xref: /openbmc/linux/arch/arm64/include/asm/kvm_mmu.h (revision 5ed132db5ad4f58156ae9d28219396b6f764a9cb)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #ifndef __ARM64_KVM_MMU_H__
8 #define __ARM64_KVM_MMU_H__
9 
10 #include <asm/page.h>
11 #include <asm/memory.h>
12 #include <asm/mmu.h>
13 #include <asm/cpufeature.h>
14 
15 /*
16  * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
17  * "negative" addresses. This makes it impossible to directly share
18  * mappings with the kernel.
19  *
20  * Instead, give the HYP mode its own VA region at a fixed offset from
21  * the kernel by just masking the top bits (which are all ones for a
22  * kernel address). We need to find out how many bits to mask.
23  *
24  * We want to build a set of page tables that cover both parts of the
25  * idmap (the trampoline page used to initialize EL2), and our normal
26  * runtime VA space, at the same time.
27  *
28  * Given that the kernel uses VA_BITS for its entire address space,
29  * and that half of that space (VA_BITS - 1) is used for the linear
30  * mapping, we can also limit the EL2 space to (VA_BITS - 1).
31  *
32  * The main question is "Within the VA_BITS space, does EL2 use the
33  * top or the bottom half of that space to shadow the kernel's linear
34  * mapping?". As we need to idmap the trampoline page, this is
35  * determined by the range in which this page lives.
36  *
37  * If the page is in the bottom half, we have to use the top half. If
38  * the page is in the top half, we have to use the bottom half:
39  *
40  * T = __pa_symbol(__hyp_idmap_text_start)
41  * if (T & BIT(VA_BITS - 1))
42  *	HYP_VA_MIN = 0  //idmap in upper half
43  * else
44  *	HYP_VA_MIN = 1 << (VA_BITS - 1)
45  * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
46  *
47  * When using VHE, there are no separate hyp mappings and all KVM
48  * functionality is already mapped as part of the main kernel
49  * mappings, and none of this applies in that case.
50  */
51 
52 #ifdef __ASSEMBLY__
53 
54 #include <asm/alternative.h>
55 
56 /*
57  * Convert a kernel VA into a HYP VA.
58  * reg: VA to be converted.
59  *
60  * The actual code generation takes place in kvm_update_va_mask, and
61  * the instructions below are only there to reserve the space and
62  * perform the register allocation (kvm_update_va_mask uses the
63  * specific registers encoded in the instructions).
64  */
65 .macro kern_hyp_va	reg
66 alternative_cb kvm_update_va_mask
67 	and     \reg, \reg, #1		/* mask with va_mask */
68 	ror	\reg, \reg, #1		/* rotate to the first tag bit */
69 	add	\reg, \reg, #0		/* insert the low 12 bits of the tag */
70 	add	\reg, \reg, #0, lsl 12	/* insert the top 12 bits of the tag */
71 	ror	\reg, \reg, #63		/* rotate back */
72 alternative_cb_end
73 .endm
74 
75 #else
76 
77 #include <linux/pgtable.h>
78 #include <asm/pgalloc.h>
79 #include <asm/cache.h>
80 #include <asm/cacheflush.h>
81 #include <asm/mmu_context.h>
82 
83 void kvm_update_va_mask(struct alt_instr *alt,
84 			__le32 *origptr, __le32 *updptr, int nr_inst);
85 void kvm_compute_layout(void);
86 
87 static __always_inline unsigned long __kern_hyp_va(unsigned long v)
88 {
89 	asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n"
90 				    "ror %0, %0, #1\n"
91 				    "add %0, %0, #0\n"
92 				    "add %0, %0, #0, lsl 12\n"
93 				    "ror %0, %0, #63\n",
94 				    kvm_update_va_mask)
95 		     : "+r" (v));
96 	return v;
97 }
98 
99 #define kern_hyp_va(v) 	((typeof(v))(__kern_hyp_va((unsigned long)(v))))
100 
101 /*
102  * We currently support using a VM-specified IPA size. For backward
103  * compatibility, the default IPA size is fixed to 40bits.
104  */
105 #define KVM_PHYS_SHIFT	(40)
106 
107 #define kvm_phys_shift(kvm)		VTCR_EL2_IPA(kvm->arch.vtcr)
108 #define kvm_phys_size(kvm)		(_AC(1, ULL) << kvm_phys_shift(kvm))
109 #define kvm_phys_mask(kvm)		(kvm_phys_size(kvm) - _AC(1, ULL))
110 
111 #include <asm/kvm_pgtable.h>
112 #include <asm/stage2_pgtable.h>
113 
114 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot);
115 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
116 			   void __iomem **kaddr,
117 			   void __iomem **haddr);
118 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
119 			     void **haddr);
120 void free_hyp_pgds(void);
121 
122 void stage2_unmap_vm(struct kvm *kvm);
123 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu);
124 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu);
125 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
126 			  phys_addr_t pa, unsigned long size, bool writable);
127 
128 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu);
129 
130 phys_addr_t kvm_mmu_get_httbr(void);
131 phys_addr_t kvm_get_idmap_vector(void);
132 int kvm_mmu_init(void);
133 
134 struct kvm;
135 
136 #define kvm_flush_dcache_to_poc(a,l)	__flush_dcache_area((a), (l))
137 
138 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
139 {
140 	return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
141 }
142 
143 static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
144 {
145 	void *va = page_address(pfn_to_page(pfn));
146 
147 	/*
148 	 * With FWB, we ensure that the guest always accesses memory using
149 	 * cacheable attributes, and we don't have to clean to PoC when
150 	 * faulting in pages. Furthermore, FWB implies IDC, so cleaning to
151 	 * PoU is not required either in this case.
152 	 */
153 	if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
154 		return;
155 
156 	kvm_flush_dcache_to_poc(va, size);
157 }
158 
159 static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn,
160 						  unsigned long size)
161 {
162 	if (icache_is_aliasing()) {
163 		/* any kind of VIPT cache */
164 		__flush_icache_all();
165 	} else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
166 		/* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
167 		void *va = page_address(pfn_to_page(pfn));
168 
169 		invalidate_icache_range((unsigned long)va,
170 					(unsigned long)va + size);
171 	}
172 }
173 
174 void kvm_set_way_flush(struct kvm_vcpu *vcpu);
175 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
176 
177 static inline unsigned int kvm_get_vmid_bits(void)
178 {
179 	int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
180 
181 	return get_vmid_bits(reg);
182 }
183 
184 /*
185  * We are not in the kvm->srcu critical section most of the time, so we take
186  * the SRCU read lock here. Since we copy the data from the user page, we
187  * can immediately drop the lock again.
188  */
189 static inline int kvm_read_guest_lock(struct kvm *kvm,
190 				      gpa_t gpa, void *data, unsigned long len)
191 {
192 	int srcu_idx = srcu_read_lock(&kvm->srcu);
193 	int ret = kvm_read_guest(kvm, gpa, data, len);
194 
195 	srcu_read_unlock(&kvm->srcu, srcu_idx);
196 
197 	return ret;
198 }
199 
200 static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa,
201 				       const void *data, unsigned long len)
202 {
203 	int srcu_idx = srcu_read_lock(&kvm->srcu);
204 	int ret = kvm_write_guest(kvm, gpa, data, len);
205 
206 	srcu_read_unlock(&kvm->srcu, srcu_idx);
207 
208 	return ret;
209 }
210 
211 /*
212  * EL2 vectors can be mapped and rerouted in a number of ways,
213  * depending on the kernel configuration and CPU present:
214  *
215  * - If the CPU is affected by Spectre-v2, the hardening sequence is
216  *   placed in one of the vector slots, which is executed before jumping
217  *   to the real vectors.
218  *
219  * - If the CPU also has the ARM64_HARDEN_EL2_VECTORS cap, the slot
220  *   containing the hardening sequence is mapped next to the idmap page,
221  *   and executed before jumping to the real vectors.
222  *
223  * - If the CPU only has the ARM64_HARDEN_EL2_VECTORS cap, then an
224  *   empty slot is selected, mapped next to the idmap page, and
225  *   executed before jumping to the real vectors.
226  *
227  * Note that ARM64_HARDEN_EL2_VECTORS is somewhat incompatible with
228  * VHE, as we don't have hypervisor-specific mappings. If the system
229  * is VHE and yet selects this capability, it will be ignored.
230  */
231 extern void *__kvm_bp_vect_base;
232 extern int __kvm_harden_el2_vector_slot;
233 
234 static inline void *kvm_get_hyp_vector(void)
235 {
236 	struct bp_hardening_data *data = arm64_get_bp_hardening_data();
237 	void *vect = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
238 	int slot = -1;
239 
240 	if (cpus_have_const_cap(ARM64_SPECTRE_V2) && data->fn) {
241 		vect = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
242 		slot = data->hyp_vectors_slot;
243 	}
244 
245 	if (this_cpu_has_cap(ARM64_HARDEN_EL2_VECTORS) && !has_vhe()) {
246 		vect = __kvm_bp_vect_base;
247 		if (slot == -1)
248 			slot = __kvm_harden_el2_vector_slot;
249 	}
250 
251 	if (slot != -1)
252 		vect += slot * SZ_2K;
253 
254 	return vect;
255 }
256 
257 #define kvm_phys_to_vttbr(addr)		phys_to_ttbr(addr)
258 
259 static __always_inline u64 kvm_get_vttbr(struct kvm_s2_mmu *mmu)
260 {
261 	struct kvm_vmid *vmid = &mmu->vmid;
262 	u64 vmid_field, baddr;
263 	u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0;
264 
265 	baddr = mmu->pgd_phys;
266 	vmid_field = (u64)vmid->vmid << VTTBR_VMID_SHIFT;
267 	return kvm_phys_to_vttbr(baddr) | vmid_field | cnp;
268 }
269 
270 /*
271  * Must be called from hyp code running at EL2 with an updated VTTBR
272  * and interrupts disabled.
273  */
274 static __always_inline void __load_guest_stage2(struct kvm_s2_mmu *mmu)
275 {
276 	write_sysreg(kern_hyp_va(mmu->kvm)->arch.vtcr, vtcr_el2);
277 	write_sysreg(kvm_get_vttbr(mmu), vttbr_el2);
278 
279 	/*
280 	 * ARM errata 1165522 and 1530923 require the actual execution of the
281 	 * above before we can switch to the EL1/EL0 translation regime used by
282 	 * the guest.
283 	 */
284 	asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT));
285 }
286 
287 #endif /* __ASSEMBLY__ */
288 #endif /* __ARM64_KVM_MMU_H__ */
289