1 /* 2 * Copyright (C) 2012,2013 - ARM Ltd 3 * Author: Marc Zyngier <marc.zyngier@arm.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #ifndef __ARM64_KVM_MMU_H__ 19 #define __ARM64_KVM_MMU_H__ 20 21 #include <asm/page.h> 22 #include <asm/memory.h> 23 24 /* 25 * As we only have the TTBR0_EL2 register, we cannot express 26 * "negative" addresses. This makes it impossible to directly share 27 * mappings with the kernel. 28 * 29 * Instead, give the HYP mode its own VA region at a fixed offset from 30 * the kernel by just masking the top bits (which are all ones for a 31 * kernel address). 32 */ 33 #define HYP_PAGE_OFFSET_SHIFT VA_BITS 34 #define HYP_PAGE_OFFSET_MASK ((UL(1) << HYP_PAGE_OFFSET_SHIFT) - 1) 35 #define HYP_PAGE_OFFSET (PAGE_OFFSET & HYP_PAGE_OFFSET_MASK) 36 37 /* 38 * Our virtual mapping for the idmap-ed MMU-enable code. Must be 39 * shared across all the page-tables. Conveniently, we use the last 40 * possible page, where no kernel mapping will ever exist. 41 */ 42 #define TRAMPOLINE_VA (HYP_PAGE_OFFSET_MASK & PAGE_MASK) 43 44 /* 45 * KVM_MMU_CACHE_MIN_PAGES is the number of stage2 page table translation 46 * levels in addition to the PGD and potentially the PUD which are 47 * pre-allocated (we pre-allocate the fake PGD and the PUD when the Stage-2 48 * tables use one level of tables less than the kernel. 49 */ 50 #ifdef CONFIG_ARM64_64K_PAGES 51 #define KVM_MMU_CACHE_MIN_PAGES 1 52 #else 53 #define KVM_MMU_CACHE_MIN_PAGES 2 54 #endif 55 56 #ifdef __ASSEMBLY__ 57 58 /* 59 * Convert a kernel VA into a HYP VA. 60 * reg: VA to be converted. 61 */ 62 .macro kern_hyp_va reg 63 and \reg, \reg, #HYP_PAGE_OFFSET_MASK 64 .endm 65 66 #else 67 68 #include <asm/pgalloc.h> 69 #include <asm/cachetype.h> 70 #include <asm/cacheflush.h> 71 72 #define KERN_TO_HYP(kva) ((unsigned long)kva - PAGE_OFFSET + HYP_PAGE_OFFSET) 73 74 /* 75 * We currently only support a 40bit IPA. 76 */ 77 #define KVM_PHYS_SHIFT (40) 78 #define KVM_PHYS_SIZE (1UL << KVM_PHYS_SHIFT) 79 #define KVM_PHYS_MASK (KVM_PHYS_SIZE - 1UL) 80 81 int create_hyp_mappings(void *from, void *to); 82 int create_hyp_io_mappings(void *from, void *to, phys_addr_t); 83 void free_boot_hyp_pgd(void); 84 void free_hyp_pgds(void); 85 86 int kvm_alloc_stage2_pgd(struct kvm *kvm); 87 void kvm_free_stage2_pgd(struct kvm *kvm); 88 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, 89 phys_addr_t pa, unsigned long size, bool writable); 90 91 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run); 92 93 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu); 94 95 phys_addr_t kvm_mmu_get_httbr(void); 96 phys_addr_t kvm_mmu_get_boot_httbr(void); 97 phys_addr_t kvm_get_idmap_vector(void); 98 int kvm_mmu_init(void); 99 void kvm_clear_hyp_idmap(void); 100 101 #define kvm_set_pte(ptep, pte) set_pte(ptep, pte) 102 #define kvm_set_pmd(pmdp, pmd) set_pmd(pmdp, pmd) 103 104 static inline void kvm_clean_pgd(pgd_t *pgd) {} 105 static inline void kvm_clean_pmd(pmd_t *pmd) {} 106 static inline void kvm_clean_pmd_entry(pmd_t *pmd) {} 107 static inline void kvm_clean_pte(pte_t *pte) {} 108 static inline void kvm_clean_pte_entry(pte_t *pte) {} 109 110 static inline void kvm_set_s2pte_writable(pte_t *pte) 111 { 112 pte_val(*pte) |= PTE_S2_RDWR; 113 } 114 115 static inline void kvm_set_s2pmd_writable(pmd_t *pmd) 116 { 117 pmd_val(*pmd) |= PMD_S2_RDWR; 118 } 119 120 #define kvm_pgd_addr_end(addr, end) pgd_addr_end(addr, end) 121 #define kvm_pud_addr_end(addr, end) pud_addr_end(addr, end) 122 #define kvm_pmd_addr_end(addr, end) pmd_addr_end(addr, end) 123 124 /* 125 * In the case where PGDIR_SHIFT is larger than KVM_PHYS_SHIFT, we can address 126 * the entire IPA input range with a single pgd entry, and we would only need 127 * one pgd entry. Note that in this case, the pgd is actually not used by 128 * the MMU for Stage-2 translations, but is merely a fake pgd used as a data 129 * structure for the kernel pgtable macros to work. 130 */ 131 #if PGDIR_SHIFT > KVM_PHYS_SHIFT 132 #define PTRS_PER_S2_PGD_SHIFT 0 133 #else 134 #define PTRS_PER_S2_PGD_SHIFT (KVM_PHYS_SHIFT - PGDIR_SHIFT) 135 #endif 136 #define PTRS_PER_S2_PGD (1 << PTRS_PER_S2_PGD_SHIFT) 137 #define S2_PGD_ORDER get_order(PTRS_PER_S2_PGD * sizeof(pgd_t)) 138 139 /* 140 * If we are concatenating first level stage-2 page tables, we would have less 141 * than or equal to 16 pointers in the fake PGD, because that's what the 142 * architecture allows. In this case, (4 - CONFIG_ARM64_PGTABLE_LEVELS) 143 * represents the first level for the host, and we add 1 to go to the next 144 * level (which uses contatenation) for the stage-2 tables. 145 */ 146 #if PTRS_PER_S2_PGD <= 16 147 #define KVM_PREALLOC_LEVEL (4 - CONFIG_ARM64_PGTABLE_LEVELS + 1) 148 #else 149 #define KVM_PREALLOC_LEVEL (0) 150 #endif 151 152 /** 153 * kvm_prealloc_hwpgd - allocate inital table for VTTBR 154 * @kvm: The KVM struct pointer for the VM. 155 * @pgd: The kernel pseudo pgd 156 * 157 * When the kernel uses more levels of page tables than the guest, we allocate 158 * a fake PGD and pre-populate it to point to the next-level page table, which 159 * will be the real initial page table pointed to by the VTTBR. 160 * 161 * When KVM_PREALLOC_LEVEL==2, we allocate a single page for the PMD and 162 * the kernel will use folded pud. When KVM_PREALLOC_LEVEL==1, we 163 * allocate 2 consecutive PUD pages. 164 */ 165 static inline int kvm_prealloc_hwpgd(struct kvm *kvm, pgd_t *pgd) 166 { 167 unsigned int i; 168 unsigned long hwpgd; 169 170 if (KVM_PREALLOC_LEVEL == 0) 171 return 0; 172 173 hwpgd = __get_free_pages(GFP_KERNEL | __GFP_ZERO, PTRS_PER_S2_PGD_SHIFT); 174 if (!hwpgd) 175 return -ENOMEM; 176 177 for (i = 0; i < PTRS_PER_S2_PGD; i++) { 178 if (KVM_PREALLOC_LEVEL == 1) 179 pgd_populate(NULL, pgd + i, 180 (pud_t *)hwpgd + i * PTRS_PER_PUD); 181 else if (KVM_PREALLOC_LEVEL == 2) 182 pud_populate(NULL, pud_offset(pgd, 0) + i, 183 (pmd_t *)hwpgd + i * PTRS_PER_PMD); 184 } 185 186 return 0; 187 } 188 189 static inline void *kvm_get_hwpgd(struct kvm *kvm) 190 { 191 pgd_t *pgd = kvm->arch.pgd; 192 pud_t *pud; 193 194 if (KVM_PREALLOC_LEVEL == 0) 195 return pgd; 196 197 pud = pud_offset(pgd, 0); 198 if (KVM_PREALLOC_LEVEL == 1) 199 return pud; 200 201 BUG_ON(KVM_PREALLOC_LEVEL != 2); 202 return pmd_offset(pud, 0); 203 } 204 205 static inline void kvm_free_hwpgd(struct kvm *kvm) 206 { 207 if (KVM_PREALLOC_LEVEL > 0) { 208 unsigned long hwpgd = (unsigned long)kvm_get_hwpgd(kvm); 209 free_pages(hwpgd, PTRS_PER_S2_PGD_SHIFT); 210 } 211 } 212 213 static inline bool kvm_page_empty(void *ptr) 214 { 215 struct page *ptr_page = virt_to_page(ptr); 216 return page_count(ptr_page) == 1; 217 } 218 219 #define kvm_pte_table_empty(kvm, ptep) kvm_page_empty(ptep) 220 221 #ifdef __PAGETABLE_PMD_FOLDED 222 #define kvm_pmd_table_empty(kvm, pmdp) (0) 223 #else 224 #define kvm_pmd_table_empty(kvm, pmdp) \ 225 (kvm_page_empty(pmdp) && (!(kvm) || KVM_PREALLOC_LEVEL < 2)) 226 #endif 227 228 #ifdef __PAGETABLE_PUD_FOLDED 229 #define kvm_pud_table_empty(kvm, pudp) (0) 230 #else 231 #define kvm_pud_table_empty(kvm, pudp) \ 232 (kvm_page_empty(pudp) && (!(kvm) || KVM_PREALLOC_LEVEL < 1)) 233 #endif 234 235 236 struct kvm; 237 238 #define kvm_flush_dcache_to_poc(a,l) __flush_dcache_area((a), (l)) 239 240 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu) 241 { 242 return (vcpu_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101; 243 } 244 245 static inline void coherent_cache_guest_page(struct kvm_vcpu *vcpu, hva_t hva, 246 unsigned long size) 247 { 248 if (!vcpu_has_cache_enabled(vcpu)) 249 kvm_flush_dcache_to_poc((void *)hva, size); 250 251 if (!icache_is_aliasing()) { /* PIPT */ 252 flush_icache_range(hva, hva + size); 253 } else if (!icache_is_aivivt()) { /* non ASID-tagged VIVT */ 254 /* any kind of VIPT cache */ 255 __flush_icache_all(); 256 } 257 } 258 259 #define kvm_virt_to_phys(x) __virt_to_phys((unsigned long)(x)) 260 261 void stage2_flush_vm(struct kvm *kvm); 262 263 #endif /* __ASSEMBLY__ */ 264 #endif /* __ARM64_KVM_MMU_H__ */ 265