xref: /openbmc/linux/arch/arm64/include/asm/kvm_mmu.h (revision 8631f940b81bf0da3d375fce166d381fa8c47bb2)
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #ifndef __ARM64_KVM_MMU_H__
19 #define __ARM64_KVM_MMU_H__
20 
21 #include <asm/page.h>
22 #include <asm/memory.h>
23 #include <asm/cpufeature.h>
24 
25 /*
26  * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
27  * "negative" addresses. This makes it impossible to directly share
28  * mappings with the kernel.
29  *
30  * Instead, give the HYP mode its own VA region at a fixed offset from
31  * the kernel by just masking the top bits (which are all ones for a
32  * kernel address). We need to find out how many bits to mask.
33  *
34  * We want to build a set of page tables that cover both parts of the
35  * idmap (the trampoline page used to initialize EL2), and our normal
36  * runtime VA space, at the same time.
37  *
38  * Given that the kernel uses VA_BITS for its entire address space,
39  * and that half of that space (VA_BITS - 1) is used for the linear
40  * mapping, we can also limit the EL2 space to (VA_BITS - 1).
41  *
42  * The main question is "Within the VA_BITS space, does EL2 use the
43  * top or the bottom half of that space to shadow the kernel's linear
44  * mapping?". As we need to idmap the trampoline page, this is
45  * determined by the range in which this page lives.
46  *
47  * If the page is in the bottom half, we have to use the top half. If
48  * the page is in the top half, we have to use the bottom half:
49  *
50  * T = __pa_symbol(__hyp_idmap_text_start)
51  * if (T & BIT(VA_BITS - 1))
52  *	HYP_VA_MIN = 0  //idmap in upper half
53  * else
54  *	HYP_VA_MIN = 1 << (VA_BITS - 1)
55  * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
56  *
57  * This of course assumes that the trampoline page exists within the
58  * VA_BITS range. If it doesn't, then it means we're in the odd case
59  * where the kernel idmap (as well as HYP) uses more levels than the
60  * kernel runtime page tables (as seen when the kernel is configured
61  * for 4k pages, 39bits VA, and yet memory lives just above that
62  * limit, forcing the idmap to use 4 levels of page tables while the
63  * kernel itself only uses 3). In this particular case, it doesn't
64  * matter which side of VA_BITS we use, as we're guaranteed not to
65  * conflict with anything.
66  *
67  * When using VHE, there are no separate hyp mappings and all KVM
68  * functionality is already mapped as part of the main kernel
69  * mappings, and none of this applies in that case.
70  */
71 
72 #ifdef __ASSEMBLY__
73 
74 #include <asm/alternative.h>
75 
76 /*
77  * Convert a kernel VA into a HYP VA.
78  * reg: VA to be converted.
79  *
80  * The actual code generation takes place in kvm_update_va_mask, and
81  * the instructions below are only there to reserve the space and
82  * perform the register allocation (kvm_update_va_mask uses the
83  * specific registers encoded in the instructions).
84  */
85 .macro kern_hyp_va	reg
86 alternative_cb kvm_update_va_mask
87 	and     \reg, \reg, #1		/* mask with va_mask */
88 	ror	\reg, \reg, #1		/* rotate to the first tag bit */
89 	add	\reg, \reg, #0		/* insert the low 12 bits of the tag */
90 	add	\reg, \reg, #0, lsl 12	/* insert the top 12 bits of the tag */
91 	ror	\reg, \reg, #63		/* rotate back */
92 alternative_cb_end
93 .endm
94 
95 #else
96 
97 #include <asm/pgalloc.h>
98 #include <asm/cache.h>
99 #include <asm/cacheflush.h>
100 #include <asm/mmu_context.h>
101 #include <asm/pgtable.h>
102 
103 void kvm_update_va_mask(struct alt_instr *alt,
104 			__le32 *origptr, __le32 *updptr, int nr_inst);
105 
106 static inline unsigned long __kern_hyp_va(unsigned long v)
107 {
108 	asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n"
109 				    "ror %0, %0, #1\n"
110 				    "add %0, %0, #0\n"
111 				    "add %0, %0, #0, lsl 12\n"
112 				    "ror %0, %0, #63\n",
113 				    kvm_update_va_mask)
114 		     : "+r" (v));
115 	return v;
116 }
117 
118 #define kern_hyp_va(v) 	((typeof(v))(__kern_hyp_va((unsigned long)(v))))
119 
120 /*
121  * Obtain the PC-relative address of a kernel symbol
122  * s: symbol
123  *
124  * The goal of this macro is to return a symbol's address based on a
125  * PC-relative computation, as opposed to a loading the VA from a
126  * constant pool or something similar. This works well for HYP, as an
127  * absolute VA is guaranteed to be wrong. Only use this if trying to
128  * obtain the address of a symbol (i.e. not something you obtained by
129  * following a pointer).
130  */
131 #define hyp_symbol_addr(s)						\
132 	({								\
133 		typeof(s) *addr;					\
134 		asm("adrp	%0, %1\n"				\
135 		    "add	%0, %0, :lo12:%1\n"			\
136 		    : "=r" (addr) : "S" (&s));				\
137 		addr;							\
138 	})
139 
140 /*
141  * We currently only support a 40bit IPA.
142  */
143 #define KVM_PHYS_SHIFT	(40)
144 
145 #define kvm_phys_shift(kvm)		VTCR_EL2_IPA(kvm->arch.vtcr)
146 #define kvm_phys_size(kvm)		(_AC(1, ULL) << kvm_phys_shift(kvm))
147 #define kvm_phys_mask(kvm)		(kvm_phys_size(kvm) - _AC(1, ULL))
148 
149 static inline bool kvm_page_empty(void *ptr)
150 {
151 	struct page *ptr_page = virt_to_page(ptr);
152 	return page_count(ptr_page) == 1;
153 }
154 
155 #include <asm/stage2_pgtable.h>
156 
157 int create_hyp_mappings(void *from, void *to, pgprot_t prot);
158 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
159 			   void __iomem **kaddr,
160 			   void __iomem **haddr);
161 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
162 			     void **haddr);
163 void free_hyp_pgds(void);
164 
165 void stage2_unmap_vm(struct kvm *kvm);
166 int kvm_alloc_stage2_pgd(struct kvm *kvm);
167 void kvm_free_stage2_pgd(struct kvm *kvm);
168 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
169 			  phys_addr_t pa, unsigned long size, bool writable);
170 
171 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
172 
173 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
174 
175 phys_addr_t kvm_mmu_get_httbr(void);
176 phys_addr_t kvm_get_idmap_vector(void);
177 int kvm_mmu_init(void);
178 void kvm_clear_hyp_idmap(void);
179 
180 #define kvm_mk_pmd(ptep)					\
181 	__pmd(__phys_to_pmd_val(__pa(ptep)) | PMD_TYPE_TABLE)
182 #define kvm_mk_pud(pmdp)					\
183 	__pud(__phys_to_pud_val(__pa(pmdp)) | PMD_TYPE_TABLE)
184 #define kvm_mk_pgd(pudp)					\
185 	__pgd(__phys_to_pgd_val(__pa(pudp)) | PUD_TYPE_TABLE)
186 
187 #define kvm_set_pud(pudp, pud)		set_pud(pudp, pud)
188 
189 #define kvm_pfn_pte(pfn, prot)		pfn_pte(pfn, prot)
190 #define kvm_pfn_pmd(pfn, prot)		pfn_pmd(pfn, prot)
191 #define kvm_pfn_pud(pfn, prot)		pfn_pud(pfn, prot)
192 
193 #define kvm_pud_pfn(pud)		pud_pfn(pud)
194 
195 #define kvm_pmd_mkhuge(pmd)		pmd_mkhuge(pmd)
196 #define kvm_pud_mkhuge(pud)		pud_mkhuge(pud)
197 
198 static inline pte_t kvm_s2pte_mkwrite(pte_t pte)
199 {
200 	pte_val(pte) |= PTE_S2_RDWR;
201 	return pte;
202 }
203 
204 static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd)
205 {
206 	pmd_val(pmd) |= PMD_S2_RDWR;
207 	return pmd;
208 }
209 
210 static inline pud_t kvm_s2pud_mkwrite(pud_t pud)
211 {
212 	pud_val(pud) |= PUD_S2_RDWR;
213 	return pud;
214 }
215 
216 static inline pte_t kvm_s2pte_mkexec(pte_t pte)
217 {
218 	pte_val(pte) &= ~PTE_S2_XN;
219 	return pte;
220 }
221 
222 static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd)
223 {
224 	pmd_val(pmd) &= ~PMD_S2_XN;
225 	return pmd;
226 }
227 
228 static inline pud_t kvm_s2pud_mkexec(pud_t pud)
229 {
230 	pud_val(pud) &= ~PUD_S2_XN;
231 	return pud;
232 }
233 
234 static inline void kvm_set_s2pte_readonly(pte_t *ptep)
235 {
236 	pteval_t old_pteval, pteval;
237 
238 	pteval = READ_ONCE(pte_val(*ptep));
239 	do {
240 		old_pteval = pteval;
241 		pteval &= ~PTE_S2_RDWR;
242 		pteval |= PTE_S2_RDONLY;
243 		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
244 	} while (pteval != old_pteval);
245 }
246 
247 static inline bool kvm_s2pte_readonly(pte_t *ptep)
248 {
249 	return (READ_ONCE(pte_val(*ptep)) & PTE_S2_RDWR) == PTE_S2_RDONLY;
250 }
251 
252 static inline bool kvm_s2pte_exec(pte_t *ptep)
253 {
254 	return !(READ_ONCE(pte_val(*ptep)) & PTE_S2_XN);
255 }
256 
257 static inline void kvm_set_s2pmd_readonly(pmd_t *pmdp)
258 {
259 	kvm_set_s2pte_readonly((pte_t *)pmdp);
260 }
261 
262 static inline bool kvm_s2pmd_readonly(pmd_t *pmdp)
263 {
264 	return kvm_s2pte_readonly((pte_t *)pmdp);
265 }
266 
267 static inline bool kvm_s2pmd_exec(pmd_t *pmdp)
268 {
269 	return !(READ_ONCE(pmd_val(*pmdp)) & PMD_S2_XN);
270 }
271 
272 static inline void kvm_set_s2pud_readonly(pud_t *pudp)
273 {
274 	kvm_set_s2pte_readonly((pte_t *)pudp);
275 }
276 
277 static inline bool kvm_s2pud_readonly(pud_t *pudp)
278 {
279 	return kvm_s2pte_readonly((pte_t *)pudp);
280 }
281 
282 static inline bool kvm_s2pud_exec(pud_t *pudp)
283 {
284 	return !(READ_ONCE(pud_val(*pudp)) & PUD_S2_XN);
285 }
286 
287 static inline pud_t kvm_s2pud_mkyoung(pud_t pud)
288 {
289 	return pud_mkyoung(pud);
290 }
291 
292 static inline bool kvm_s2pud_young(pud_t pud)
293 {
294 	return pud_young(pud);
295 }
296 
297 #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
298 
299 #ifdef __PAGETABLE_PMD_FOLDED
300 #define hyp_pmd_table_empty(pmdp) (0)
301 #else
302 #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
303 #endif
304 
305 #ifdef __PAGETABLE_PUD_FOLDED
306 #define hyp_pud_table_empty(pudp) (0)
307 #else
308 #define hyp_pud_table_empty(pudp) kvm_page_empty(pudp)
309 #endif
310 
311 struct kvm;
312 
313 #define kvm_flush_dcache_to_poc(a,l)	__flush_dcache_area((a), (l))
314 
315 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
316 {
317 	return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
318 }
319 
320 static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
321 {
322 	void *va = page_address(pfn_to_page(pfn));
323 
324 	/*
325 	 * With FWB, we ensure that the guest always accesses memory using
326 	 * cacheable attributes, and we don't have to clean to PoC when
327 	 * faulting in pages. Furthermore, FWB implies IDC, so cleaning to
328 	 * PoU is not required either in this case.
329 	 */
330 	if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
331 		return;
332 
333 	kvm_flush_dcache_to_poc(va, size);
334 }
335 
336 static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn,
337 						  unsigned long size)
338 {
339 	if (icache_is_aliasing()) {
340 		/* any kind of VIPT cache */
341 		__flush_icache_all();
342 	} else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
343 		/* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
344 		void *va = page_address(pfn_to_page(pfn));
345 
346 		invalidate_icache_range((unsigned long)va,
347 					(unsigned long)va + size);
348 	}
349 }
350 
351 static inline void __kvm_flush_dcache_pte(pte_t pte)
352 {
353 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
354 		struct page *page = pte_page(pte);
355 		kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE);
356 	}
357 }
358 
359 static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
360 {
361 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
362 		struct page *page = pmd_page(pmd);
363 		kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE);
364 	}
365 }
366 
367 static inline void __kvm_flush_dcache_pud(pud_t pud)
368 {
369 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
370 		struct page *page = pud_page(pud);
371 		kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE);
372 	}
373 }
374 
375 #define kvm_virt_to_phys(x)		__pa_symbol(x)
376 
377 void kvm_set_way_flush(struct kvm_vcpu *vcpu);
378 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
379 
380 static inline bool __kvm_cpu_uses_extended_idmap(void)
381 {
382 	return __cpu_uses_extended_idmap_level();
383 }
384 
385 static inline unsigned long __kvm_idmap_ptrs_per_pgd(void)
386 {
387 	return idmap_ptrs_per_pgd;
388 }
389 
390 /*
391  * Can't use pgd_populate here, because the extended idmap adds an extra level
392  * above CONFIG_PGTABLE_LEVELS (which is 2 or 3 if we're using the extended
393  * idmap), and pgd_populate is only available if CONFIG_PGTABLE_LEVELS = 4.
394  */
395 static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
396 				       pgd_t *hyp_pgd,
397 				       pgd_t *merged_hyp_pgd,
398 				       unsigned long hyp_idmap_start)
399 {
400 	int idmap_idx;
401 	u64 pgd_addr;
402 
403 	/*
404 	 * Use the first entry to access the HYP mappings. It is
405 	 * guaranteed to be free, otherwise we wouldn't use an
406 	 * extended idmap.
407 	 */
408 	VM_BUG_ON(pgd_val(merged_hyp_pgd[0]));
409 	pgd_addr = __phys_to_pgd_val(__pa(hyp_pgd));
410 	merged_hyp_pgd[0] = __pgd(pgd_addr | PMD_TYPE_TABLE);
411 
412 	/*
413 	 * Create another extended level entry that points to the boot HYP map,
414 	 * which contains an ID mapping of the HYP init code. We essentially
415 	 * merge the boot and runtime HYP maps by doing so, but they don't
416 	 * overlap anyway, so this is fine.
417 	 */
418 	idmap_idx = hyp_idmap_start >> VA_BITS;
419 	VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx]));
420 	pgd_addr = __phys_to_pgd_val(__pa(boot_hyp_pgd));
421 	merged_hyp_pgd[idmap_idx] = __pgd(pgd_addr | PMD_TYPE_TABLE);
422 }
423 
424 static inline unsigned int kvm_get_vmid_bits(void)
425 {
426 	int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
427 
428 	return (cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR1_VMIDBITS_SHIFT) == 2) ? 16 : 8;
429 }
430 
431 /*
432  * We are not in the kvm->srcu critical section most of the time, so we take
433  * the SRCU read lock here. Since we copy the data from the user page, we
434  * can immediately drop the lock again.
435  */
436 static inline int kvm_read_guest_lock(struct kvm *kvm,
437 				      gpa_t gpa, void *data, unsigned long len)
438 {
439 	int srcu_idx = srcu_read_lock(&kvm->srcu);
440 	int ret = kvm_read_guest(kvm, gpa, data, len);
441 
442 	srcu_read_unlock(&kvm->srcu, srcu_idx);
443 
444 	return ret;
445 }
446 
447 #ifdef CONFIG_KVM_INDIRECT_VECTORS
448 /*
449  * EL2 vectors can be mapped and rerouted in a number of ways,
450  * depending on the kernel configuration and CPU present:
451  *
452  * - If the CPU has the ARM64_HARDEN_BRANCH_PREDICTOR cap, the
453  *   hardening sequence is placed in one of the vector slots, which is
454  *   executed before jumping to the real vectors.
455  *
456  * - If the CPU has both the ARM64_HARDEN_EL2_VECTORS cap and the
457  *   ARM64_HARDEN_BRANCH_PREDICTOR cap, the slot containing the
458  *   hardening sequence is mapped next to the idmap page, and executed
459  *   before jumping to the real vectors.
460  *
461  * - If the CPU only has the ARM64_HARDEN_EL2_VECTORS cap, then an
462  *   empty slot is selected, mapped next to the idmap page, and
463  *   executed before jumping to the real vectors.
464  *
465  * Note that ARM64_HARDEN_EL2_VECTORS is somewhat incompatible with
466  * VHE, as we don't have hypervisor-specific mappings. If the system
467  * is VHE and yet selects this capability, it will be ignored.
468  */
469 #include <asm/mmu.h>
470 
471 extern void *__kvm_bp_vect_base;
472 extern int __kvm_harden_el2_vector_slot;
473 
474 static inline void *kvm_get_hyp_vector(void)
475 {
476 	struct bp_hardening_data *data = arm64_get_bp_hardening_data();
477 	void *vect = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
478 	int slot = -1;
479 
480 	if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR) && data->fn) {
481 		vect = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs_start));
482 		slot = data->hyp_vectors_slot;
483 	}
484 
485 	if (this_cpu_has_cap(ARM64_HARDEN_EL2_VECTORS) && !has_vhe()) {
486 		vect = __kvm_bp_vect_base;
487 		if (slot == -1)
488 			slot = __kvm_harden_el2_vector_slot;
489 	}
490 
491 	if (slot != -1)
492 		vect += slot * SZ_2K;
493 
494 	return vect;
495 }
496 
497 /*  This is only called on a !VHE system */
498 static inline int kvm_map_vectors(void)
499 {
500 	/*
501 	 * HBP  = ARM64_HARDEN_BRANCH_PREDICTOR
502 	 * HEL2 = ARM64_HARDEN_EL2_VECTORS
503 	 *
504 	 * !HBP + !HEL2 -> use direct vectors
505 	 *  HBP + !HEL2 -> use hardened vectors in place
506 	 * !HBP +  HEL2 -> allocate one vector slot and use exec mapping
507 	 *  HBP +  HEL2 -> use hardened vertors and use exec mapping
508 	 */
509 	if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR)) {
510 		__kvm_bp_vect_base = kvm_ksym_ref(__bp_harden_hyp_vecs_start);
511 		__kvm_bp_vect_base = kern_hyp_va(__kvm_bp_vect_base);
512 	}
513 
514 	if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) {
515 		phys_addr_t vect_pa = __pa_symbol(__bp_harden_hyp_vecs_start);
516 		unsigned long size = (__bp_harden_hyp_vecs_end -
517 				      __bp_harden_hyp_vecs_start);
518 
519 		/*
520 		 * Always allocate a spare vector slot, as we don't
521 		 * know yet which CPUs have a BP hardening slot that
522 		 * we can reuse.
523 		 */
524 		__kvm_harden_el2_vector_slot = atomic_inc_return(&arm64_el2_vector_last_slot);
525 		BUG_ON(__kvm_harden_el2_vector_slot >= BP_HARDEN_EL2_SLOTS);
526 		return create_hyp_exec_mappings(vect_pa, size,
527 						&__kvm_bp_vect_base);
528 	}
529 
530 	return 0;
531 }
532 #else
533 static inline void *kvm_get_hyp_vector(void)
534 {
535 	return kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
536 }
537 
538 static inline int kvm_map_vectors(void)
539 {
540 	return 0;
541 }
542 #endif
543 
544 #ifdef CONFIG_ARM64_SSBD
545 DECLARE_PER_CPU_READ_MOSTLY(u64, arm64_ssbd_callback_required);
546 
547 static inline int hyp_map_aux_data(void)
548 {
549 	int cpu, err;
550 
551 	for_each_possible_cpu(cpu) {
552 		u64 *ptr;
553 
554 		ptr = per_cpu_ptr(&arm64_ssbd_callback_required, cpu);
555 		err = create_hyp_mappings(ptr, ptr + 1, PAGE_HYP);
556 		if (err)
557 			return err;
558 	}
559 	return 0;
560 }
561 #else
562 static inline int hyp_map_aux_data(void)
563 {
564 	return 0;
565 }
566 #endif
567 
568 #define kvm_phys_to_vttbr(addr)		phys_to_ttbr(addr)
569 
570 /*
571  * Get the magic number 'x' for VTTBR:BADDR of this KVM instance.
572  * With v8.2 LVA extensions, 'x' should be a minimum of 6 with
573  * 52bit IPS.
574  */
575 static inline int arm64_vttbr_x(u32 ipa_shift, u32 levels)
576 {
577 	int x = ARM64_VTTBR_X(ipa_shift, levels);
578 
579 	return (IS_ENABLED(CONFIG_ARM64_PA_BITS_52) && x < 6) ? 6 : x;
580 }
581 
582 static inline u64 vttbr_baddr_mask(u32 ipa_shift, u32 levels)
583 {
584 	unsigned int x = arm64_vttbr_x(ipa_shift, levels);
585 
586 	return GENMASK_ULL(PHYS_MASK_SHIFT - 1, x);
587 }
588 
589 static inline u64 kvm_vttbr_baddr_mask(struct kvm *kvm)
590 {
591 	return vttbr_baddr_mask(kvm_phys_shift(kvm), kvm_stage2_levels(kvm));
592 }
593 
594 static inline bool kvm_cpu_has_cnp(void)
595 {
596 	return system_supports_cnp();
597 }
598 
599 #endif /* __ASSEMBLY__ */
600 #endif /* __ARM64_KVM_MMU_H__ */
601