1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2012,2013 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #ifndef __ARM64_KVM_MMU_H__ 8 #define __ARM64_KVM_MMU_H__ 9 10 #include <asm/page.h> 11 #include <asm/memory.h> 12 #include <asm/cpufeature.h> 13 14 /* 15 * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express 16 * "negative" addresses. This makes it impossible to directly share 17 * mappings with the kernel. 18 * 19 * Instead, give the HYP mode its own VA region at a fixed offset from 20 * the kernel by just masking the top bits (which are all ones for a 21 * kernel address). We need to find out how many bits to mask. 22 * 23 * We want to build a set of page tables that cover both parts of the 24 * idmap (the trampoline page used to initialize EL2), and our normal 25 * runtime VA space, at the same time. 26 * 27 * Given that the kernel uses VA_BITS for its entire address space, 28 * and that half of that space (VA_BITS - 1) is used for the linear 29 * mapping, we can also limit the EL2 space to (VA_BITS - 1). 30 * 31 * The main question is "Within the VA_BITS space, does EL2 use the 32 * top or the bottom half of that space to shadow the kernel's linear 33 * mapping?". As we need to idmap the trampoline page, this is 34 * determined by the range in which this page lives. 35 * 36 * If the page is in the bottom half, we have to use the top half. If 37 * the page is in the top half, we have to use the bottom half: 38 * 39 * T = __pa_symbol(__hyp_idmap_text_start) 40 * if (T & BIT(VA_BITS - 1)) 41 * HYP_VA_MIN = 0 //idmap in upper half 42 * else 43 * HYP_VA_MIN = 1 << (VA_BITS - 1) 44 * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1 45 * 46 * This of course assumes that the trampoline page exists within the 47 * VA_BITS range. If it doesn't, then it means we're in the odd case 48 * where the kernel idmap (as well as HYP) uses more levels than the 49 * kernel runtime page tables (as seen when the kernel is configured 50 * for 4k pages, 39bits VA, and yet memory lives just above that 51 * limit, forcing the idmap to use 4 levels of page tables while the 52 * kernel itself only uses 3). In this particular case, it doesn't 53 * matter which side of VA_BITS we use, as we're guaranteed not to 54 * conflict with anything. 55 * 56 * When using VHE, there are no separate hyp mappings and all KVM 57 * functionality is already mapped as part of the main kernel 58 * mappings, and none of this applies in that case. 59 */ 60 61 #ifdef __ASSEMBLY__ 62 63 #include <asm/alternative.h> 64 65 /* 66 * Convert a kernel VA into a HYP VA. 67 * reg: VA to be converted. 68 * 69 * The actual code generation takes place in kvm_update_va_mask, and 70 * the instructions below are only there to reserve the space and 71 * perform the register allocation (kvm_update_va_mask uses the 72 * specific registers encoded in the instructions). 73 */ 74 .macro kern_hyp_va reg 75 alternative_cb kvm_update_va_mask 76 and \reg, \reg, #1 /* mask with va_mask */ 77 ror \reg, \reg, #1 /* rotate to the first tag bit */ 78 add \reg, \reg, #0 /* insert the low 12 bits of the tag */ 79 add \reg, \reg, #0, lsl 12 /* insert the top 12 bits of the tag */ 80 ror \reg, \reg, #63 /* rotate back */ 81 alternative_cb_end 82 .endm 83 84 #else 85 86 #include <asm/pgalloc.h> 87 #include <asm/cache.h> 88 #include <asm/cacheflush.h> 89 #include <asm/mmu_context.h> 90 #include <asm/pgtable.h> 91 92 void kvm_update_va_mask(struct alt_instr *alt, 93 __le32 *origptr, __le32 *updptr, int nr_inst); 94 void kvm_compute_layout(void); 95 96 static __always_inline unsigned long __kern_hyp_va(unsigned long v) 97 { 98 asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n" 99 "ror %0, %0, #1\n" 100 "add %0, %0, #0\n" 101 "add %0, %0, #0, lsl 12\n" 102 "ror %0, %0, #63\n", 103 kvm_update_va_mask) 104 : "+r" (v)); 105 return v; 106 } 107 108 #define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v)))) 109 110 /* 111 * Obtain the PC-relative address of a kernel symbol 112 * s: symbol 113 * 114 * The goal of this macro is to return a symbol's address based on a 115 * PC-relative computation, as opposed to a loading the VA from a 116 * constant pool or something similar. This works well for HYP, as an 117 * absolute VA is guaranteed to be wrong. Only use this if trying to 118 * obtain the address of a symbol (i.e. not something you obtained by 119 * following a pointer). 120 */ 121 #define hyp_symbol_addr(s) \ 122 ({ \ 123 typeof(s) *addr; \ 124 asm("adrp %0, %1\n" \ 125 "add %0, %0, :lo12:%1\n" \ 126 : "=r" (addr) : "S" (&s)); \ 127 addr; \ 128 }) 129 130 /* 131 * We currently support using a VM-specified IPA size. For backward 132 * compatibility, the default IPA size is fixed to 40bits. 133 */ 134 #define KVM_PHYS_SHIFT (40) 135 136 #define kvm_phys_shift(kvm) VTCR_EL2_IPA(kvm->arch.vtcr) 137 #define kvm_phys_size(kvm) (_AC(1, ULL) << kvm_phys_shift(kvm)) 138 #define kvm_phys_mask(kvm) (kvm_phys_size(kvm) - _AC(1, ULL)) 139 140 static inline bool kvm_page_empty(void *ptr) 141 { 142 struct page *ptr_page = virt_to_page(ptr); 143 return page_count(ptr_page) == 1; 144 } 145 146 #include <asm/stage2_pgtable.h> 147 148 int create_hyp_mappings(void *from, void *to, pgprot_t prot); 149 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, 150 void __iomem **kaddr, 151 void __iomem **haddr); 152 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, 153 void **haddr); 154 void free_hyp_pgds(void); 155 156 void stage2_unmap_vm(struct kvm *kvm); 157 int kvm_alloc_stage2_pgd(struct kvm *kvm); 158 void kvm_free_stage2_pgd(struct kvm *kvm); 159 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, 160 phys_addr_t pa, unsigned long size, bool writable); 161 162 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run); 163 164 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu); 165 166 phys_addr_t kvm_mmu_get_httbr(void); 167 phys_addr_t kvm_get_idmap_vector(void); 168 int kvm_mmu_init(void); 169 void kvm_clear_hyp_idmap(void); 170 171 #define kvm_mk_pmd(ptep) \ 172 __pmd(__phys_to_pmd_val(__pa(ptep)) | PMD_TYPE_TABLE) 173 #define kvm_mk_pud(pmdp) \ 174 __pud(__phys_to_pud_val(__pa(pmdp)) | PMD_TYPE_TABLE) 175 #define kvm_mk_pgd(pudp) \ 176 __pgd(__phys_to_pgd_val(__pa(pudp)) | PUD_TYPE_TABLE) 177 178 #define kvm_set_pud(pudp, pud) set_pud(pudp, pud) 179 180 #define kvm_pfn_pte(pfn, prot) pfn_pte(pfn, prot) 181 #define kvm_pfn_pmd(pfn, prot) pfn_pmd(pfn, prot) 182 #define kvm_pfn_pud(pfn, prot) pfn_pud(pfn, prot) 183 184 #define kvm_pud_pfn(pud) pud_pfn(pud) 185 186 #define kvm_pmd_mkhuge(pmd) pmd_mkhuge(pmd) 187 #define kvm_pud_mkhuge(pud) pud_mkhuge(pud) 188 189 static inline pte_t kvm_s2pte_mkwrite(pte_t pte) 190 { 191 pte_val(pte) |= PTE_S2_RDWR; 192 return pte; 193 } 194 195 static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd) 196 { 197 pmd_val(pmd) |= PMD_S2_RDWR; 198 return pmd; 199 } 200 201 static inline pud_t kvm_s2pud_mkwrite(pud_t pud) 202 { 203 pud_val(pud) |= PUD_S2_RDWR; 204 return pud; 205 } 206 207 static inline pte_t kvm_s2pte_mkexec(pte_t pte) 208 { 209 pte_val(pte) &= ~PTE_S2_XN; 210 return pte; 211 } 212 213 static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd) 214 { 215 pmd_val(pmd) &= ~PMD_S2_XN; 216 return pmd; 217 } 218 219 static inline pud_t kvm_s2pud_mkexec(pud_t pud) 220 { 221 pud_val(pud) &= ~PUD_S2_XN; 222 return pud; 223 } 224 225 static inline void kvm_set_s2pte_readonly(pte_t *ptep) 226 { 227 pteval_t old_pteval, pteval; 228 229 pteval = READ_ONCE(pte_val(*ptep)); 230 do { 231 old_pteval = pteval; 232 pteval &= ~PTE_S2_RDWR; 233 pteval |= PTE_S2_RDONLY; 234 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval); 235 } while (pteval != old_pteval); 236 } 237 238 static inline bool kvm_s2pte_readonly(pte_t *ptep) 239 { 240 return (READ_ONCE(pte_val(*ptep)) & PTE_S2_RDWR) == PTE_S2_RDONLY; 241 } 242 243 static inline bool kvm_s2pte_exec(pte_t *ptep) 244 { 245 return !(READ_ONCE(pte_val(*ptep)) & PTE_S2_XN); 246 } 247 248 static inline void kvm_set_s2pmd_readonly(pmd_t *pmdp) 249 { 250 kvm_set_s2pte_readonly((pte_t *)pmdp); 251 } 252 253 static inline bool kvm_s2pmd_readonly(pmd_t *pmdp) 254 { 255 return kvm_s2pte_readonly((pte_t *)pmdp); 256 } 257 258 static inline bool kvm_s2pmd_exec(pmd_t *pmdp) 259 { 260 return !(READ_ONCE(pmd_val(*pmdp)) & PMD_S2_XN); 261 } 262 263 static inline void kvm_set_s2pud_readonly(pud_t *pudp) 264 { 265 kvm_set_s2pte_readonly((pte_t *)pudp); 266 } 267 268 static inline bool kvm_s2pud_readonly(pud_t *pudp) 269 { 270 return kvm_s2pte_readonly((pte_t *)pudp); 271 } 272 273 static inline bool kvm_s2pud_exec(pud_t *pudp) 274 { 275 return !(READ_ONCE(pud_val(*pudp)) & PUD_S2_XN); 276 } 277 278 static inline pud_t kvm_s2pud_mkyoung(pud_t pud) 279 { 280 return pud_mkyoung(pud); 281 } 282 283 static inline bool kvm_s2pud_young(pud_t pud) 284 { 285 return pud_young(pud); 286 } 287 288 #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep) 289 290 #ifdef __PAGETABLE_PMD_FOLDED 291 #define hyp_pmd_table_empty(pmdp) (0) 292 #else 293 #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp) 294 #endif 295 296 #ifdef __PAGETABLE_PUD_FOLDED 297 #define hyp_pud_table_empty(pudp) (0) 298 #else 299 #define hyp_pud_table_empty(pudp) kvm_page_empty(pudp) 300 #endif 301 302 struct kvm; 303 304 #define kvm_flush_dcache_to_poc(a,l) __flush_dcache_area((a), (l)) 305 306 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu) 307 { 308 return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101; 309 } 310 311 static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size) 312 { 313 void *va = page_address(pfn_to_page(pfn)); 314 315 /* 316 * With FWB, we ensure that the guest always accesses memory using 317 * cacheable attributes, and we don't have to clean to PoC when 318 * faulting in pages. Furthermore, FWB implies IDC, so cleaning to 319 * PoU is not required either in this case. 320 */ 321 if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) 322 return; 323 324 kvm_flush_dcache_to_poc(va, size); 325 } 326 327 static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn, 328 unsigned long size) 329 { 330 if (icache_is_aliasing()) { 331 /* any kind of VIPT cache */ 332 __flush_icache_all(); 333 } else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) { 334 /* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */ 335 void *va = page_address(pfn_to_page(pfn)); 336 337 invalidate_icache_range((unsigned long)va, 338 (unsigned long)va + size); 339 } 340 } 341 342 static inline void __kvm_flush_dcache_pte(pte_t pte) 343 { 344 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) { 345 struct page *page = pte_page(pte); 346 kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE); 347 } 348 } 349 350 static inline void __kvm_flush_dcache_pmd(pmd_t pmd) 351 { 352 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) { 353 struct page *page = pmd_page(pmd); 354 kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE); 355 } 356 } 357 358 static inline void __kvm_flush_dcache_pud(pud_t pud) 359 { 360 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) { 361 struct page *page = pud_page(pud); 362 kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE); 363 } 364 } 365 366 #define kvm_virt_to_phys(x) __pa_symbol(x) 367 368 void kvm_set_way_flush(struct kvm_vcpu *vcpu); 369 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled); 370 371 static inline bool __kvm_cpu_uses_extended_idmap(void) 372 { 373 return __cpu_uses_extended_idmap_level(); 374 } 375 376 static inline unsigned long __kvm_idmap_ptrs_per_pgd(void) 377 { 378 return idmap_ptrs_per_pgd; 379 } 380 381 /* 382 * Can't use pgd_populate here, because the extended idmap adds an extra level 383 * above CONFIG_PGTABLE_LEVELS (which is 2 or 3 if we're using the extended 384 * idmap), and pgd_populate is only available if CONFIG_PGTABLE_LEVELS = 4. 385 */ 386 static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd, 387 pgd_t *hyp_pgd, 388 pgd_t *merged_hyp_pgd, 389 unsigned long hyp_idmap_start) 390 { 391 int idmap_idx; 392 u64 pgd_addr; 393 394 /* 395 * Use the first entry to access the HYP mappings. It is 396 * guaranteed to be free, otherwise we wouldn't use an 397 * extended idmap. 398 */ 399 VM_BUG_ON(pgd_val(merged_hyp_pgd[0])); 400 pgd_addr = __phys_to_pgd_val(__pa(hyp_pgd)); 401 merged_hyp_pgd[0] = __pgd(pgd_addr | PMD_TYPE_TABLE); 402 403 /* 404 * Create another extended level entry that points to the boot HYP map, 405 * which contains an ID mapping of the HYP init code. We essentially 406 * merge the boot and runtime HYP maps by doing so, but they don't 407 * overlap anyway, so this is fine. 408 */ 409 idmap_idx = hyp_idmap_start >> VA_BITS; 410 VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx])); 411 pgd_addr = __phys_to_pgd_val(__pa(boot_hyp_pgd)); 412 merged_hyp_pgd[idmap_idx] = __pgd(pgd_addr | PMD_TYPE_TABLE); 413 } 414 415 static inline unsigned int kvm_get_vmid_bits(void) 416 { 417 int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 418 419 return (cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR1_VMIDBITS_SHIFT) == 2) ? 16 : 8; 420 } 421 422 /* 423 * We are not in the kvm->srcu critical section most of the time, so we take 424 * the SRCU read lock here. Since we copy the data from the user page, we 425 * can immediately drop the lock again. 426 */ 427 static inline int kvm_read_guest_lock(struct kvm *kvm, 428 gpa_t gpa, void *data, unsigned long len) 429 { 430 int srcu_idx = srcu_read_lock(&kvm->srcu); 431 int ret = kvm_read_guest(kvm, gpa, data, len); 432 433 srcu_read_unlock(&kvm->srcu, srcu_idx); 434 435 return ret; 436 } 437 438 static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa, 439 const void *data, unsigned long len) 440 { 441 int srcu_idx = srcu_read_lock(&kvm->srcu); 442 int ret = kvm_write_guest(kvm, gpa, data, len); 443 444 srcu_read_unlock(&kvm->srcu, srcu_idx); 445 446 return ret; 447 } 448 449 #ifdef CONFIG_KVM_INDIRECT_VECTORS 450 /* 451 * EL2 vectors can be mapped and rerouted in a number of ways, 452 * depending on the kernel configuration and CPU present: 453 * 454 * - If the CPU has the ARM64_HARDEN_BRANCH_PREDICTOR cap, the 455 * hardening sequence is placed in one of the vector slots, which is 456 * executed before jumping to the real vectors. 457 * 458 * - If the CPU has both the ARM64_HARDEN_EL2_VECTORS cap and the 459 * ARM64_HARDEN_BRANCH_PREDICTOR cap, the slot containing the 460 * hardening sequence is mapped next to the idmap page, and executed 461 * before jumping to the real vectors. 462 * 463 * - If the CPU only has the ARM64_HARDEN_EL2_VECTORS cap, then an 464 * empty slot is selected, mapped next to the idmap page, and 465 * executed before jumping to the real vectors. 466 * 467 * Note that ARM64_HARDEN_EL2_VECTORS is somewhat incompatible with 468 * VHE, as we don't have hypervisor-specific mappings. If the system 469 * is VHE and yet selects this capability, it will be ignored. 470 */ 471 #include <asm/mmu.h> 472 473 extern void *__kvm_bp_vect_base; 474 extern int __kvm_harden_el2_vector_slot; 475 476 /* This is only called on a VHE system */ 477 static inline void *kvm_get_hyp_vector(void) 478 { 479 struct bp_hardening_data *data = arm64_get_bp_hardening_data(); 480 void *vect = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); 481 int slot = -1; 482 483 if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR) && data->fn) { 484 vect = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs)); 485 slot = data->hyp_vectors_slot; 486 } 487 488 if (this_cpu_has_cap(ARM64_HARDEN_EL2_VECTORS) && !has_vhe()) { 489 vect = __kvm_bp_vect_base; 490 if (slot == -1) 491 slot = __kvm_harden_el2_vector_slot; 492 } 493 494 if (slot != -1) 495 vect += slot * SZ_2K; 496 497 return vect; 498 } 499 500 /* This is only called on a !VHE system */ 501 static inline int kvm_map_vectors(void) 502 { 503 /* 504 * HBP = ARM64_HARDEN_BRANCH_PREDICTOR 505 * HEL2 = ARM64_HARDEN_EL2_VECTORS 506 * 507 * !HBP + !HEL2 -> use direct vectors 508 * HBP + !HEL2 -> use hardened vectors in place 509 * !HBP + HEL2 -> allocate one vector slot and use exec mapping 510 * HBP + HEL2 -> use hardened vertors and use exec mapping 511 */ 512 if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR)) { 513 __kvm_bp_vect_base = kvm_ksym_ref(__bp_harden_hyp_vecs); 514 __kvm_bp_vect_base = kern_hyp_va(__kvm_bp_vect_base); 515 } 516 517 if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) { 518 phys_addr_t vect_pa = __pa_symbol(__bp_harden_hyp_vecs); 519 unsigned long size = __BP_HARDEN_HYP_VECS_SZ; 520 521 /* 522 * Always allocate a spare vector slot, as we don't 523 * know yet which CPUs have a BP hardening slot that 524 * we can reuse. 525 */ 526 __kvm_harden_el2_vector_slot = atomic_inc_return(&arm64_el2_vector_last_slot); 527 BUG_ON(__kvm_harden_el2_vector_slot >= BP_HARDEN_EL2_SLOTS); 528 return create_hyp_exec_mappings(vect_pa, size, 529 &__kvm_bp_vect_base); 530 } 531 532 return 0; 533 } 534 #else 535 static inline void *kvm_get_hyp_vector(void) 536 { 537 return kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); 538 } 539 540 static inline int kvm_map_vectors(void) 541 { 542 return 0; 543 } 544 #endif 545 546 #ifdef CONFIG_ARM64_SSBD 547 DECLARE_PER_CPU_READ_MOSTLY(u64, arm64_ssbd_callback_required); 548 549 static inline int hyp_map_aux_data(void) 550 { 551 int cpu, err; 552 553 for_each_possible_cpu(cpu) { 554 u64 *ptr; 555 556 ptr = per_cpu_ptr(&arm64_ssbd_callback_required, cpu); 557 err = create_hyp_mappings(ptr, ptr + 1, PAGE_HYP); 558 if (err) 559 return err; 560 } 561 return 0; 562 } 563 #else 564 static inline int hyp_map_aux_data(void) 565 { 566 return 0; 567 } 568 #endif 569 570 #define kvm_phys_to_vttbr(addr) phys_to_ttbr(addr) 571 572 /* 573 * Get the magic number 'x' for VTTBR:BADDR of this KVM instance. 574 * With v8.2 LVA extensions, 'x' should be a minimum of 6 with 575 * 52bit IPS. 576 */ 577 static inline int arm64_vttbr_x(u32 ipa_shift, u32 levels) 578 { 579 int x = ARM64_VTTBR_X(ipa_shift, levels); 580 581 return (IS_ENABLED(CONFIG_ARM64_PA_BITS_52) && x < 6) ? 6 : x; 582 } 583 584 static inline u64 vttbr_baddr_mask(u32 ipa_shift, u32 levels) 585 { 586 unsigned int x = arm64_vttbr_x(ipa_shift, levels); 587 588 return GENMASK_ULL(PHYS_MASK_SHIFT - 1, x); 589 } 590 591 static inline u64 kvm_vttbr_baddr_mask(struct kvm *kvm) 592 { 593 return vttbr_baddr_mask(kvm_phys_shift(kvm), kvm_stage2_levels(kvm)); 594 } 595 596 static __always_inline u64 kvm_get_vttbr(struct kvm *kvm) 597 { 598 struct kvm_vmid *vmid = &kvm->arch.vmid; 599 u64 vmid_field, baddr; 600 u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0; 601 602 baddr = kvm->arch.pgd_phys; 603 vmid_field = (u64)vmid->vmid << VTTBR_VMID_SHIFT; 604 return kvm_phys_to_vttbr(baddr) | vmid_field | cnp; 605 } 606 607 #endif /* __ASSEMBLY__ */ 608 #endif /* __ARM64_KVM_MMU_H__ */ 609