pmdp);
237 }
238 
239 static inline bool kvm_s2pmd_exec(pmd_t *pmdp)
240 {
241 	return !(READ_ONCE(pmd_val(*pmdp)) & PMD_S2_XN);
242 }
243 
244 static inline void kvm_set_s2pud_readonly(pud_t *pudp)
245 {
246 	kvm_set_s2pte_readonly((pte_t *)pudp);
247 }
248 
249 static inline bool kvm_s2pud_readonly(pud_t *pudp)
250 {
251 	return kvm_s2pte_readonly((pte_t *)pudp);
252 }
253 
254 static inline bool kvm_s2pud_exec(pud_t *pudp)
255 {
256 	return !(READ_ONCE(pud_val(*pudp)) & PUD_S2_XN);
257 }
258 
259 static inline pud_t kvm_s2pud_mkyoung(pud_t pud)
260 {
261 	return pud_mkyoung(pud);
262 }
263 
264 static inline bool kvm_s2pud_young(pud_t pud)
265 {
266 	return pud_young(pud);
267 }
268 
269 #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
270 
271 #ifdef __PAGETABLE_PMD_FOLDED
272 #define hyp_pmd_table_empty(pmdp) (0)
273 #else
274 #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
275 #endif
276 
277 #ifdef __PAGETABLE_PUD_FOLDED
278 #define hyp_pud_table_empty(pudp) (0)
279 #else
280 #define hyp_pud_table_empty(pudp) kvm_page_empty(pudp)
281 #endif
282 
283 #ifdef __PAGETABLE_P4D_FOLDED
284 #define hyp_p4d_table_empty(p4dp) (0)
285 #else
286 #define hyp_p4d_table_empty(p4dp) kvm_page_empty(p4dp)
287 #endif
288 
289 struct kvm;
290 
291 #define kvm_flush_dcache_to_poc(a,l)	__flush_dcache_area((a), (l))
292 
293 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
294 {
295 	return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
296 }
297 
298 static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
299 {
300 	void *va = page_address(pfn_to_page(pfn));
301 
302 	/*
303 	 * With FWB, we ensure that the guest always accesses memory using
304 	 * cacheable attributes, and we don't have to clean to PoC when
305 	 * faulting in pages. Furthermore, FWB implies IDC, so cleaning to
306 	 * PoU is not required either in this case.
307 	 */
308 	if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
309 		return;
310 
311 	kvm_flush_dcache_to_poc(va, size);
312 }
313 
314 static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn,
315 						  unsigned long size)
316 {
317 	if (icache_is_aliasing()) {
318 		/* any kind of VIPT cache */
319 		__flush_icache_all();
320 	} else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
321 		/* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
322 		void *va = page_address(pfn_to_page(pfn));
323 
324 		invalidate_icache_range((unsigned long)va,
325 					(unsigned long)va + size);
326 	}
327 }
328 
329 static inline void __kvm_flush_dcache_pte(pte_t pte)
330 {
331 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
332 		struct page *page = pte_page(pte);
333 		kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE);
334 	}
335 }
336 
337 static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
338 {
339 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
340 		struct page *page = pmd_page(pmd);
341 		kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE);
342 	}
343 }
344 
345 static inline void __kvm_flush_dcache_pud(pud_t pud)
346 {
347 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
348 		struct page *page = pud_page(pud);
349 		kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE);
350 	}
351 }
352 
353 void kvm_set_way_flush(struct kvm_vcpu *vcpu);
354 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
355 
356 static inline bool __kvm_cpu_uses_extended_idmap(void)
357 {
358 	return __cpu_uses_extended_idmap_level();
359 }
360 
361 static inline unsigned long __kvm_idmap_ptrs_per_pgd(void)
362 {
363 	return idmap_ptrs_per_pgd;
364 }
365 
366 /*
367  * Can't use pgd_populate here, because the extended idmap adds an extra level
368  * above CONFIG_PGTABLE_LEVELS (which is 2 or 3 if we're using the extended
369  * idmap), and pgd_populate is only available if CONFIG_PGTABLE_LEVELS = 4.
370  */
371 static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
372 				       pgd_t *hyp_pgd,
373 				       pgd_t *merged_hyp_pgd,
374 				       unsigned long hyp_idmap_start)
375 {
376 	int idmap_idx;
377 	u64 pgd_addr;
378 
379 	/*
380 	 * Use the first entry to access the HYP mappings. It is
381 	 * guaranteed to be free, otherwise we wouldn't use an
382 	 * extended idmap.
383 	 */
384 	VM_BUG_ON(pgd_val(merged_hyp_pgd[0]));
385 	pgd_addr = __phys_to_pgd_val(__pa(hyp_pgd));
386 	merged_hyp_pgd[0] = __pgd(pgd_addr | PMD_TYPE_TABLE);
387 
388 	/*
389 	 * Create another extended level entry that points to the boot HYP map,
390 	 * which contains an ID mapping of the HYP init code. We essentially
391 	 * merge the boot and runtime HYP maps by doing so, but they don't
392 	 * overlap anyway, so this is fine.
393 	 */
394 	idmap_idx = hyp_idmap_start >> VA_BITS;
395 	VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx]));
396 	pgd_addr = __phys_to_pgd_val(__pa(boot_hyp_pgd));
397 	merged_hyp_pgd[idmap_idx] = __pgd(pgd_addr | PMD_TYPE_TABLE);
398 }
399 
400 static inline unsigned int kvm_get_vmid_bits(void)
401 {
402 	int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
403 
404 	return get_vmid_bits(reg);
405 }
406 
407 /*
408  * We are not in the kvm->srcu critical section most of the time, so we take
409  * the SRCU read lock here. Since we copy the data from the user page, we
410  * can immediately drop the lock again.
411  */
412 static inline int kvm_read_guest_lock(struct kvm *kvm,
413 				      gpa_t gpa, void *data, unsigned long len)
414 {
415 	int srcu_idx = srcu_read_lock(&kvm->srcu);
416 	int ret = kvm_read_guest(kvm, gpa, data, len);
417 
418 	srcu_read_unlock(&kvm->srcu, srcu_idx);
419 
420 	return ret;
421 }
422 
423 static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa,
424 				       const void *data, unsigned long len)
425 {
426 	int srcu_idx = srcu_read_lock(&kvm->srcu);
427 	int ret = kvm_write_guest(kvm, gpa, data, len);
428 
429 	srcu_read_unlock(&kvm->srcu, srcu_idx);
430 
431 	return ret;
432 }
433 
434 /*
435  * EL2 vectors can be mapped and rerouted in a number of ways,
436  * depending on the kernel configuration and CPU present:
437  *
438  * - If the CPU is affected by Spectre-v2, the hardening sequence is
439  *   placed in one of the vector slots, which is executed before jumping
440  *   to the real vectors.
441  *
442  * - If the CPU also has the ARM64_HARDEN_EL2_VECTORS cap, the slot
443  *   containing the hardening sequence is mapped next to the idmap page,
444  *   and executed before jumping to the real vectors.
445  *
446  * - If the CPU only has the ARM64_HARDEN_EL2_VECTORS cap, then an
447  *   empty slot is selected, mapped next to the idmap page, and
448  *   executed before jumping to the real vectors.
449  *
450  * Note that ARM64_HARDEN_EL2_VECTORS is somewhat incompatible with
451  * VHE, as we don't have hypervisor-specific mappings. If the system
452  * is VHE and yet selects this capability, it will be ignored.
453  */
454 extern void *__kvm_bp_vect_base;
455 extern int __kvm_harden_el2_vector_slot;
456 
457 static inline void *kvm_get_hyp_vector(void)
458 {
459 	struct bp_hardening_data *data = arm64_get_bp_hardening_data();
460 	void *vect = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
461 	int slot = -1;
462 
463 	if (cpus_have_const_cap(ARM64_SPECTRE_V2) && data->fn) {
464 		vect = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
465 		slot = data->hyp_vectors_slot;
466 	}
467 
468 	if (this_cpu_has_cap(ARM64_HARDEN_EL2_VECTORS) && !has_vhe()) {
469 		vect = __kvm_bp_vect_base;
470 		if (slot == -1)
471 			slot = __kvm_harden_el2_vector_slot;
472 	}
473 
474 	if (slot != -1)
475 		vect += slot * SZ_2K;
476 
477 	return vect;
478 }
479 
480 #define kvm_phys_to_vttbr(addr)		phys_to_ttbr(addr)
481 
482 /*
483  * Get the magic number 'x' for VTTBR:BADDR of this KVM instance.
484  * With v8.2 LVA extensions, 'x' should be a minimum of 6 with
485  * 52bit IPS.
486  */
487 static inline int arm64_vttbr_x(u32 ipa_shift, u32 levels)
488 {
489 	int x = ARM64_VTTBR_X(ipa_shift, levels);
490 
491 	return (IS_ENABLED(CONFIG_ARM64_PA_BITS_52) && x < 6) ? 6 : x;
492 }
493 
494 static inline u64 vttbr_baddr_mask(u32 ipa_shift, u32 levels)
495 {
496 	unsigned int x = arm64_vttbr_x(ipa_shift, levels);
497 
498 	return GENMASK_ULL(PHYS_MASK_SHIFT - 1, x);
499 }
500 
501 static inline u64 kvm_vttbr_baddr_mask(struct kvm *kvm)
502 {
503 	return vttbr_baddr_mask(kvm_phys_shift(kvm), kvm_stage2_levels(kvm));
504 }
505 
506 static __always_inline u64 kvm_get_vttbr(struct kvm_s2_mmu *mmu)
507 {
508 	struct kvm_vmid *vmid = &mmu->vmid;
509 	u64 vmid_field, baddr;
510 	u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0;
511 
512 	baddr = mmu->pgd_phys;
513 	vmid_field = (u64)vmid->vmid << VTTBR_VMID_SHIFT;
514 	return kvm_phys_to_vttbr(baddr) | vmid_field | cnp;
515 }
516 
517 /*
518  * Must be called from hyp code running at EL2 with an updated VTTBR
519  * and interrupts disabled.
520  */
521 static __always_inline void __load_guest_stage2(struct kvm_s2_mmu *mmu)
522 {
523 	write_sysreg(kern_hyp_va(mmu->kvm)->arch.vtcr, vtcr_el2);
524 	write_sysreg(kvm_get_vttbr(mmu), vttbr_el2);
525 
526 	/*
527 	 * ARM errata 1165522 and 1530923 require the actual execution of the
528 	 * above before we can switch to the EL1/EL0 translation regime used by
529 	 * the guest.
530 	 */
531 	asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT));
532 }
533 
534 #endif /* __ASSEMBLY__ */
535 #endif /* __ARM64_KVM_MMU_H__ */
536