1 /* 2 * Copyright (C) 2012,2013 - ARM Ltd 3 * Author: Marc Zyngier <marc.zyngier@arm.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #ifndef __ARM64_KVM_MMU_H__ 19 #define __ARM64_KVM_MMU_H__ 20 21 #include <asm/page.h> 22 #include <asm/memory.h> 23 #include <asm/cpufeature.h> 24 25 /* 26 * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express 27 * "negative" addresses. This makes it impossible to directly share 28 * mappings with the kernel. 29 * 30 * Instead, give the HYP mode its own VA region at a fixed offset from 31 * the kernel by just masking the top bits (which are all ones for a 32 * kernel address). We need to find out how many bits to mask. 33 * 34 * We want to build a set of page tables that cover both parts of the 35 * idmap (the trampoline page used to initialize EL2), and our normal 36 * runtime VA space, at the same time. 37 * 38 * Given that the kernel uses VA_BITS for its entire address space, 39 * and that half of that space (VA_BITS - 1) is used for the linear 40 * mapping, we can also limit the EL2 space to (VA_BITS - 1). 41 * 42 * The main question is "Within the VA_BITS space, does EL2 use the 43 * top or the bottom half of that space to shadow the kernel's linear 44 * mapping?". As we need to idmap the trampoline page, this is 45 * determined by the range in which this page lives. 46 * 47 * If the page is in the bottom half, we have to use the top half. If 48 * the page is in the top half, we have to use the bottom half: 49 * 50 * T = __pa_symbol(__hyp_idmap_text_start) 51 * if (T & BIT(VA_BITS - 1)) 52 * HYP_VA_MIN = 0 //idmap in upper half 53 * else 54 * HYP_VA_MIN = 1 << (VA_BITS - 1) 55 * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1 56 * 57 * This of course assumes that the trampoline page exists within the 58 * VA_BITS range. If it doesn't, then it means we're in the odd case 59 * where the kernel idmap (as well as HYP) uses more levels than the 60 * kernel runtime page tables (as seen when the kernel is configured 61 * for 4k pages, 39bits VA, and yet memory lives just above that 62 * limit, forcing the idmap to use 4 levels of page tables while the 63 * kernel itself only uses 3). In this particular case, it doesn't 64 * matter which side of VA_BITS we use, as we're guaranteed not to 65 * conflict with anything. 66 * 67 * When using VHE, there are no separate hyp mappings and all KVM 68 * functionality is already mapped as part of the main kernel 69 * mappings, and none of this applies in that case. 70 */ 71 72 #ifdef __ASSEMBLY__ 73 74 #include <asm/alternative.h> 75 76 /* 77 * Convert a kernel VA into a HYP VA. 78 * reg: VA to be converted. 79 * 80 * The actual code generation takes place in kvm_update_va_mask, and 81 * the instructions below are only there to reserve the space and 82 * perform the register allocation (kvm_update_va_mask uses the 83 * specific registers encoded in the instructions). 84 */ 85 .macro kern_hyp_va reg 86 alternative_cb kvm_update_va_mask 87 and \reg, \reg, #1 /* mask with va_mask */ 88 ror \reg, \reg, #1 /* rotate to the first tag bit */ 89 add \reg, \reg, #0 /* insert the low 12 bits of the tag */ 90 add \reg, \reg, #0, lsl 12 /* insert the top 12 bits of the tag */ 91 ror \reg, \reg, #63 /* rotate back */ 92 alternative_cb_end 93 .endm 94 95 #else 96 97 #include <asm/pgalloc.h> 98 #include <asm/cache.h> 99 #include <asm/cacheflush.h> 100 #include <asm/mmu_context.h> 101 #include <asm/pgtable.h> 102 103 void kvm_update_va_mask(struct alt_instr *alt, 104 __le32 *origptr, __le32 *updptr, int nr_inst); 105 106 static inline unsigned long __kern_hyp_va(unsigned long v) 107 { 108 asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n" 109 "ror %0, %0, #1\n" 110 "add %0, %0, #0\n" 111 "add %0, %0, #0, lsl 12\n" 112 "ror %0, %0, #63\n", 113 kvm_update_va_mask) 114 : "+r" (v)); 115 return v; 116 } 117 118 #define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v)))) 119 120 /* 121 * Obtain the PC-relative address of a kernel symbol 122 * s: symbol 123 * 124 * The goal of this macro is to return a symbol's address based on a 125 * PC-relative computation, as opposed to a loading the VA from a 126 * constant pool or something similar. This works well for HYP, as an 127 * absolute VA is guaranteed to be wrong. Only use this if trying to 128 * obtain the address of a symbol (i.e. not something you obtained by 129 * following a pointer). 130 */ 131 #define hyp_symbol_addr(s) \ 132 ({ \ 133 typeof(s) *addr; \ 134 asm("adrp %0, %1\n" \ 135 "add %0, %0, :lo12:%1\n" \ 136 : "=r" (addr) : "S" (&s)); \ 137 addr; \ 138 }) 139 140 /* 141 * We currently support using a VM-specified IPA size. For backward 142 * compatibility, the default IPA size is fixed to 40bits. 143 */ 144 #define KVM_PHYS_SHIFT (40) 145 146 #define kvm_phys_shift(kvm) VTCR_EL2_IPA(kvm->arch.vtcr) 147 #define kvm_phys_size(kvm) (_AC(1, ULL) << kvm_phys_shift(kvm)) 148 #define kvm_phys_mask(kvm) (kvm_phys_size(kvm) - _AC(1, ULL)) 149 150 static inline bool kvm_page_empty(void *ptr) 151 { 152 struct page *ptr_page = virt_to_page(ptr); 153 return page_count(ptr_page) == 1; 154 } 155 156 #include <asm/stage2_pgtable.h> 157 158 int create_hyp_mappings(void *from, void *to, pgprot_t prot); 159 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, 160 void __iomem **kaddr, 161 void __iomem **haddr); 162 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, 163 void **haddr); 164 void free_hyp_pgds(void); 165 166 void stage2_unmap_vm(struct kvm *kvm); 167 int kvm_alloc_stage2_pgd(struct kvm *kvm); 168 void kvm_free_stage2_pgd(struct kvm *kvm); 169 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, 170 phys_addr_t pa, unsigned long size, bool writable); 171 172 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run); 173 174 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu); 175 176 phys_addr_t kvm_mmu_get_httbr(void); 177 phys_addr_t kvm_get_idmap_vector(void); 178 int kvm_mmu_init(void); 179 void kvm_clear_hyp_idmap(void); 180 181 #define kvm_mk_pmd(ptep) \ 182 __pmd(__phys_to_pmd_val(__pa(ptep)) | PMD_TYPE_TABLE) 183 #define kvm_mk_pud(pmdp) \ 184 __pud(__phys_to_pud_val(__pa(pmdp)) | PMD_TYPE_TABLE) 185 #define kvm_mk_pgd(pudp) \ 186 __pgd(__phys_to_pgd_val(__pa(pudp)) | PUD_TYPE_TABLE) 187 188 #define kvm_set_pud(pudp, pud) set_pud(pudp, pud) 189 190 #define kvm_pfn_pte(pfn, prot) pfn_pte(pfn, prot) 191 #define kvm_pfn_pmd(pfn, prot) pfn_pmd(pfn, prot) 192 #define kvm_pfn_pud(pfn, prot) pfn_pud(pfn, prot) 193 194 #define kvm_pud_pfn(pud) pud_pfn(pud) 195 196 #define kvm_pmd_mkhuge(pmd) pmd_mkhuge(pmd) 197 #define kvm_pud_mkhuge(pud) pud_mkhuge(pud) 198 199 static inline pte_t kvm_s2pte_mkwrite(pte_t pte) 200 { 201 pte_val(pte) |= PTE_S2_RDWR; 202 return pte; 203 } 204 205 static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd) 206 { 207 pmd_val(pmd) |= PMD_S2_RDWR; 208 return pmd; 209 } 210 211 static inline pud_t kvm_s2pud_mkwrite(pud_t pud) 212 { 213 pud_val(pud) |= PUD_S2_RDWR; 214 return pud; 215 } 216 217 static inline pte_t kvm_s2pte_mkexec(pte_t pte) 218 { 219 pte_val(pte) &= ~PTE_S2_XN; 220 return pte; 221 } 222 223 static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd) 224 { 225 pmd_val(pmd) &= ~PMD_S2_XN; 226 return pmd; 227 } 228 229 static inline pud_t kvm_s2pud_mkexec(pud_t pud) 230 { 231 pud_val(pud) &= ~PUD_S2_XN; 232 return pud; 233 } 234 235 static inline void kvm_set_s2pte_readonly(pte_t *ptep) 236 { 237 pteval_t old_pteval, pteval; 238 239 pteval = READ_ONCE(pte_val(*ptep)); 240 do { 241 old_pteval = pteval; 242 pteval &= ~PTE_S2_RDWR; 243 pteval |= PTE_S2_RDONLY; 244 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval); 245 } while (pteval != old_pteval); 246 } 247 248 static inline bool kvm_s2pte_readonly(pte_t *ptep) 249 { 250 return (READ_ONCE(pte_val(*ptep)) & PTE_S2_RDWR) == PTE_S2_RDONLY; 251 } 252 253 static inline bool kvm_s2pte_exec(pte_t *ptep) 254 { 255 return !(READ_ONCE(pte_val(*ptep)) & PTE_S2_XN); 256 } 257 258 static inline void kvm_set_s2pmd_readonly(pmd_t *pmdp) 259 { 260 kvm_set_s2pte_readonly((pte_t *)pmdp); 261 } 262 263 static inline bool kvm_s2pmd_readonly(pmd_t *pmdp) 264 { 265 return kvm_s2pte_readonly((pte_t *)pmdp); 266 } 267 268 static inline bool kvm_s2pmd_exec(pmd_t *pmdp) 269 { 270 return !(READ_ONCE(pmd_val(*pmdp)) & PMD_S2_XN); 271 } 272 273 static inline void kvm_set_s2pud_readonly(pud_t *pudp) 274 { 275 kvm_set_s2pte_readonly((pte_t *)pudp); 276 } 277 278 static inline bool kvm_s2pud_readonly(pud_t *pudp) 279 { 280 return kvm_s2pte_readonly((pte_t *)pudp); 281 } 282 283 static inline bool kvm_s2pud_exec(pud_t *pudp) 284 { 285 return !(READ_ONCE(pud_val(*pudp)) & PUD_S2_XN); 286 } 287 288 static inline pud_t kvm_s2pud_mkyoung(pud_t pud) 289 { 290 return pud_mkyoung(pud); 291 } 292 293 static inline bool kvm_s2pud_young(pud_t pud) 294 { 295 return pud_young(pud); 296 } 297 298 #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep) 299 300 #ifdef __PAGETABLE_PMD_FOLDED 301 #define hyp_pmd_table_empty(pmdp) (0) 302 #else 303 #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp) 304 #endif 305 306 #ifdef __PAGETABLE_PUD_FOLDED 307 #define hyp_pud_table_empty(pudp) (0) 308 #else 309 #define hyp_pud_table_empty(pudp) kvm_page_empty(pudp) 310 #endif 311 312 struct kvm; 313 314 #define kvm_flush_dcache_to_poc(a,l) __flush_dcache_area((a), (l)) 315 316 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu) 317 { 318 return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101; 319 } 320 321 static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size) 322 { 323 void *va = page_address(pfn_to_page(pfn)); 324 325 /* 326 * With FWB, we ensure that the guest always accesses memory using 327 * cacheable attributes, and we don't have to clean to PoC when 328 * faulting in pages. Furthermore, FWB implies IDC, so cleaning to 329 * PoU is not required either in this case. 330 */ 331 if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) 332 return; 333 334 kvm_flush_dcache_to_poc(va, size); 335 } 336 337 static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn, 338 unsigned long size) 339 { 340 if (icache_is_aliasing()) { 341 /* any kind of VIPT cache */ 342 __flush_icache_all(); 343 } else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) { 344 /* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */ 345 void *va = page_address(pfn_to_page(pfn)); 346 347 invalidate_icache_range((unsigned long)va, 348 (unsigned long)va + size); 349 } 350 } 351 352 static inline void __kvm_flush_dcache_pte(pte_t pte) 353 { 354 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) { 355 struct page *page = pte_page(pte); 356 kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE); 357 } 358 } 359 360 static inline void __kvm_flush_dcache_pmd(pmd_t pmd) 361 { 362 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) { 363 struct page *page = pmd_page(pmd); 364 kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE); 365 } 366 } 367 368 static inline void __kvm_flush_dcache_pud(pud_t pud) 369 { 370 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) { 371 struct page *page = pud_page(pud); 372 kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE); 373 } 374 } 375 376 #define kvm_virt_to_phys(x) __pa_symbol(x) 377 378 void kvm_set_way_flush(struct kvm_vcpu *vcpu); 379 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled); 380 381 static inline bool __kvm_cpu_uses_extended_idmap(void) 382 { 383 return __cpu_uses_extended_idmap_level(); 384 } 385 386 static inline unsigned long __kvm_idmap_ptrs_per_pgd(void) 387 { 388 return idmap_ptrs_per_pgd; 389 } 390 391 /* 392 * Can't use pgd_populate here, because the extended idmap adds an extra level 393 * above CONFIG_PGTABLE_LEVELS (which is 2 or 3 if we're using the extended 394 * idmap), and pgd_populate is only available if CONFIG_PGTABLE_LEVELS = 4. 395 */ 396 static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd, 397 pgd_t *hyp_pgd, 398 pgd_t *merged_hyp_pgd, 399 unsigned long hyp_idmap_start) 400 { 401 int idmap_idx; 402 u64 pgd_addr; 403 404 /* 405 * Use the first entry to access the HYP mappings. It is 406 * guaranteed to be free, otherwise we wouldn't use an 407 * extended idmap. 408 */ 409 VM_BUG_ON(pgd_val(merged_hyp_pgd[0])); 410 pgd_addr = __phys_to_pgd_val(__pa(hyp_pgd)); 411 merged_hyp_pgd[0] = __pgd(pgd_addr | PMD_TYPE_TABLE); 412 413 /* 414 * Create another extended level entry that points to the boot HYP map, 415 * which contains an ID mapping of the HYP init code. We essentially 416 * merge the boot and runtime HYP maps by doing so, but they don't 417 * overlap anyway, so this is fine. 418 */ 419 idmap_idx = hyp_idmap_start >> VA_BITS; 420 VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx])); 421 pgd_addr = __phys_to_pgd_val(__pa(boot_hyp_pgd)); 422 merged_hyp_pgd[idmap_idx] = __pgd(pgd_addr | PMD_TYPE_TABLE); 423 } 424 425 static inline unsigned int kvm_get_vmid_bits(void) 426 { 427 int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 428 429 return (cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR1_VMIDBITS_SHIFT) == 2) ? 16 : 8; 430 } 431 432 /* 433 * We are not in the kvm->srcu critical section most of the time, so we take 434 * the SRCU read lock here. Since we copy the data from the user page, we 435 * can immediately drop the lock again. 436 */ 437 static inline int kvm_read_guest_lock(struct kvm *kvm, 438 gpa_t gpa, void *data, unsigned long len) 439 { 440 int srcu_idx = srcu_read_lock(&kvm->srcu); 441 int ret = kvm_read_guest(kvm, gpa, data, len); 442 443 srcu_read_unlock(&kvm->srcu, srcu_idx); 444 445 return ret; 446 } 447 448 static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa, 449 const void *data, unsigned long len) 450 { 451 int srcu_idx = srcu_read_lock(&kvm->srcu); 452 int ret = kvm_write_guest(kvm, gpa, data, len); 453 454 srcu_read_unlock(&kvm->srcu, srcu_idx); 455 456 return ret; 457 } 458 459 #ifdef CONFIG_KVM_INDIRECT_VECTORS 460 /* 461 * EL2 vectors can be mapped and rerouted in a number of ways, 462 * depending on the kernel configuration and CPU present: 463 * 464 * - If the CPU has the ARM64_HARDEN_BRANCH_PREDICTOR cap, the 465 * hardening sequence is placed in one of the vector slots, which is 466 * executed before jumping to the real vectors. 467 * 468 * - If the CPU has both the ARM64_HARDEN_EL2_VECTORS cap and the 469 * ARM64_HARDEN_BRANCH_PREDICTOR cap, the slot containing the 470 * hardening sequence is mapped next to the idmap page, and executed 471 * before jumping to the real vectors. 472 * 473 * - If the CPU only has the ARM64_HARDEN_EL2_VECTORS cap, then an 474 * empty slot is selected, mapped next to the idmap page, and 475 * executed before jumping to the real vectors. 476 * 477 * Note that ARM64_HARDEN_EL2_VECTORS is somewhat incompatible with 478 * VHE, as we don't have hypervisor-specific mappings. If the system 479 * is VHE and yet selects this capability, it will be ignored. 480 */ 481 #include <asm/mmu.h> 482 483 extern void *__kvm_bp_vect_base; 484 extern int __kvm_harden_el2_vector_slot; 485 486 static inline void *kvm_get_hyp_vector(void) 487 { 488 struct bp_hardening_data *data = arm64_get_bp_hardening_data(); 489 void *vect = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); 490 int slot = -1; 491 492 if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR) && data->fn) { 493 vect = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs_start)); 494 slot = data->hyp_vectors_slot; 495 } 496 497 if (this_cpu_has_cap(ARM64_HARDEN_EL2_VECTORS) && !has_vhe()) { 498 vect = __kvm_bp_vect_base; 499 if (slot == -1) 500 slot = __kvm_harden_el2_vector_slot; 501 } 502 503 if (slot != -1) 504 vect += slot * SZ_2K; 505 506 return vect; 507 } 508 509 /* This is only called on a !VHE system */ 510 static inline int kvm_map_vectors(void) 511 { 512 /* 513 * HBP = ARM64_HARDEN_BRANCH_PREDICTOR 514 * HEL2 = ARM64_HARDEN_EL2_VECTORS 515 * 516 * !HBP + !HEL2 -> use direct vectors 517 * HBP + !HEL2 -> use hardened vectors in place 518 * !HBP + HEL2 -> allocate one vector slot and use exec mapping 519 * HBP + HEL2 -> use hardened vertors and use exec mapping 520 */ 521 if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR)) { 522 __kvm_bp_vect_base = kvm_ksym_ref(__bp_harden_hyp_vecs_start); 523 __kvm_bp_vect_base = kern_hyp_va(__kvm_bp_vect_base); 524 } 525 526 if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) { 527 phys_addr_t vect_pa = __pa_symbol(__bp_harden_hyp_vecs_start); 528 unsigned long size = (__bp_harden_hyp_vecs_end - 529 __bp_harden_hyp_vecs_start); 530 531 /* 532 * Always allocate a spare vector slot, as we don't 533 * know yet which CPUs have a BP hardening slot that 534 * we can reuse. 535 */ 536 __kvm_harden_el2_vector_slot = atomic_inc_return(&arm64_el2_vector_last_slot); 537 BUG_ON(__kvm_harden_el2_vector_slot >= BP_HARDEN_EL2_SLOTS); 538 return create_hyp_exec_mappings(vect_pa, size, 539 &__kvm_bp_vect_base); 540 } 541 542 return 0; 543 } 544 #else 545 static inline void *kvm_get_hyp_vector(void) 546 { 547 return kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); 548 } 549 550 static inline int kvm_map_vectors(void) 551 { 552 return 0; 553 } 554 #endif 555 556 #ifdef CONFIG_ARM64_SSBD 557 DECLARE_PER_CPU_READ_MOSTLY(u64, arm64_ssbd_callback_required); 558 559 static inline int hyp_map_aux_data(void) 560 { 561 int cpu, err; 562 563 for_each_possible_cpu(cpu) { 564 u64 *ptr; 565 566 ptr = per_cpu_ptr(&arm64_ssbd_callback_required, cpu); 567 err = create_hyp_mappings(ptr, ptr + 1, PAGE_HYP); 568 if (err) 569 return err; 570 } 571 return 0; 572 } 573 #else 574 static inline int hyp_map_aux_data(void) 575 { 576 return 0; 577 } 578 #endif 579 580 #define kvm_phys_to_vttbr(addr) phys_to_ttbr(addr) 581 582 /* 583 * Get the magic number 'x' for VTTBR:BADDR of this KVM instance. 584 * With v8.2 LVA extensions, 'x' should be a minimum of 6 with 585 * 52bit IPS. 586 */ 587 static inline int arm64_vttbr_x(u32 ipa_shift, u32 levels) 588 { 589 int x = ARM64_VTTBR_X(ipa_shift, levels); 590 591 return (IS_ENABLED(CONFIG_ARM64_PA_BITS_52) && x < 6) ? 6 : x; 592 } 593 594 static inline u64 vttbr_baddr_mask(u32 ipa_shift, u32 levels) 595 { 596 unsigned int x = arm64_vttbr_x(ipa_shift, levels); 597 598 return GENMASK_ULL(PHYS_MASK_SHIFT - 1, x); 599 } 600 601 static inline u64 kvm_vttbr_baddr_mask(struct kvm *kvm) 602 { 603 return vttbr_baddr_mask(kvm_phys_shift(kvm), kvm_stage2_levels(kvm)); 604 } 605 606 static __always_inline u64 kvm_get_vttbr(struct kvm *kvm) 607 { 608 struct kvm_vmid *vmid = &kvm->arch.vmid; 609 u64 vmid_field, baddr; 610 u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0; 611 612 baddr = kvm->arch.pgd_phys; 613 vmid_field = (u64)vmid->vmid << VTTBR_VMID_SHIFT; 614 return kvm_phys_to_vttbr(baddr) | vmid_field | cnp; 615 } 616 617 #endif /* __ASSEMBLY__ */ 618 #endif /* __ARM64_KVM_MMU_H__ */ 619