1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2012,2013 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #ifndef __ARM64_KVM_MMU_H__ 8 #define __ARM64_KVM_MMU_H__ 9 10 #include <asm/page.h> 11 #include <asm/memory.h> 12 #include <asm/cpufeature.h> 13 14 /* 15 * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express 16 * "negative" addresses. This makes it impossible to directly share 17 * mappings with the kernel. 18 * 19 * Instead, give the HYP mode its own VA region at a fixed offset from 20 * the kernel by just masking the top bits (which are all ones for a 21 * kernel address). We need to find out how many bits to mask. 22 * 23 * We want to build a set of page tables that cover both parts of the 24 * idmap (the trampoline page used to initialize EL2), and our normal 25 * runtime VA space, at the same time. 26 * 27 * Given that the kernel uses VA_BITS for its entire address space, 28 * and that half of that space (VA_BITS - 1) is used for the linear 29 * mapping, we can also limit the EL2 space to (VA_BITS - 1). 30 * 31 * The main question is "Within the VA_BITS space, does EL2 use the 32 * top or the bottom half of that space to shadow the kernel's linear 33 * mapping?". As we need to idmap the trampoline page, this is 34 * determined by the range in which this page lives. 35 * 36 * If the page is in the bottom half, we have to use the top half. If 37 * the page is in the top half, we have to use the bottom half: 38 * 39 * T = __pa_symbol(__hyp_idmap_text_start) 40 * if (T & BIT(VA_BITS - 1)) 41 * HYP_VA_MIN = 0 //idmap in upper half 42 * else 43 * HYP_VA_MIN = 1 << (VA_BITS - 1) 44 * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1 45 * 46 * This of course assumes that the trampoline page exists within the 47 * VA_BITS range. If it doesn't, then it means we're in the odd case 48 * where the kernel idmap (as well as HYP) uses more levels than the 49 * kernel runtime page tables (as seen when the kernel is configured 50 * for 4k pages, 39bits VA, and yet memory lives just above that 51 * limit, forcing the idmap to use 4 levels of page tables while the 52 * kernel itself only uses 3). In this particular case, it doesn't 53 * matter which side of VA_BITS we use, as we're guaranteed not to 54 * conflict with anything. 55 * 56 * When using VHE, there are no separate hyp mappings and all KVM 57 * functionality is already mapped as part of the main kernel 58 * mappings, and none of this applies in that case. 59 */ 60 61 #ifdef __ASSEMBLY__ 62 63 #include <asm/alternative.h> 64 65 /* 66 * Convert a kernel VA into a HYP VA. 67 * reg: VA to be converted. 68 * 69 * The actual code generation takes place in kvm_update_va_mask, and 70 * the instructions below are only there to reserve the space and 71 * perform the register allocation (kvm_update_va_mask uses the 72 * specific registers encoded in the instructions). 73 */ 74 .macro kern_hyp_va reg 75 alternative_cb kvm_update_va_mask 76 and \reg, \reg, #1 /* mask with va_mask */ 77 ror \reg, \reg, #1 /* rotate to the first tag bit */ 78 add \reg, \reg, #0 /* insert the low 12 bits of the tag */ 79 add \reg, \reg, #0, lsl 12 /* insert the top 12 bits of the tag */ 80 ror \reg, \reg, #63 /* rotate back */ 81 alternative_cb_end 82 .endm 83 84 #else 85 86 #include <linux/pgtable.h> 87 #include <asm/pgalloc.h> 88 #include <asm/cache.h> 89 #include <asm/cacheflush.h> 90 #include <asm/mmu_context.h> 91 92 void kvm_update_va_mask(struct alt_instr *alt, 93 __le32 *origptr, __le32 *updptr, int nr_inst); 94 void kvm_compute_layout(void); 95 96 static __always_inline unsigned long __kern_hyp_va(unsigned long v) 97 { 98 asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n" 99 "ror %0, %0, #1\n" 100 "add %0, %0, #0\n" 101 "add %0, %0, #0, lsl 12\n" 102 "ror %0, %0, #63\n", 103 kvm_update_va_mask) 104 : "+r" (v)); 105 return v; 106 } 107 108 #define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v)))) 109 110 /* 111 * We currently support using a VM-specified IPA size. For backward 112 * compatibility, the default IPA size is fixed to 40bits. 113 */ 114 #define KVM_PHYS_SHIFT (40) 115 116 #define kvm_phys_shift(kvm) VTCR_EL2_IPA(kvm->arch.vtcr) 117 #define kvm_phys_size(kvm) (_AC(1, ULL) << kvm_phys_shift(kvm)) 118 #define kvm_phys_mask(kvm) (kvm_phys_size(kvm) - _AC(1, ULL)) 119 120 static inline bool kvm_page_empty(void *ptr) 121 { 122 struct page *ptr_page = virt_to_page(ptr); 123 return page_count(ptr_page) == 1; 124 } 125 126 #include <asm/stage2_pgtable.h> 127 128 int create_hyp_mappings(void *from, void *to, pgprot_t prot); 129 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, 130 void __iomem **kaddr, 131 void __iomem **haddr); 132 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, 133 void **haddr); 134 void free_hyp_pgds(void); 135 136 void stage2_unmap_vm(struct kvm *kvm); 137 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu); 138 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu); 139 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, 140 phys_addr_t pa, unsigned long size, bool writable); 141 142 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu); 143 144 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu); 145 146 phys_addr_t kvm_mmu_get_httbr(void); 147 phys_addr_t kvm_get_idmap_vector(void); 148 int kvm_mmu_init(void); 149 void kvm_clear_hyp_idmap(void); 150 151 #define kvm_mk_pmd(ptep) \ 152 __pmd(__phys_to_pmd_val(__pa(ptep)) | PMD_TYPE_TABLE) 153 #define kvm_mk_pud(pmdp) \ 154 __pud(__phys_to_pud_val(__pa(pmdp)) | PMD_TYPE_TABLE) 155 #define kvm_mk_p4d(pmdp) \ 156 __p4d(__phys_to_p4d_val(__pa(pmdp)) | PUD_TYPE_TABLE) 157 158 #define kvm_set_pud(pudp, pud) set_pud(pudp, pud) 159 160 #define kvm_pfn_pte(pfn, prot) pfn_pte(pfn, prot) 161 #define kvm_pfn_pmd(pfn, prot) pfn_pmd(pfn, prot) 162 #define kvm_pfn_pud(pfn, prot) pfn_pud(pfn, prot) 163 164 #define kvm_pud_pfn(pud) pud_pfn(pud) 165 166 #define kvm_pmd_mkhuge(pmd) pmd_mkhuge(pmd) 167 #define kvm_pud_mkhuge(pud) pud_mkhuge(pud) 168 169 static inline pte_t kvm_s2pte_mkwrite(pte_t pte) 170 { 171 pte_val(pte) |= PTE_S2_RDWR; 172 return pte; 173 } 174 175 static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd) 176 { 177 pmd_val(pmd) |= PMD_S2_RDWR; 178 return pmd; 179 } 180 181 static inline pud_t kvm_s2pud_mkwrite(pud_t pud) 182 { 183 pud_val(pud) |= PUD_S2_RDWR; 184 return pud; 185 } 186 187 static inline pte_t kvm_s2pte_mkexec(pte_t pte) 188 { 189 pte_val(pte) &= ~PTE_S2_XN; 190 return pte; 191 } 192 193 static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd) 194 { 195 pmd_val(pmd) &= ~PMD_S2_XN; 196 return pmd; 197 } 198 199 static inline pud_t kvm_s2pud_mkexec(pud_t pud) 200 { 201 pud_val(pud) &= ~PUD_S2_XN; 202 return pud; 203 } 204 205 static inline void kvm_set_s2pte_readonly(pte_t *ptep) 206 { 207 pteval_t old_pteval, pteval; 208 209 pteval = READ_ONCE(pte_val(*ptep)); 210 do { 211 old_pteval = pteval; 212 pteval &= ~PTE_S2_RDWR; 213 pteval |= PTE_S2_RDONLY; 214 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval); 215 } while (pteval != old_pteval); 216 } 217 218 static inline bool kvm_s2pte_readonly(pte_t *ptep) 219 { 220 return (READ_ONCE(pte_val(*ptep)) & PTE_S2_RDWR) == PTE_S2_RDONLY; 221 } 222 223 static inline bool kvm_s2pte_exec(pte_t *ptep) 224 { 225 return !(READ_ONCE(pte_val(*ptep)) & PTE_S2_XN); 226 } 227 228 static inline void kvm_set_s2pmd_readonly(pmd_t *pmdp) 229 { 230 kvm_set_s2pte_readonly((pte_t *)pmdp); 231 } 232 233 static inline bool kvm_s2pmd_readonly(pmd_t *pmdp) 234 { 235 return kvm_s2pte_readonly((pte_t *)pmdp); 236 } 237 238 static inline bool kvm_s2pmd_exec(pmd_t *pmdp) 239 { 240 return !(READ_ONCE(pmd_val(*pmdp)) & PMD_S2_XN); 241 } 242 243 static inline void kvm_set_s2pud_readonly(pud_t *pudp) 244 { 245 kvm_set_s2pte_readonly((pte_t *)pudp); 246 } 247 248 static inline bool kvm_s2pud_readonly(pud_t *pudp) 249 { 250 return kvm_s2pte_readonly((pte_t *)pudp); 251 } 252 253 static inline bool kvm_s2pud_exec(pud_t *pudp) 254 { 255 return !(READ_ONCE(pud_val(*pudp)) & PUD_S2_XN); 256 } 257 258 static inline pud_t kvm_s2pud_mkyoung(pud_t pud) 259 { 260 return pud_mkyoung(pud); 261 } 262 263 static inline bool kvm_s2pud_young(pud_t pud) 264 { 265 return pud_young(pud); 266 } 267 268 #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep) 269 270 #ifdef __PAGETABLE_PMD_FOLDED 271 #define hyp_pmd_table_empty(pmdp) (0) 272 #else 273 #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp) 274 #endif 275 276 #ifdef __PAGETABLE_PUD_FOLDED 277 #define hyp_pud_table_empty(pudp) (0) 278 #else 279 #define hyp_pud_table_empty(pudp) kvm_page_empty(pudp) 280 #endif 281 282 #ifdef __PAGETABLE_P4D_FOLDED 283 #define hyp_p4d_table_empty(p4dp) (0) 284 #else 285 #define hyp_p4d_table_empty(p4dp) kvm_page_empty(p4dp) 286 #endif 287 288 struct kvm; 289 290 #define kvm_flush_dcache_to_poc(a,l) __flush_dcache_area((a), (l)) 291 292 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu) 293 { 294 return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101; 295 } 296 297 static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size) 298 { 299 void *va = page_address(pfn_to_page(pfn)); 300 301 /* 302 * With FWB, we ensure that the guest always accesses memory using 303 * cacheable attributes, and we don't have to clean to PoC when 304 * faulting in pages. Furthermore, FWB implies IDC, so cleaning to 305 * PoU is not required either in this case. 306 */ 307 if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) 308 return; 309 310 kvm_flush_dcache_to_poc(va, size); 311 } 312 313 static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn, 314 unsigned long size) 315 { 316 if (icache_is_aliasing()) { 317 /* any kind of VIPT cache */ 318 __flush_icache_all(); 319 } else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) { 320 /* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */ 321 void *va = page_address(pfn_to_page(pfn)); 322 323 invalidate_icache_range((unsigned long)va, 324 (unsigned long)va + size); 325 } 326 } 327 328 static inline void __kvm_flush_dcache_pte(pte_t pte) 329 { 330 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) { 331 struct page *page = pte_page(pte); 332 kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE); 333 } 334 } 335 336 static inline void __kvm_flush_dcache_pmd(pmd_t pmd) 337 { 338 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) { 339 struct page *page = pmd_page(pmd); 340 kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE); 341 } 342 } 343 344 static inline void __kvm_flush_dcache_pud(pud_t pud) 345 { 346 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) { 347 struct page *page = pud_page(pud); 348 kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE); 349 } 350 } 351 352 void kvm_set_way_flush(struct kvm_vcpu *vcpu); 353 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled); 354 355 static inline bool __kvm_cpu_uses_extended_idmap(void) 356 { 357 return __cpu_uses_extended_idmap_level(); 358 } 359 360 static inline unsigned long __kvm_idmap_ptrs_per_pgd(void) 361 { 362 return idmap_ptrs_per_pgd; 363 } 364 365 /* 366 * Can't use pgd_populate here, because the extended idmap adds an extra level 367 * above CONFIG_PGTABLE_LEVELS (which is 2 or 3 if we're using the extended 368 * idmap), and pgd_populate is only available if CONFIG_PGTABLE_LEVELS = 4. 369 */ 370 static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd, 371 pgd_t *hyp_pgd, 372 pgd_t *merged_hyp_pgd, 373 unsigned long hyp_idmap_start) 374 { 375 int idmap_idx; 376 u64 pgd_addr; 377 378 /* 379 * Use the first entry to access the HYP mappings. It is 380 * guaranteed to be free, otherwise we wouldn't use an 381 * extended idmap. 382 */ 383 VM_BUG_ON(pgd_val(merged_hyp_pgd[0])); 384 pgd_addr = __phys_to_pgd_val(__pa(hyp_pgd)); 385 merged_hyp_pgd[0] = __pgd(pgd_addr | PMD_TYPE_TABLE); 386 387 /* 388 * Create another extended level entry that points to the boot HYP map, 389 * which contains an ID mapping of the HYP init code. We essentially 390 * merge the boot and runtime HYP maps by doing so, but they don't 391 * overlap anyway, so this is fine. 392 */ 393 idmap_idx = hyp_idmap_start >> VA_BITS; 394 VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx])); 395 pgd_addr = __phys_to_pgd_val(__pa(boot_hyp_pgd)); 396 merged_hyp_pgd[idmap_idx] = __pgd(pgd_addr | PMD_TYPE_TABLE); 397 } 398 399 static inline unsigned int kvm_get_vmid_bits(void) 400 { 401 int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 402 403 return get_vmid_bits(reg); 404 } 405 406 /* 407 * We are not in the kvm->srcu critical section most of the time, so we take 408 * the SRCU read lock here. Since we copy the data from the user page, we 409 * can immediately drop the lock again. 410 */ 411 static inline int kvm_read_guest_lock(struct kvm *kvm, 412 gpa_t gpa, void *data, unsigned long len) 413 { 414 int srcu_idx = srcu_read_lock(&kvm->srcu); 415 int ret = kvm_read_guest(kvm, gpa, data, len); 416 417 srcu_read_unlock(&kvm->srcu, srcu_idx); 418 419 return ret; 420 } 421 422 static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa, 423 const void *data, unsigned long len) 424 { 425 int srcu_idx = srcu_read_lock(&kvm->srcu); 426 int ret = kvm_write_guest(kvm, gpa, data, len); 427 428 srcu_read_unlock(&kvm->srcu, srcu_idx); 429 430 return ret; 431 } 432 433 #ifdef CONFIG_KVM_INDIRECT_VECTORS 434 /* 435 * EL2 vectors can be mapped and rerouted in a number of ways, 436 * depending on the kernel configuration and CPU present: 437 * 438 * - If the CPU has the ARM64_HARDEN_BRANCH_PREDICTOR cap, the 439 * hardening sequence is placed in one of the vector slots, which is 440 * executed before jumping to the real vectors. 441 * 442 * - If the CPU has both the ARM64_HARDEN_EL2_VECTORS cap and the 443 * ARM64_HARDEN_BRANCH_PREDICTOR cap, the slot containing the 444 * hardening sequence is mapped next to the idmap page, and executed 445 * before jumping to the real vectors. 446 * 447 * - If the CPU only has the ARM64_HARDEN_EL2_VECTORS cap, then an 448 * empty slot is selected, mapped next to the idmap page, and 449 * executed before jumping to the real vectors. 450 * 451 * Note that ARM64_HARDEN_EL2_VECTORS is somewhat incompatible with 452 * VHE, as we don't have hypervisor-specific mappings. If the system 453 * is VHE and yet selects this capability, it will be ignored. 454 */ 455 #include <asm/mmu.h> 456 457 extern void *__kvm_bp_vect_base; 458 extern int __kvm_harden_el2_vector_slot; 459 460 /* This is called on both VHE and !VHE systems */ 461 static inline void *kvm_get_hyp_vector(void) 462 { 463 struct bp_hardening_data *data = arm64_get_bp_hardening_data(); 464 void *vect = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); 465 int slot = -1; 466 467 if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR) && data->fn) { 468 vect = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs)); 469 slot = data->hyp_vectors_slot; 470 } 471 472 if (this_cpu_has_cap(ARM64_HARDEN_EL2_VECTORS) && !has_vhe()) { 473 vect = __kvm_bp_vect_base; 474 if (slot == -1) 475 slot = __kvm_harden_el2_vector_slot; 476 } 477 478 if (slot != -1) 479 vect += slot * SZ_2K; 480 481 return vect; 482 } 483 484 /* This is only called on a !VHE system */ 485 static inline int kvm_map_vectors(void) 486 { 487 /* 488 * HBP = ARM64_HARDEN_BRANCH_PREDICTOR 489 * HEL2 = ARM64_HARDEN_EL2_VECTORS 490 * 491 * !HBP + !HEL2 -> use direct vectors 492 * HBP + !HEL2 -> use hardened vectors in place 493 * !HBP + HEL2 -> allocate one vector slot and use exec mapping 494 * HBP + HEL2 -> use hardened vertors and use exec mapping 495 */ 496 if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR)) { 497 __kvm_bp_vect_base = kvm_ksym_ref(__bp_harden_hyp_vecs); 498 __kvm_bp_vect_base = kern_hyp_va(__kvm_bp_vect_base); 499 } 500 501 if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) { 502 phys_addr_t vect_pa = __pa_symbol(__bp_harden_hyp_vecs); 503 unsigned long size = __BP_HARDEN_HYP_VECS_SZ; 504 505 /* 506 * Always allocate a spare vector slot, as we don't 507 * know yet which CPUs have a BP hardening slot that 508 * we can reuse. 509 */ 510 __kvm_harden_el2_vector_slot = atomic_inc_return(&arm64_el2_vector_last_slot); 511 BUG_ON(__kvm_harden_el2_vector_slot >= BP_HARDEN_EL2_SLOTS); 512 return create_hyp_exec_mappings(vect_pa, size, 513 &__kvm_bp_vect_base); 514 } 515 516 return 0; 517 } 518 #else 519 static inline void *kvm_get_hyp_vector(void) 520 { 521 return kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); 522 } 523 524 static inline int kvm_map_vectors(void) 525 { 526 return 0; 527 } 528 #endif 529 530 #ifdef CONFIG_ARM64_SSBD 531 DECLARE_PER_CPU_READ_MOSTLY(u64, arm64_ssbd_callback_required); 532 533 static inline int hyp_map_aux_data(void) 534 { 535 int cpu, err; 536 537 for_each_possible_cpu(cpu) { 538 u64 *ptr; 539 540 ptr = per_cpu_ptr(&arm64_ssbd_callback_required, cpu); 541 err = create_hyp_mappings(ptr, ptr + 1, PAGE_HYP); 542 if (err) 543 return err; 544 } 545 return 0; 546 } 547 #else 548 static inline int hyp_map_aux_data(void) 549 { 550 return 0; 551 } 552 #endif 553 554 #define kvm_phys_to_vttbr(addr) phys_to_ttbr(addr) 555 556 /* 557 * Get the magic number 'x' for VTTBR:BADDR of this KVM instance. 558 * With v8.2 LVA extensions, 'x' should be a minimum of 6 with 559 * 52bit IPS. 560 */ 561 static inline int arm64_vttbr_x(u32 ipa_shift, u32 levels) 562 { 563 int x = ARM64_VTTBR_X(ipa_shift, levels); 564 565 return (IS_ENABLED(CONFIG_ARM64_PA_BITS_52) && x < 6) ? 6 : x; 566 } 567 568 static inline u64 vttbr_baddr_mask(u32 ipa_shift, u32 levels) 569 { 570 unsigned int x = arm64_vttbr_x(ipa_shift, levels); 571 572 return GENMASK_ULL(PHYS_MASK_SHIFT - 1, x); 573 } 574 575 static inline u64 kvm_vttbr_baddr_mask(struct kvm *kvm) 576 { 577 return vttbr_baddr_mask(kvm_phys_shift(kvm), kvm_stage2_levels(kvm)); 578 } 579 580 static __always_inline u64 kvm_get_vttbr(struct kvm_s2_mmu *mmu) 581 { 582 struct kvm_vmid *vmid = &mmu->vmid; 583 u64 vmid_field, baddr; 584 u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0; 585 586 baddr = mmu->pgd_phys; 587 vmid_field = (u64)vmid->vmid << VTTBR_VMID_SHIFT; 588 return kvm_phys_to_vttbr(baddr) | vmid_field | cnp; 589 } 590 591 /* 592 * Must be called from hyp code running at EL2 with an updated VTTBR 593 * and interrupts disabled. 594 */ 595 static __always_inline void __load_guest_stage2(struct kvm_s2_mmu *mmu) 596 { 597 write_sysreg(kern_hyp_va(mmu->kvm)->arch.vtcr, vtcr_el2); 598 write_sysreg(kvm_get_vttbr(mmu), vttbr_el2); 599 600 /* 601 * ARM errata 1165522 and 1530923 require the actual execution of the 602 * above before we can switch to the EL1/EL0 translation regime used by 603 * the guest. 604 */ 605 asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT)); 606 } 607 608 #endif /* __ASSEMBLY__ */ 609 #endif /* __ARM64_KVM_MMU_H__ */ 610