1 /* 2 * Copyright (C) 2012,2013 - ARM Ltd 3 * Author: Marc Zyngier <marc.zyngier@arm.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #ifndef __ARM64_KVM_MMU_H__ 19 #define __ARM64_KVM_MMU_H__ 20 21 #include <asm/page.h> 22 #include <asm/memory.h> 23 #include <asm/cpufeature.h> 24 25 /* 26 * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express 27 * "negative" addresses. This makes it impossible to directly share 28 * mappings with the kernel. 29 * 30 * Instead, give the HYP mode its own VA region at a fixed offset from 31 * the kernel by just masking the top bits (which are all ones for a 32 * kernel address). We need to find out how many bits to mask. 33 * 34 * We want to build a set of page tables that cover both parts of the 35 * idmap (the trampoline page used to initialize EL2), and our normal 36 * runtime VA space, at the same time. 37 * 38 * Given that the kernel uses VA_BITS for its entire address space, 39 * and that half of that space (VA_BITS - 1) is used for the linear 40 * mapping, we can also limit the EL2 space to (VA_BITS - 1). 41 * 42 * The main question is "Within the VA_BITS space, does EL2 use the 43 * top or the bottom half of that space to shadow the kernel's linear 44 * mapping?". As we need to idmap the trampoline page, this is 45 * determined by the range in which this page lives. 46 * 47 * If the page is in the bottom half, we have to use the top half. If 48 * the page is in the top half, we have to use the bottom half: 49 * 50 * T = __pa_symbol(__hyp_idmap_text_start) 51 * if (T & BIT(VA_BITS - 1)) 52 * HYP_VA_MIN = 0 //idmap in upper half 53 * else 54 * HYP_VA_MIN = 1 << (VA_BITS - 1) 55 * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1 56 * 57 * This of course assumes that the trampoline page exists within the 58 * VA_BITS range. If it doesn't, then it means we're in the odd case 59 * where the kernel idmap (as well as HYP) uses more levels than the 60 * kernel runtime page tables (as seen when the kernel is configured 61 * for 4k pages, 39bits VA, and yet memory lives just above that 62 * limit, forcing the idmap to use 4 levels of page tables while the 63 * kernel itself only uses 3). In this particular case, it doesn't 64 * matter which side of VA_BITS we use, as we're guaranteed not to 65 * conflict with anything. 66 * 67 * When using VHE, there are no separate hyp mappings and all KVM 68 * functionality is already mapped as part of the main kernel 69 * mappings, and none of this applies in that case. 70 */ 71 72 #define HYP_PAGE_OFFSET_HIGH_MASK ((UL(1) << VA_BITS) - 1) 73 #define HYP_PAGE_OFFSET_LOW_MASK ((UL(1) << (VA_BITS - 1)) - 1) 74 75 #ifdef __ASSEMBLY__ 76 77 #include <asm/alternative.h> 78 #include <asm/cpufeature.h> 79 80 /* 81 * Convert a kernel VA into a HYP VA. 82 * reg: VA to be converted. 83 * 84 * This generates the following sequences: 85 * - High mask: 86 * and x0, x0, #HYP_PAGE_OFFSET_HIGH_MASK 87 * nop 88 * - Low mask: 89 * and x0, x0, #HYP_PAGE_OFFSET_HIGH_MASK 90 * and x0, x0, #HYP_PAGE_OFFSET_LOW_MASK 91 * - VHE: 92 * nop 93 * nop 94 * 95 * The "low mask" version works because the mask is a strict subset of 96 * the "high mask", hence performing the first mask for nothing. 97 * Should be completely invisible on any viable CPU. 98 */ 99 .macro kern_hyp_va reg 100 alternative_if_not ARM64_HAS_VIRT_HOST_EXTN 101 and \reg, \reg, #HYP_PAGE_OFFSET_HIGH_MASK 102 alternative_else_nop_endif 103 alternative_if ARM64_HYP_OFFSET_LOW 104 and \reg, \reg, #HYP_PAGE_OFFSET_LOW_MASK 105 alternative_else_nop_endif 106 .endm 107 108 #else 109 110 #include <asm/pgalloc.h> 111 #include <asm/cache.h> 112 #include <asm/cacheflush.h> 113 #include <asm/mmu_context.h> 114 #include <asm/pgtable.h> 115 116 static inline unsigned long __kern_hyp_va(unsigned long v) 117 { 118 asm volatile(ALTERNATIVE("and %0, %0, %1", 119 "nop", 120 ARM64_HAS_VIRT_HOST_EXTN) 121 : "+r" (v) 122 : "i" (HYP_PAGE_OFFSET_HIGH_MASK)); 123 asm volatile(ALTERNATIVE("nop", 124 "and %0, %0, %1", 125 ARM64_HYP_OFFSET_LOW) 126 : "+r" (v) 127 : "i" (HYP_PAGE_OFFSET_LOW_MASK)); 128 return v; 129 } 130 131 #define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v)))) 132 133 /* 134 * We currently only support a 40bit IPA. 135 */ 136 #define KVM_PHYS_SHIFT (40) 137 #define KVM_PHYS_SIZE (1UL << KVM_PHYS_SHIFT) 138 #define KVM_PHYS_MASK (KVM_PHYS_SIZE - 1UL) 139 140 #include <asm/stage2_pgtable.h> 141 142 int create_hyp_mappings(void *from, void *to, pgprot_t prot); 143 int create_hyp_io_mappings(void *from, void *to, phys_addr_t); 144 void free_hyp_pgds(void); 145 146 void stage2_unmap_vm(struct kvm *kvm); 147 int kvm_alloc_stage2_pgd(struct kvm *kvm); 148 void kvm_free_stage2_pgd(struct kvm *kvm); 149 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, 150 phys_addr_t pa, unsigned long size, bool writable); 151 152 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run); 153 154 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu); 155 156 phys_addr_t kvm_mmu_get_httbr(void); 157 phys_addr_t kvm_get_idmap_vector(void); 158 int kvm_mmu_init(void); 159 void kvm_clear_hyp_idmap(void); 160 161 #define kvm_set_pte(ptep, pte) set_pte(ptep, pte) 162 #define kvm_set_pmd(pmdp, pmd) set_pmd(pmdp, pmd) 163 164 static inline pte_t kvm_s2pte_mkwrite(pte_t pte) 165 { 166 pte_val(pte) |= PTE_S2_RDWR; 167 return pte; 168 } 169 170 static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd) 171 { 172 pmd_val(pmd) |= PMD_S2_RDWR; 173 return pmd; 174 } 175 176 static inline void kvm_set_s2pte_readonly(pte_t *pte) 177 { 178 pteval_t old_pteval, pteval; 179 180 pteval = READ_ONCE(pte_val(*pte)); 181 do { 182 old_pteval = pteval; 183 pteval &= ~PTE_S2_RDWR; 184 pteval |= PTE_S2_RDONLY; 185 pteval = cmpxchg_relaxed(&pte_val(*pte), old_pteval, pteval); 186 } while (pteval != old_pteval); 187 } 188 189 static inline bool kvm_s2pte_readonly(pte_t *pte) 190 { 191 return (pte_val(*pte) & PTE_S2_RDWR) == PTE_S2_RDONLY; 192 } 193 194 static inline void kvm_set_s2pmd_readonly(pmd_t *pmd) 195 { 196 kvm_set_s2pte_readonly((pte_t *)pmd); 197 } 198 199 static inline bool kvm_s2pmd_readonly(pmd_t *pmd) 200 { 201 return kvm_s2pte_readonly((pte_t *)pmd); 202 } 203 204 static inline bool kvm_page_empty(void *ptr) 205 { 206 struct page *ptr_page = virt_to_page(ptr); 207 return page_count(ptr_page) == 1; 208 } 209 210 #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep) 211 212 #ifdef __PAGETABLE_PMD_FOLDED 213 #define hyp_pmd_table_empty(pmdp) (0) 214 #else 215 #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp) 216 #endif 217 218 #ifdef __PAGETABLE_PUD_FOLDED 219 #define hyp_pud_table_empty(pudp) (0) 220 #else 221 #define hyp_pud_table_empty(pudp) kvm_page_empty(pudp) 222 #endif 223 224 struct kvm; 225 226 #define kvm_flush_dcache_to_poc(a,l) __flush_dcache_area((a), (l)) 227 228 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu) 229 { 230 return (vcpu_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101; 231 } 232 233 static inline void __coherent_cache_guest_page(struct kvm_vcpu *vcpu, 234 kvm_pfn_t pfn, 235 unsigned long size) 236 { 237 void *va = page_address(pfn_to_page(pfn)); 238 239 kvm_flush_dcache_to_poc(va, size); 240 241 if (icache_is_aliasing()) { 242 /* any kind of VIPT cache */ 243 __flush_icache_all(); 244 } else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) { 245 /* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */ 246 flush_icache_range((unsigned long)va, 247 (unsigned long)va + size); 248 } 249 } 250 251 static inline void __kvm_flush_dcache_pte(pte_t pte) 252 { 253 struct page *page = pte_page(pte); 254 kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE); 255 } 256 257 static inline void __kvm_flush_dcache_pmd(pmd_t pmd) 258 { 259 struct page *page = pmd_page(pmd); 260 kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE); 261 } 262 263 static inline void __kvm_flush_dcache_pud(pud_t pud) 264 { 265 struct page *page = pud_page(pud); 266 kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE); 267 } 268 269 #define kvm_virt_to_phys(x) __pa_symbol(x) 270 271 void kvm_set_way_flush(struct kvm_vcpu *vcpu); 272 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled); 273 274 static inline bool __kvm_cpu_uses_extended_idmap(void) 275 { 276 return __cpu_uses_extended_idmap(); 277 } 278 279 static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd, 280 pgd_t *hyp_pgd, 281 pgd_t *merged_hyp_pgd, 282 unsigned long hyp_idmap_start) 283 { 284 int idmap_idx; 285 286 /* 287 * Use the first entry to access the HYP mappings. It is 288 * guaranteed to be free, otherwise we wouldn't use an 289 * extended idmap. 290 */ 291 VM_BUG_ON(pgd_val(merged_hyp_pgd[0])); 292 merged_hyp_pgd[0] = __pgd(__pa(hyp_pgd) | PMD_TYPE_TABLE); 293 294 /* 295 * Create another extended level entry that points to the boot HYP map, 296 * which contains an ID mapping of the HYP init code. We essentially 297 * merge the boot and runtime HYP maps by doing so, but they don't 298 * overlap anyway, so this is fine. 299 */ 300 idmap_idx = hyp_idmap_start >> VA_BITS; 301 VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx])); 302 merged_hyp_pgd[idmap_idx] = __pgd(__pa(boot_hyp_pgd) | PMD_TYPE_TABLE); 303 } 304 305 static inline unsigned int kvm_get_vmid_bits(void) 306 { 307 int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 308 309 return (cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR1_VMIDBITS_SHIFT) == 2) ? 16 : 8; 310 } 311 312 #endif /* __ASSEMBLY__ */ 313 #endif /* __ARM64_KVM_MMU_H__ */ 314