1 /* 2 * Copyright (C) 2012,2013 - ARM Ltd 3 * Author: Marc Zyngier <marc.zyngier@arm.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #ifndef __ARM64_KVM_MMU_H__ 19 #define __ARM64_KVM_MMU_H__ 20 21 #include <asm/page.h> 22 #include <asm/memory.h> 23 #include <asm/cpufeature.h> 24 25 /* 26 * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express 27 * "negative" addresses. This makes it impossible to directly share 28 * mappings with the kernel. 29 * 30 * Instead, give the HYP mode its own VA region at a fixed offset from 31 * the kernel by just masking the top bits (which are all ones for a 32 * kernel address). We need to find out how many bits to mask. 33 * 34 * We want to build a set of page tables that cover both parts of the 35 * idmap (the trampoline page used to initialize EL2), and our normal 36 * runtime VA space, at the same time. 37 * 38 * Given that the kernel uses VA_BITS for its entire address space, 39 * and that half of that space (VA_BITS - 1) is used for the linear 40 * mapping, we can also limit the EL2 space to (VA_BITS - 1). 41 * 42 * The main question is "Within the VA_BITS space, does EL2 use the 43 * top or the bottom half of that space to shadow the kernel's linear 44 * mapping?". As we need to idmap the trampoline page, this is 45 * determined by the range in which this page lives. 46 * 47 * If the page is in the bottom half, we have to use the top half. If 48 * the page is in the top half, we have to use the bottom half: 49 * 50 * T = __pa_symbol(__hyp_idmap_text_start) 51 * if (T & BIT(VA_BITS - 1)) 52 * HYP_VA_MIN = 0 //idmap in upper half 53 * else 54 * HYP_VA_MIN = 1 << (VA_BITS - 1) 55 * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1 56 * 57 * This of course assumes that the trampoline page exists within the 58 * VA_BITS range. If it doesn't, then it means we're in the odd case 59 * where the kernel idmap (as well as HYP) uses more levels than the 60 * kernel runtime page tables (as seen when the kernel is configured 61 * for 4k pages, 39bits VA, and yet memory lives just above that 62 * limit, forcing the idmap to use 4 levels of page tables while the 63 * kernel itself only uses 3). In this particular case, it doesn't 64 * matter which side of VA_BITS we use, as we're guaranteed not to 65 * conflict with anything. 66 * 67 * When using VHE, there are no separate hyp mappings and all KVM 68 * functionality is already mapped as part of the main kernel 69 * mappings, and none of this applies in that case. 70 */ 71 72 #ifdef __ASSEMBLY__ 73 74 #include <asm/alternative.h> 75 76 /* 77 * Convert a kernel VA into a HYP VA. 78 * reg: VA to be converted. 79 * 80 * The actual code generation takes place in kvm_update_va_mask, and 81 * the instructions below are only there to reserve the space and 82 * perform the register allocation (kvm_update_va_mask uses the 83 * specific registers encoded in the instructions). 84 */ 85 .macro kern_hyp_va reg 86 alternative_cb kvm_update_va_mask 87 and \reg, \reg, #1 /* mask with va_mask */ 88 ror \reg, \reg, #1 /* rotate to the first tag bit */ 89 add \reg, \reg, #0 /* insert the low 12 bits of the tag */ 90 add \reg, \reg, #0, lsl 12 /* insert the top 12 bits of the tag */ 91 ror \reg, \reg, #63 /* rotate back */ 92 alternative_cb_end 93 .endm 94 95 #else 96 97 #include <asm/pgalloc.h> 98 #include <asm/cache.h> 99 #include <asm/cacheflush.h> 100 #include <asm/mmu_context.h> 101 #include <asm/pgtable.h> 102 103 void kvm_update_va_mask(struct alt_instr *alt, 104 __le32 *origptr, __le32 *updptr, int nr_inst); 105 106 static inline unsigned long __kern_hyp_va(unsigned long v) 107 { 108 asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n" 109 "ror %0, %0, #1\n" 110 "add %0, %0, #0\n" 111 "add %0, %0, #0, lsl 12\n" 112 "ror %0, %0, #63\n", 113 kvm_update_va_mask) 114 : "+r" (v)); 115 return v; 116 } 117 118 #define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v)))) 119 120 /* 121 * Obtain the PC-relative address of a kernel symbol 122 * s: symbol 123 * 124 * The goal of this macro is to return a symbol's address based on a 125 * PC-relative computation, as opposed to a loading the VA from a 126 * constant pool or something similar. This works well for HYP, as an 127 * absolute VA is guaranteed to be wrong. Only use this if trying to 128 * obtain the address of a symbol (i.e. not something you obtained by 129 * following a pointer). 130 */ 131 #define hyp_symbol_addr(s) \ 132 ({ \ 133 typeof(s) *addr; \ 134 asm("adrp %0, %1\n" \ 135 "add %0, %0, :lo12:%1\n" \ 136 : "=r" (addr) : "S" (&s)); \ 137 addr; \ 138 }) 139 140 /* 141 * We currently only support a 40bit IPA. 142 */ 143 #define KVM_PHYS_SHIFT (40) 144 #define KVM_PHYS_SIZE (1UL << KVM_PHYS_SHIFT) 145 #define KVM_PHYS_MASK (KVM_PHYS_SIZE - 1UL) 146 147 #include <asm/stage2_pgtable.h> 148 149 int create_hyp_mappings(void *from, void *to, pgprot_t prot); 150 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, 151 void __iomem **kaddr, 152 void __iomem **haddr); 153 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, 154 void **haddr); 155 void free_hyp_pgds(void); 156 157 void stage2_unmap_vm(struct kvm *kvm); 158 int kvm_alloc_stage2_pgd(struct kvm *kvm); 159 void kvm_free_stage2_pgd(struct kvm *kvm); 160 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, 161 phys_addr_t pa, unsigned long size, bool writable); 162 163 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run); 164 165 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu); 166 167 phys_addr_t kvm_mmu_get_httbr(void); 168 phys_addr_t kvm_get_idmap_vector(void); 169 int kvm_mmu_init(void); 170 void kvm_clear_hyp_idmap(void); 171 172 #define kvm_set_pte(ptep, pte) set_pte(ptep, pte) 173 #define kvm_set_pmd(pmdp, pmd) set_pmd(pmdp, pmd) 174 175 static inline pte_t kvm_s2pte_mkwrite(pte_t pte) 176 { 177 pte_val(pte) |= PTE_S2_RDWR; 178 return pte; 179 } 180 181 static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd) 182 { 183 pmd_val(pmd) |= PMD_S2_RDWR; 184 return pmd; 185 } 186 187 static inline pte_t kvm_s2pte_mkexec(pte_t pte) 188 { 189 pte_val(pte) &= ~PTE_S2_XN; 190 return pte; 191 } 192 193 static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd) 194 { 195 pmd_val(pmd) &= ~PMD_S2_XN; 196 return pmd; 197 } 198 199 static inline void kvm_set_s2pte_readonly(pte_t *ptep) 200 { 201 pteval_t old_pteval, pteval; 202 203 pteval = READ_ONCE(pte_val(*ptep)); 204 do { 205 old_pteval = pteval; 206 pteval &= ~PTE_S2_RDWR; 207 pteval |= PTE_S2_RDONLY; 208 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval); 209 } while (pteval != old_pteval); 210 } 211 212 static inline bool kvm_s2pte_readonly(pte_t *ptep) 213 { 214 return (READ_ONCE(pte_val(*ptep)) & PTE_S2_RDWR) == PTE_S2_RDONLY; 215 } 216 217 static inline bool kvm_s2pte_exec(pte_t *ptep) 218 { 219 return !(READ_ONCE(pte_val(*ptep)) & PTE_S2_XN); 220 } 221 222 static inline void kvm_set_s2pmd_readonly(pmd_t *pmdp) 223 { 224 kvm_set_s2pte_readonly((pte_t *)pmdp); 225 } 226 227 static inline bool kvm_s2pmd_readonly(pmd_t *pmdp) 228 { 229 return kvm_s2pte_readonly((pte_t *)pmdp); 230 } 231 232 static inline bool kvm_s2pmd_exec(pmd_t *pmdp) 233 { 234 return !(READ_ONCE(pmd_val(*pmdp)) & PMD_S2_XN); 235 } 236 237 static inline bool kvm_page_empty(void *ptr) 238 { 239 struct page *ptr_page = virt_to_page(ptr); 240 return page_count(ptr_page) == 1; 241 } 242 243 #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep) 244 245 #ifdef __PAGETABLE_PMD_FOLDED 246 #define hyp_pmd_table_empty(pmdp) (0) 247 #else 248 #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp) 249 #endif 250 251 #ifdef __PAGETABLE_PUD_FOLDED 252 #define hyp_pud_table_empty(pudp) (0) 253 #else 254 #define hyp_pud_table_empty(pudp) kvm_page_empty(pudp) 255 #endif 256 257 struct kvm; 258 259 #define kvm_flush_dcache_to_poc(a,l) __flush_dcache_area((a), (l)) 260 261 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu) 262 { 263 return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101; 264 } 265 266 static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size) 267 { 268 void *va = page_address(pfn_to_page(pfn)); 269 270 kvm_flush_dcache_to_poc(va, size); 271 } 272 273 static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn, 274 unsigned long size) 275 { 276 if (icache_is_aliasing()) { 277 /* any kind of VIPT cache */ 278 __flush_icache_all(); 279 } else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) { 280 /* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */ 281 void *va = page_address(pfn_to_page(pfn)); 282 283 invalidate_icache_range((unsigned long)va, 284 (unsigned long)va + size); 285 } 286 } 287 288 static inline void __kvm_flush_dcache_pte(pte_t pte) 289 { 290 struct page *page = pte_page(pte); 291 kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE); 292 } 293 294 static inline void __kvm_flush_dcache_pmd(pmd_t pmd) 295 { 296 struct page *page = pmd_page(pmd); 297 kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE); 298 } 299 300 static inline void __kvm_flush_dcache_pud(pud_t pud) 301 { 302 struct page *page = pud_page(pud); 303 kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE); 304 } 305 306 #define kvm_virt_to_phys(x) __pa_symbol(x) 307 308 void kvm_set_way_flush(struct kvm_vcpu *vcpu); 309 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled); 310 311 static inline bool __kvm_cpu_uses_extended_idmap(void) 312 { 313 return __cpu_uses_extended_idmap_level(); 314 } 315 316 static inline unsigned long __kvm_idmap_ptrs_per_pgd(void) 317 { 318 return idmap_ptrs_per_pgd; 319 } 320 321 /* 322 * Can't use pgd_populate here, because the extended idmap adds an extra level 323 * above CONFIG_PGTABLE_LEVELS (which is 2 or 3 if we're using the extended 324 * idmap), and pgd_populate is only available if CONFIG_PGTABLE_LEVELS = 4. 325 */ 326 static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd, 327 pgd_t *hyp_pgd, 328 pgd_t *merged_hyp_pgd, 329 unsigned long hyp_idmap_start) 330 { 331 int idmap_idx; 332 u64 pgd_addr; 333 334 /* 335 * Use the first entry to access the HYP mappings. It is 336 * guaranteed to be free, otherwise we wouldn't use an 337 * extended idmap. 338 */ 339 VM_BUG_ON(pgd_val(merged_hyp_pgd[0])); 340 pgd_addr = __phys_to_pgd_val(__pa(hyp_pgd)); 341 merged_hyp_pgd[0] = __pgd(pgd_addr | PMD_TYPE_TABLE); 342 343 /* 344 * Create another extended level entry that points to the boot HYP map, 345 * which contains an ID mapping of the HYP init code. We essentially 346 * merge the boot and runtime HYP maps by doing so, but they don't 347 * overlap anyway, so this is fine. 348 */ 349 idmap_idx = hyp_idmap_start >> VA_BITS; 350 VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx])); 351 pgd_addr = __phys_to_pgd_val(__pa(boot_hyp_pgd)); 352 merged_hyp_pgd[idmap_idx] = __pgd(pgd_addr | PMD_TYPE_TABLE); 353 } 354 355 static inline unsigned int kvm_get_vmid_bits(void) 356 { 357 int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 358 359 return (cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR1_VMIDBITS_SHIFT) == 2) ? 16 : 8; 360 } 361 362 /* 363 * We are not in the kvm->srcu critical section most of the time, so we take 364 * the SRCU read lock here. Since we copy the data from the user page, we 365 * can immediately drop the lock again. 366 */ 367 static inline int kvm_read_guest_lock(struct kvm *kvm, 368 gpa_t gpa, void *data, unsigned long len) 369 { 370 int srcu_idx = srcu_read_lock(&kvm->srcu); 371 int ret = kvm_read_guest(kvm, gpa, data, len); 372 373 srcu_read_unlock(&kvm->srcu, srcu_idx); 374 375 return ret; 376 } 377 378 #ifdef CONFIG_KVM_INDIRECT_VECTORS 379 /* 380 * EL2 vectors can be mapped and rerouted in a number of ways, 381 * depending on the kernel configuration and CPU present: 382 * 383 * - If the CPU has the ARM64_HARDEN_BRANCH_PREDICTOR cap, the 384 * hardening sequence is placed in one of the vector slots, which is 385 * executed before jumping to the real vectors. 386 * 387 * - If the CPU has both the ARM64_HARDEN_EL2_VECTORS cap and the 388 * ARM64_HARDEN_BRANCH_PREDICTOR cap, the slot containing the 389 * hardening sequence is mapped next to the idmap page, and executed 390 * before jumping to the real vectors. 391 * 392 * - If the CPU only has the ARM64_HARDEN_EL2_VECTORS cap, then an 393 * empty slot is selected, mapped next to the idmap page, and 394 * executed before jumping to the real vectors. 395 * 396 * Note that ARM64_HARDEN_EL2_VECTORS is somewhat incompatible with 397 * VHE, as we don't have hypervisor-specific mappings. If the system 398 * is VHE and yet selects this capability, it will be ignored. 399 */ 400 #include <asm/mmu.h> 401 402 extern void *__kvm_bp_vect_base; 403 extern int __kvm_harden_el2_vector_slot; 404 405 static inline void *kvm_get_hyp_vector(void) 406 { 407 struct bp_hardening_data *data = arm64_get_bp_hardening_data(); 408 void *vect = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); 409 int slot = -1; 410 411 if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR) && data->fn) { 412 vect = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs_start)); 413 slot = data->hyp_vectors_slot; 414 } 415 416 if (this_cpu_has_cap(ARM64_HARDEN_EL2_VECTORS) && !has_vhe()) { 417 vect = __kvm_bp_vect_base; 418 if (slot == -1) 419 slot = __kvm_harden_el2_vector_slot; 420 } 421 422 if (slot != -1) 423 vect += slot * SZ_2K; 424 425 return vect; 426 } 427 428 /* This is only called on a !VHE system */ 429 static inline int kvm_map_vectors(void) 430 { 431 /* 432 * HBP = ARM64_HARDEN_BRANCH_PREDICTOR 433 * HEL2 = ARM64_HARDEN_EL2_VECTORS 434 * 435 * !HBP + !HEL2 -> use direct vectors 436 * HBP + !HEL2 -> use hardened vectors in place 437 * !HBP + HEL2 -> allocate one vector slot and use exec mapping 438 * HBP + HEL2 -> use hardened vertors and use exec mapping 439 */ 440 if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR)) { 441 __kvm_bp_vect_base = kvm_ksym_ref(__bp_harden_hyp_vecs_start); 442 __kvm_bp_vect_base = kern_hyp_va(__kvm_bp_vect_base); 443 } 444 445 if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) { 446 phys_addr_t vect_pa = __pa_symbol(__bp_harden_hyp_vecs_start); 447 unsigned long size = (__bp_harden_hyp_vecs_end - 448 __bp_harden_hyp_vecs_start); 449 450 /* 451 * Always allocate a spare vector slot, as we don't 452 * know yet which CPUs have a BP hardening slot that 453 * we can reuse. 454 */ 455 __kvm_harden_el2_vector_slot = atomic_inc_return(&arm64_el2_vector_last_slot); 456 BUG_ON(__kvm_harden_el2_vector_slot >= BP_HARDEN_EL2_SLOTS); 457 return create_hyp_exec_mappings(vect_pa, size, 458 &__kvm_bp_vect_base); 459 } 460 461 return 0; 462 } 463 #else 464 static inline void *kvm_get_hyp_vector(void) 465 { 466 return kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); 467 } 468 469 static inline int kvm_map_vectors(void) 470 { 471 return 0; 472 } 473 #endif 474 475 #ifdef CONFIG_ARM64_SSBD 476 DECLARE_PER_CPU_READ_MOSTLY(u64, arm64_ssbd_callback_required); 477 478 static inline int hyp_map_aux_data(void) 479 { 480 int cpu, err; 481 482 for_each_possible_cpu(cpu) { 483 u64 *ptr; 484 485 ptr = per_cpu_ptr(&arm64_ssbd_callback_required, cpu); 486 err = create_hyp_mappings(ptr, ptr + 1, PAGE_HYP); 487 if (err) 488 return err; 489 } 490 return 0; 491 } 492 #else 493 static inline int hyp_map_aux_data(void) 494 { 495 return 0; 496 } 497 #endif 498 499 #define kvm_phys_to_vttbr(addr) phys_to_ttbr(addr) 500 501 #endif /* __ASSEMBLY__ */ 502 #endif /* __ARM64_KVM_MMU_H__ */ 503