xref: /openbmc/linux/arch/arm64/include/asm/kvm_mmu.h (revision 943126417891372d56aa3fe46295cbf53db31370)
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #ifndef __ARM64_KVM_MMU_H__
19 #define __ARM64_KVM_MMU_H__
20 
21 #include <asm/page.h>
22 #include <asm/memory.h>
23 #include <asm/cpufeature.h>
24 
25 /*
26  * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
27  * "negative" addresses. This makes it impossible to directly share
28  * mappings with the kernel.
29  *
30  * Instead, give the HYP mode its own VA region at a fixed offset from
31  * the kernel by just masking the top bits (which are all ones for a
32  * kernel address). We need to find out how many bits to mask.
33  *
34  * We want to build a set of page tables that cover both parts of the
35  * idmap (the trampoline page used to initialize EL2), and our normal
36  * runtime VA space, at the same time.
37  *
38  * Given that the kernel uses VA_BITS for its entire address space,
39  * and that half of that space (VA_BITS - 1) is used for the linear
40  * mapping, we can also limit the EL2 space to (VA_BITS - 1).
41  *
42  * The main question is "Within the VA_BITS space, does EL2 use the
43  * top or the bottom half of that space to shadow the kernel's linear
44  * mapping?". As we need to idmap the trampoline page, this is
45  * determined by the range in which this page lives.
46  *
47  * If the page is in the bottom half, we have to use the top half. If
48  * the page is in the top half, we have to use the bottom half:
49  *
50  * T = __pa_symbol(__hyp_idmap_text_start)
51  * if (T & BIT(VA_BITS - 1))
52  *	HYP_VA_MIN = 0  //idmap in upper half
53  * else
54  *	HYP_VA_MIN = 1 << (VA_BITS - 1)
55  * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
56  *
57  * This of course assumes that the trampoline page exists within the
58  * VA_BITS range. If it doesn't, then it means we're in the odd case
59  * where the kernel idmap (as well as HYP) uses more levels than the
60  * kernel runtime page tables (as seen when the kernel is configured
61  * for 4k pages, 39bits VA, and yet memory lives just above that
62  * limit, forcing the idmap to use 4 levels of page tables while the
63  * kernel itself only uses 3). In this particular case, it doesn't
64  * matter which side of VA_BITS we use, as we're guaranteed not to
65  * conflict with anything.
66  *
67  * When using VHE, there are no separate hyp mappings and all KVM
68  * functionality is already mapped as part of the main kernel
69  * mappings, and none of this applies in that case.
70  */
71 
72 #ifdef __ASSEMBLY__
73 
74 #include <asm/alternative.h>
75 
76 /*
77  * Convert a kernel VA into a HYP VA.
78  * reg: VA to be converted.
79  *
80  * The actual code generation takes place in kvm_update_va_mask, and
81  * the instructions below are only there to reserve the space and
82  * perform the register allocation (kvm_update_va_mask uses the
83  * specific registers encoded in the instructions).
84  */
85 .macro kern_hyp_va	reg
86 alternative_cb kvm_update_va_mask
87 	and     \reg, \reg, #1		/* mask with va_mask */
88 	ror	\reg, \reg, #1		/* rotate to the first tag bit */
89 	add	\reg, \reg, #0		/* insert the low 12 bits of the tag */
90 	add	\reg, \reg, #0, lsl 12	/* insert the top 12 bits of the tag */
91 	ror	\reg, \reg, #63		/* rotate back */
92 alternative_cb_end
93 .endm
94 
95 #else
96 
97 #include <asm/pgalloc.h>
98 #include <asm/cache.h>
99 #include <asm/cacheflush.h>
100 #include <asm/mmu_context.h>
101 #include <asm/pgtable.h>
102 
103 void kvm_update_va_mask(struct alt_instr *alt,
104 			__le32 *origptr, __le32 *updptr, int nr_inst);
105 
106 static inline unsigned long __kern_hyp_va(unsigned long v)
107 {
108 	asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n"
109 				    "ror %0, %0, #1\n"
110 				    "add %0, %0, #0\n"
111 				    "add %0, %0, #0, lsl 12\n"
112 				    "ror %0, %0, #63\n",
113 				    kvm_update_va_mask)
114 		     : "+r" (v));
115 	return v;
116 }
117 
118 #define kern_hyp_va(v) 	((typeof(v))(__kern_hyp_va((unsigned long)(v))))
119 
120 /*
121  * Obtain the PC-relative address of a kernel symbol
122  * s: symbol
123  *
124  * The goal of this macro is to return a symbol's address based on a
125  * PC-relative computation, as opposed to a loading the VA from a
126  * constant pool or something similar. This works well for HYP, as an
127  * absolute VA is guaranteed to be wrong. Only use this if trying to
128  * obtain the address of a symbol (i.e. not something you obtained by
129  * following a pointer).
130  */
131 #define hyp_symbol_addr(s)						\
132 	({								\
133 		typeof(s) *addr;					\
134 		asm("adrp	%0, %1\n"				\
135 		    "add	%0, %0, :lo12:%1\n"			\
136 		    : "=r" (addr) : "S" (&s));				\
137 		addr;							\
138 	})
139 
140 /*
141  * We currently only support a 40bit IPA.
142  */
143 #define KVM_PHYS_SHIFT	(40)
144 
145 #define kvm_phys_shift(kvm)		VTCR_EL2_IPA(kvm->arch.vtcr)
146 #define kvm_phys_size(kvm)		(_AC(1, ULL) << kvm_phys_shift(kvm))
147 #define kvm_phys_mask(kvm)		(kvm_phys_size(kvm) - _AC(1, ULL))
148 
149 static inline bool kvm_page_empty(void *ptr)
150 {
151 	struct page *ptr_page = virt_to_page(ptr);
152 	return page_count(ptr_page) == 1;
153 }
154 
155 #include <asm/stage2_pgtable.h>
156 
157 int create_hyp_mappings(void *from, void *to, pgprot_t prot);
158 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
159 			   void __iomem **kaddr,
160 			   void __iomem **haddr);
161 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
162 			     void **haddr);
163 void free_hyp_pgds(void);
164 
165 void stage2_unmap_vm(struct kvm *kvm);
166 int kvm_alloc_stage2_pgd(struct kvm *kvm);
167 void kvm_free_stage2_pgd(struct kvm *kvm);
168 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
169 			  phys_addr_t pa, unsigned long size, bool writable);
170 
171 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
172 
173 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
174 
175 phys_addr_t kvm_mmu_get_httbr(void);
176 phys_addr_t kvm_get_idmap_vector(void);
177 int kvm_mmu_init(void);
178 void kvm_clear_hyp_idmap(void);
179 
180 #define kvm_mk_pmd(ptep)					\
181 	__pmd(__phys_to_pmd_val(__pa(ptep)) | PMD_TYPE_TABLE)
182 #define kvm_mk_pud(pmdp)					\
183 	__pud(__phys_to_pud_val(__pa(pmdp)) | PMD_TYPE_TABLE)
184 #define kvm_mk_pgd(pudp)					\
185 	__pgd(__phys_to_pgd_val(__pa(pudp)) | PUD_TYPE_TABLE)
186 
187 static inline pte_t kvm_s2pte_mkwrite(pte_t pte)
188 {
189 	pte_val(pte) |= PTE_S2_RDWR;
190 	return pte;
191 }
192 
193 static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd)
194 {
195 	pmd_val(pmd) |= PMD_S2_RDWR;
196 	return pmd;
197 }
198 
199 static inline pte_t kvm_s2pte_mkexec(pte_t pte)
200 {
201 	pte_val(pte) &= ~PTE_S2_XN;
202 	return pte;
203 }
204 
205 static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd)
206 {
207 	pmd_val(pmd) &= ~PMD_S2_XN;
208 	return pmd;
209 }
210 
211 static inline void kvm_set_s2pte_readonly(pte_t *ptep)
212 {
213 	pteval_t old_pteval, pteval;
214 
215 	pteval = READ_ONCE(pte_val(*ptep));
216 	do {
217 		old_pteval = pteval;
218 		pteval &= ~PTE_S2_RDWR;
219 		pteval |= PTE_S2_RDONLY;
220 		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
221 	} while (pteval != old_pteval);
222 }
223 
224 static inline bool kvm_s2pte_readonly(pte_t *ptep)
225 {
226 	return (READ_ONCE(pte_val(*ptep)) & PTE_S2_RDWR) == PTE_S2_RDONLY;
227 }
228 
229 static inline bool kvm_s2pte_exec(pte_t *ptep)
230 {
231 	return !(READ_ONCE(pte_val(*ptep)) & PTE_S2_XN);
232 }
233 
234 static inline void kvm_set_s2pmd_readonly(pmd_t *pmdp)
235 {
236 	kvm_set_s2pte_readonly((pte_t *)pmdp);
237 }
238 
239 static inline bool kvm_s2pmd_readonly(pmd_t *pmdp)
240 {
241 	return kvm_s2pte_readonly((pte_t *)pmdp);
242 }
243 
244 static inline bool kvm_s2pmd_exec(pmd_t *pmdp)
245 {
246 	return !(READ_ONCE(pmd_val(*pmdp)) & PMD_S2_XN);
247 }
248 
249 #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
250 
251 #ifdef __PAGETABLE_PMD_FOLDED
252 #define hyp_pmd_table_empty(pmdp) (0)
253 #else
254 #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
255 #endif
256 
257 #ifdef __PAGETABLE_PUD_FOLDED
258 #define hyp_pud_table_empty(pudp) (0)
259 #else
260 #define hyp_pud_table_empty(pudp) kvm_page_empty(pudp)
261 #endif
262 
263 struct kvm;
264 
265 #define kvm_flush_dcache_to_poc(a,l)	__flush_dcache_area((a), (l))
266 
267 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
268 {
269 	return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
270 }
271 
272 static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
273 {
274 	void *va = page_address(pfn_to_page(pfn));
275 
276 	/*
277 	 * With FWB, we ensure that the guest always accesses memory using
278 	 * cacheable attributes, and we don't have to clean to PoC when
279 	 * faulting in pages. Furthermore, FWB implies IDC, so cleaning to
280 	 * PoU is not required either in this case.
281 	 */
282 	if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
283 		return;
284 
285 	kvm_flush_dcache_to_poc(va, size);
286 }
287 
288 static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn,
289 						  unsigned long size)
290 {
291 	if (icache_is_aliasing()) {
292 		/* any kind of VIPT cache */
293 		__flush_icache_all();
294 	} else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
295 		/* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
296 		void *va = page_address(pfn_to_page(pfn));
297 
298 		invalidate_icache_range((unsigned long)va,
299 					(unsigned long)va + size);
300 	}
301 }
302 
303 static inline void __kvm_flush_dcache_pte(pte_t pte)
304 {
305 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
306 		struct page *page = pte_page(pte);
307 		kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE);
308 	}
309 }
310 
311 static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
312 {
313 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
314 		struct page *page = pmd_page(pmd);
315 		kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE);
316 	}
317 }
318 
319 static inline void __kvm_flush_dcache_pud(pud_t pud)
320 {
321 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
322 		struct page *page = pud_page(pud);
323 		kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE);
324 	}
325 }
326 
327 #define kvm_virt_to_phys(x)		__pa_symbol(x)
328 
329 void kvm_set_way_flush(struct kvm_vcpu *vcpu);
330 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
331 
332 static inline bool __kvm_cpu_uses_extended_idmap(void)
333 {
334 	return __cpu_uses_extended_idmap_level();
335 }
336 
337 static inline unsigned long __kvm_idmap_ptrs_per_pgd(void)
338 {
339 	return idmap_ptrs_per_pgd;
340 }
341 
342 /*
343  * Can't use pgd_populate here, because the extended idmap adds an extra level
344  * above CONFIG_PGTABLE_LEVELS (which is 2 or 3 if we're using the extended
345  * idmap), and pgd_populate is only available if CONFIG_PGTABLE_LEVELS = 4.
346  */
347 static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
348 				       pgd_t *hyp_pgd,
349 				       pgd_t *merged_hyp_pgd,
350 				       unsigned long hyp_idmap_start)
351 {
352 	int idmap_idx;
353 	u64 pgd_addr;
354 
355 	/*
356 	 * Use the first entry to access the HYP mappings. It is
357 	 * guaranteed to be free, otherwise we wouldn't use an
358 	 * extended idmap.
359 	 */
360 	VM_BUG_ON(pgd_val(merged_hyp_pgd[0]));
361 	pgd_addr = __phys_to_pgd_val(__pa(hyp_pgd));
362 	merged_hyp_pgd[0] = __pgd(pgd_addr | PMD_TYPE_TABLE);
363 
364 	/*
365 	 * Create another extended level entry that points to the boot HYP map,
366 	 * which contains an ID mapping of the HYP init code. We essentially
367 	 * merge the boot and runtime HYP maps by doing so, but they don't
368 	 * overlap anyway, so this is fine.
369 	 */
370 	idmap_idx = hyp_idmap_start >> VA_BITS;
371 	VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx]));
372 	pgd_addr = __phys_to_pgd_val(__pa(boot_hyp_pgd));
373 	merged_hyp_pgd[idmap_idx] = __pgd(pgd_addr | PMD_TYPE_TABLE);
374 }
375 
376 static inline unsigned int kvm_get_vmid_bits(void)
377 {
378 	int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
379 
380 	return (cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR1_VMIDBITS_SHIFT) == 2) ? 16 : 8;
381 }
382 
383 /*
384  * We are not in the kvm->srcu critical section most of the time, so we take
385  * the SRCU read lock here. Since we copy the data from the user page, we
386  * can immediately drop the lock again.
387  */
388 static inline int kvm_read_guest_lock(struct kvm *kvm,
389 				      gpa_t gpa, void *data, unsigned long len)
390 {
391 	int srcu_idx = srcu_read_lock(&kvm->srcu);
392 	int ret = kvm_read_guest(kvm, gpa, data, len);
393 
394 	srcu_read_unlock(&kvm->srcu, srcu_idx);
395 
396 	return ret;
397 }
398 
399 #ifdef CONFIG_KVM_INDIRECT_VECTORS
400 /*
401  * EL2 vectors can be mapped and rerouted in a number of ways,
402  * depending on the kernel configuration and CPU present:
403  *
404  * - If the CPU has the ARM64_HARDEN_BRANCH_PREDICTOR cap, the
405  *   hardening sequence is placed in one of the vector slots, which is
406  *   executed before jumping to the real vectors.
407  *
408  * - If the CPU has both the ARM64_HARDEN_EL2_VECTORS cap and the
409  *   ARM64_HARDEN_BRANCH_PREDICTOR cap, the slot containing the
410  *   hardening sequence is mapped next to the idmap page, and executed
411  *   before jumping to the real vectors.
412  *
413  * - If the CPU only has the ARM64_HARDEN_EL2_VECTORS cap, then an
414  *   empty slot is selected, mapped next to the idmap page, and
415  *   executed before jumping to the real vectors.
416  *
417  * Note that ARM64_HARDEN_EL2_VECTORS is somewhat incompatible with
418  * VHE, as we don't have hypervisor-specific mappings. If the system
419  * is VHE and yet selects this capability, it will be ignored.
420  */
421 #include <asm/mmu.h>
422 
423 extern void *__kvm_bp_vect_base;
424 extern int __kvm_harden_el2_vector_slot;
425 
426 static inline void *kvm_get_hyp_vector(void)
427 {
428 	struct bp_hardening_data *data = arm64_get_bp_hardening_data();
429 	void *vect = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
430 	int slot = -1;
431 
432 	if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR) && data->fn) {
433 		vect = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs_start));
434 		slot = data->hyp_vectors_slot;
435 	}
436 
437 	if (this_cpu_has_cap(ARM64_HARDEN_EL2_VECTORS) && !has_vhe()) {
438 		vect = __kvm_bp_vect_base;
439 		if (slot == -1)
440 			slot = __kvm_harden_el2_vector_slot;
441 	}
442 
443 	if (slot != -1)
444 		vect += slot * SZ_2K;
445 
446 	return vect;
447 }
448 
449 /*  This is only called on a !VHE system */
450 static inline int kvm_map_vectors(void)
451 {
452 	/*
453 	 * HBP  = ARM64_HARDEN_BRANCH_PREDICTOR
454 	 * HEL2 = ARM64_HARDEN_EL2_VECTORS
455 	 *
456 	 * !HBP + !HEL2 -> use direct vectors
457 	 *  HBP + !HEL2 -> use hardened vectors in place
458 	 * !HBP +  HEL2 -> allocate one vector slot and use exec mapping
459 	 *  HBP +  HEL2 -> use hardened vertors and use exec mapping
460 	 */
461 	if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR)) {
462 		__kvm_bp_vect_base = kvm_ksym_ref(__bp_harden_hyp_vecs_start);
463 		__kvm_bp_vect_base = kern_hyp_va(__kvm_bp_vect_base);
464 	}
465 
466 	if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) {
467 		phys_addr_t vect_pa = __pa_symbol(__bp_harden_hyp_vecs_start);
468 		unsigned long size = (__bp_harden_hyp_vecs_end -
469 				      __bp_harden_hyp_vecs_start);
470 
471 		/*
472 		 * Always allocate a spare vector slot, as we don't
473 		 * know yet which CPUs have a BP hardening slot that
474 		 * we can reuse.
475 		 */
476 		__kvm_harden_el2_vector_slot = atomic_inc_return(&arm64_el2_vector_last_slot);
477 		BUG_ON(__kvm_harden_el2_vector_slot >= BP_HARDEN_EL2_SLOTS);
478 		return create_hyp_exec_mappings(vect_pa, size,
479 						&__kvm_bp_vect_base);
480 	}
481 
482 	return 0;
483 }
484 #else
485 static inline void *kvm_get_hyp_vector(void)
486 {
487 	return kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
488 }
489 
490 static inline int kvm_map_vectors(void)
491 {
492 	return 0;
493 }
494 #endif
495 
496 #ifdef CONFIG_ARM64_SSBD
497 DECLARE_PER_CPU_READ_MOSTLY(u64, arm64_ssbd_callback_required);
498 
499 static inline int hyp_map_aux_data(void)
500 {
501 	int cpu, err;
502 
503 	for_each_possible_cpu(cpu) {
504 		u64 *ptr;
505 
506 		ptr = per_cpu_ptr(&arm64_ssbd_callback_required, cpu);
507 		err = create_hyp_mappings(ptr, ptr + 1, PAGE_HYP);
508 		if (err)
509 			return err;
510 	}
511 	return 0;
512 }
513 #else
514 static inline int hyp_map_aux_data(void)
515 {
516 	return 0;
517 }
518 #endif
519 
520 #define kvm_phys_to_vttbr(addr)		phys_to_ttbr(addr)
521 
522 /*
523  * Get the magic number 'x' for VTTBR:BADDR of this KVM instance.
524  * With v8.2 LVA extensions, 'x' should be a minimum of 6 with
525  * 52bit IPS.
526  */
527 static inline int arm64_vttbr_x(u32 ipa_shift, u32 levels)
528 {
529 	int x = ARM64_VTTBR_X(ipa_shift, levels);
530 
531 	return (IS_ENABLED(CONFIG_ARM64_PA_BITS_52) && x < 6) ? 6 : x;
532 }
533 
534 static inline u64 vttbr_baddr_mask(u32 ipa_shift, u32 levels)
535 {
536 	unsigned int x = arm64_vttbr_x(ipa_shift, levels);
537 
538 	return GENMASK_ULL(PHYS_MASK_SHIFT - 1, x);
539 }
540 
541 static inline u64 kvm_vttbr_baddr_mask(struct kvm *kvm)
542 {
543 	return vttbr_baddr_mask(kvm_phys_shift(kvm), kvm_stage2_levels(kvm));
544 }
545 
546 static inline bool kvm_cpu_has_cnp(void)
547 {
548 	return system_supports_cnp();
549 }
550 
551 #endif /* __ASSEMBLY__ */
552 #endif /* __ARM64_KVM_MMU_H__ */
553