xref: /openbmc/linux/arch/arm64/include/asm/kvm_mmu.h (revision 6774def6)
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #ifndef __ARM64_KVM_MMU_H__
19 #define __ARM64_KVM_MMU_H__
20 
21 #include <asm/page.h>
22 #include <asm/memory.h>
23 
24 /*
25  * As we only have the TTBR0_EL2 register, we cannot express
26  * "negative" addresses. This makes it impossible to directly share
27  * mappings with the kernel.
28  *
29  * Instead, give the HYP mode its own VA region at a fixed offset from
30  * the kernel by just masking the top bits (which are all ones for a
31  * kernel address).
32  */
33 #define HYP_PAGE_OFFSET_SHIFT	VA_BITS
34 #define HYP_PAGE_OFFSET_MASK	((UL(1) << HYP_PAGE_OFFSET_SHIFT) - 1)
35 #define HYP_PAGE_OFFSET		(PAGE_OFFSET & HYP_PAGE_OFFSET_MASK)
36 
37 /*
38  * Our virtual mapping for the idmap-ed MMU-enable code. Must be
39  * shared across all the page-tables. Conveniently, we use the last
40  * possible page, where no kernel mapping will ever exist.
41  */
42 #define TRAMPOLINE_VA		(HYP_PAGE_OFFSET_MASK & PAGE_MASK)
43 
44 /*
45  * KVM_MMU_CACHE_MIN_PAGES is the number of stage2 page table translation
46  * levels in addition to the PGD and potentially the PUD which are
47  * pre-allocated (we pre-allocate the fake PGD and the PUD when the Stage-2
48  * tables use one level of tables less than the kernel.
49  */
50 #ifdef CONFIG_ARM64_64K_PAGES
51 #define KVM_MMU_CACHE_MIN_PAGES	1
52 #else
53 #define KVM_MMU_CACHE_MIN_PAGES	2
54 #endif
55 
56 #ifdef __ASSEMBLY__
57 
58 /*
59  * Convert a kernel VA into a HYP VA.
60  * reg: VA to be converted.
61  */
62 .macro kern_hyp_va	reg
63 	and	\reg, \reg, #HYP_PAGE_OFFSET_MASK
64 .endm
65 
66 #else
67 
68 #include <asm/pgalloc.h>
69 #include <asm/cachetype.h>
70 #include <asm/cacheflush.h>
71 
72 #define KERN_TO_HYP(kva)	((unsigned long)kva - PAGE_OFFSET + HYP_PAGE_OFFSET)
73 
74 /*
75  * We currently only support a 40bit IPA.
76  */
77 #define KVM_PHYS_SHIFT	(40)
78 #define KVM_PHYS_SIZE	(1UL << KVM_PHYS_SHIFT)
79 #define KVM_PHYS_MASK	(KVM_PHYS_SIZE - 1UL)
80 
81 int create_hyp_mappings(void *from, void *to);
82 int create_hyp_io_mappings(void *from, void *to, phys_addr_t);
83 void free_boot_hyp_pgd(void);
84 void free_hyp_pgds(void);
85 
86 int kvm_alloc_stage2_pgd(struct kvm *kvm);
87 void kvm_free_stage2_pgd(struct kvm *kvm);
88 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
89 			  phys_addr_t pa, unsigned long size, bool writable);
90 
91 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
92 
93 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
94 
95 phys_addr_t kvm_mmu_get_httbr(void);
96 phys_addr_t kvm_mmu_get_boot_httbr(void);
97 phys_addr_t kvm_get_idmap_vector(void);
98 int kvm_mmu_init(void);
99 void kvm_clear_hyp_idmap(void);
100 
101 #define	kvm_set_pte(ptep, pte)		set_pte(ptep, pte)
102 #define	kvm_set_pmd(pmdp, pmd)		set_pmd(pmdp, pmd)
103 
104 static inline void kvm_clean_pgd(pgd_t *pgd) {}
105 static inline void kvm_clean_pmd(pmd_t *pmd) {}
106 static inline void kvm_clean_pmd_entry(pmd_t *pmd) {}
107 static inline void kvm_clean_pte(pte_t *pte) {}
108 static inline void kvm_clean_pte_entry(pte_t *pte) {}
109 
110 static inline void kvm_set_s2pte_writable(pte_t *pte)
111 {
112 	pte_val(*pte) |= PTE_S2_RDWR;
113 }
114 
115 static inline void kvm_set_s2pmd_writable(pmd_t *pmd)
116 {
117 	pmd_val(*pmd) |= PMD_S2_RDWR;
118 }
119 
120 #define kvm_pgd_addr_end(addr, end)	pgd_addr_end(addr, end)
121 #define kvm_pud_addr_end(addr, end)	pud_addr_end(addr, end)
122 #define kvm_pmd_addr_end(addr, end)	pmd_addr_end(addr, end)
123 
124 /*
125  * In the case where PGDIR_SHIFT is larger than KVM_PHYS_SHIFT, we can address
126  * the entire IPA input range with a single pgd entry, and we would only need
127  * one pgd entry.  Note that in this case, the pgd is actually not used by
128  * the MMU for Stage-2 translations, but is merely a fake pgd used as a data
129  * structure for the kernel pgtable macros to work.
130  */
131 #if PGDIR_SHIFT > KVM_PHYS_SHIFT
132 #define PTRS_PER_S2_PGD_SHIFT	0
133 #else
134 #define PTRS_PER_S2_PGD_SHIFT	(KVM_PHYS_SHIFT - PGDIR_SHIFT)
135 #endif
136 #define PTRS_PER_S2_PGD		(1 << PTRS_PER_S2_PGD_SHIFT)
137 #define S2_PGD_ORDER		get_order(PTRS_PER_S2_PGD * sizeof(pgd_t))
138 
139 /*
140  * If we are concatenating first level stage-2 page tables, we would have less
141  * than or equal to 16 pointers in the fake PGD, because that's what the
142  * architecture allows.  In this case, (4 - CONFIG_ARM64_PGTABLE_LEVELS)
143  * represents the first level for the host, and we add 1 to go to the next
144  * level (which uses contatenation) for the stage-2 tables.
145  */
146 #if PTRS_PER_S2_PGD <= 16
147 #define KVM_PREALLOC_LEVEL	(4 - CONFIG_ARM64_PGTABLE_LEVELS + 1)
148 #else
149 #define KVM_PREALLOC_LEVEL	(0)
150 #endif
151 
152 /**
153  * kvm_prealloc_hwpgd - allocate inital table for VTTBR
154  * @kvm:	The KVM struct pointer for the VM.
155  * @pgd:	The kernel pseudo pgd
156  *
157  * When the kernel uses more levels of page tables than the guest, we allocate
158  * a fake PGD and pre-populate it to point to the next-level page table, which
159  * will be the real initial page table pointed to by the VTTBR.
160  *
161  * When KVM_PREALLOC_LEVEL==2, we allocate a single page for the PMD and
162  * the kernel will use folded pud.  When KVM_PREALLOC_LEVEL==1, we
163  * allocate 2 consecutive PUD pages.
164  */
165 static inline int kvm_prealloc_hwpgd(struct kvm *kvm, pgd_t *pgd)
166 {
167 	unsigned int i;
168 	unsigned long hwpgd;
169 
170 	if (KVM_PREALLOC_LEVEL == 0)
171 		return 0;
172 
173 	hwpgd = __get_free_pages(GFP_KERNEL | __GFP_ZERO, PTRS_PER_S2_PGD_SHIFT);
174 	if (!hwpgd)
175 		return -ENOMEM;
176 
177 	for (i = 0; i < PTRS_PER_S2_PGD; i++) {
178 		if (KVM_PREALLOC_LEVEL == 1)
179 			pgd_populate(NULL, pgd + i,
180 				     (pud_t *)hwpgd + i * PTRS_PER_PUD);
181 		else if (KVM_PREALLOC_LEVEL == 2)
182 			pud_populate(NULL, pud_offset(pgd, 0) + i,
183 				     (pmd_t *)hwpgd + i * PTRS_PER_PMD);
184 	}
185 
186 	return 0;
187 }
188 
189 static inline void *kvm_get_hwpgd(struct kvm *kvm)
190 {
191 	pgd_t *pgd = kvm->arch.pgd;
192 	pud_t *pud;
193 
194 	if (KVM_PREALLOC_LEVEL == 0)
195 		return pgd;
196 
197 	pud = pud_offset(pgd, 0);
198 	if (KVM_PREALLOC_LEVEL == 1)
199 		return pud;
200 
201 	BUG_ON(KVM_PREALLOC_LEVEL != 2);
202 	return pmd_offset(pud, 0);
203 }
204 
205 static inline void kvm_free_hwpgd(struct kvm *kvm)
206 {
207 	if (KVM_PREALLOC_LEVEL > 0) {
208 		unsigned long hwpgd = (unsigned long)kvm_get_hwpgd(kvm);
209 		free_pages(hwpgd, PTRS_PER_S2_PGD_SHIFT);
210 	}
211 }
212 
213 static inline bool kvm_page_empty(void *ptr)
214 {
215 	struct page *ptr_page = virt_to_page(ptr);
216 	return page_count(ptr_page) == 1;
217 }
218 
219 #define kvm_pte_table_empty(kvm, ptep) kvm_page_empty(ptep)
220 
221 #ifdef __PAGETABLE_PMD_FOLDED
222 #define kvm_pmd_table_empty(kvm, pmdp) (0)
223 #else
224 #define kvm_pmd_table_empty(kvm, pmdp) \
225 	(kvm_page_empty(pmdp) && (!(kvm) || KVM_PREALLOC_LEVEL < 2))
226 #endif
227 
228 #ifdef __PAGETABLE_PUD_FOLDED
229 #define kvm_pud_table_empty(kvm, pudp) (0)
230 #else
231 #define kvm_pud_table_empty(kvm, pudp) \
232 	(kvm_page_empty(pudp) && (!(kvm) || KVM_PREALLOC_LEVEL < 1))
233 #endif
234 
235 
236 struct kvm;
237 
238 #define kvm_flush_dcache_to_poc(a,l)	__flush_dcache_area((a), (l))
239 
240 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
241 {
242 	return (vcpu_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
243 }
244 
245 static inline void coherent_cache_guest_page(struct kvm_vcpu *vcpu, hva_t hva,
246 					     unsigned long size)
247 {
248 	if (!vcpu_has_cache_enabled(vcpu))
249 		kvm_flush_dcache_to_poc((void *)hva, size);
250 
251 	if (!icache_is_aliasing()) {		/* PIPT */
252 		flush_icache_range(hva, hva + size);
253 	} else if (!icache_is_aivivt()) {	/* non ASID-tagged VIVT */
254 		/* any kind of VIPT cache */
255 		__flush_icache_all();
256 	}
257 }
258 
259 #define kvm_virt_to_phys(x)		__virt_to_phys((unsigned long)(x))
260 
261 void stage2_flush_vm(struct kvm *kvm);
262 
263 #endif /* __ASSEMBLY__ */
264 #endif /* __ARM64_KVM_MMU_H__ */
265