xref: /openbmc/linux/arch/arm64/include/asm/kvm_mmu.h (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #ifndef __ARM64_KVM_MMU_H__
19 #define __ARM64_KVM_MMU_H__
20 
21 #include <asm/page.h>
22 #include <asm/memory.h>
23 #include <asm/cpufeature.h>
24 
25 /*
26  * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
27  * "negative" addresses. This makes it impossible to directly share
28  * mappings with the kernel.
29  *
30  * Instead, give the HYP mode its own VA region at a fixed offset from
31  * the kernel by just masking the top bits (which are all ones for a
32  * kernel address). We need to find out how many bits to mask.
33  *
34  * We want to build a set of page tables that cover both parts of the
35  * idmap (the trampoline page used to initialize EL2), and our normal
36  * runtime VA space, at the same time.
37  *
38  * Given that the kernel uses VA_BITS for its entire address space,
39  * and that half of that space (VA_BITS - 1) is used for the linear
40  * mapping, we can also limit the EL2 space to (VA_BITS - 1).
41  *
42  * The main question is "Within the VA_BITS space, does EL2 use the
43  * top or the bottom half of that space to shadow the kernel's linear
44  * mapping?". As we need to idmap the trampoline page, this is
45  * determined by the range in which this page lives.
46  *
47  * If the page is in the bottom half, we have to use the top half. If
48  * the page is in the top half, we have to use the bottom half:
49  *
50  * T = __pa_symbol(__hyp_idmap_text_start)
51  * if (T & BIT(VA_BITS - 1))
52  *	HYP_VA_MIN = 0  //idmap in upper half
53  * else
54  *	HYP_VA_MIN = 1 << (VA_BITS - 1)
55  * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
56  *
57  * This of course assumes that the trampoline page exists within the
58  * VA_BITS range. If it doesn't, then it means we're in the odd case
59  * where the kernel idmap (as well as HYP) uses more levels than the
60  * kernel runtime page tables (as seen when the kernel is configured
61  * for 4k pages, 39bits VA, and yet memory lives just above that
62  * limit, forcing the idmap to use 4 levels of page tables while the
63  * kernel itself only uses 3). In this particular case, it doesn't
64  * matter which side of VA_BITS we use, as we're guaranteed not to
65  * conflict with anything.
66  *
67  * When using VHE, there are no separate hyp mappings and all KVM
68  * functionality is already mapped as part of the main kernel
69  * mappings, and none of this applies in that case.
70  */
71 
72 #ifdef __ASSEMBLY__
73 
74 #include <asm/alternative.h>
75 
76 /*
77  * Convert a kernel VA into a HYP VA.
78  * reg: VA to be converted.
79  *
80  * The actual code generation takes place in kvm_update_va_mask, and
81  * the instructions below are only there to reserve the space and
82  * perform the register allocation (kvm_update_va_mask uses the
83  * specific registers encoded in the instructions).
84  */
85 .macro kern_hyp_va	reg
86 alternative_cb kvm_update_va_mask
87 	and     \reg, \reg, #1		/* mask with va_mask */
88 	ror	\reg, \reg, #1		/* rotate to the first tag bit */
89 	add	\reg, \reg, #0		/* insert the low 12 bits of the tag */
90 	add	\reg, \reg, #0, lsl 12	/* insert the top 12 bits of the tag */
91 	ror	\reg, \reg, #63		/* rotate back */
92 alternative_cb_end
93 .endm
94 
95 #else
96 
97 #include <asm/pgalloc.h>
98 #include <asm/cache.h>
99 #include <asm/cacheflush.h>
100 #include <asm/mmu_context.h>
101 #include <asm/pgtable.h>
102 
103 void kvm_update_va_mask(struct alt_instr *alt,
104 			__le32 *origptr, __le32 *updptr, int nr_inst);
105 
106 static inline unsigned long __kern_hyp_va(unsigned long v)
107 {
108 	asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n"
109 				    "ror %0, %0, #1\n"
110 				    "add %0, %0, #0\n"
111 				    "add %0, %0, #0, lsl 12\n"
112 				    "ror %0, %0, #63\n",
113 				    kvm_update_va_mask)
114 		     : "+r" (v));
115 	return v;
116 }
117 
118 #define kern_hyp_va(v) 	((typeof(v))(__kern_hyp_va((unsigned long)(v))))
119 
120 /*
121  * Obtain the PC-relative address of a kernel symbol
122  * s: symbol
123  *
124  * The goal of this macro is to return a symbol's address based on a
125  * PC-relative computation, as opposed to a loading the VA from a
126  * constant pool or something similar. This works well for HYP, as an
127  * absolute VA is guaranteed to be wrong. Only use this if trying to
128  * obtain the address of a symbol (i.e. not something you obtained by
129  * following a pointer).
130  */
131 #define hyp_symbol_addr(s)						\
132 	({								\
133 		typeof(s) *addr;					\
134 		asm("adrp	%0, %1\n"				\
135 		    "add	%0, %0, :lo12:%1\n"			\
136 		    : "=r" (addr) : "S" (&s));				\
137 		addr;							\
138 	})
139 
140 /*
141  * We currently support using a VM-specified IPA size. For backward
142  * compatibility, the default IPA size is fixed to 40bits.
143  */
144 #define KVM_PHYS_SHIFT	(40)
145 
146 #define kvm_phys_shift(kvm)		VTCR_EL2_IPA(kvm->arch.vtcr)
147 #define kvm_phys_size(kvm)		(_AC(1, ULL) << kvm_phys_shift(kvm))
148 #define kvm_phys_mask(kvm)		(kvm_phys_size(kvm) - _AC(1, ULL))
149 
150 static inline bool kvm_page_empty(void *ptr)
151 {
152 	struct page *ptr_page = virt_to_page(ptr);
153 	return page_count(ptr_page) == 1;
154 }
155 
156 #include <asm/stage2_pgtable.h>
157 
158 int create_hyp_mappings(void *from, void *to, pgprot_t prot);
159 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
160 			   void __iomem **kaddr,
161 			   void __iomem **haddr);
162 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
163 			     void **haddr);
164 void free_hyp_pgds(void);
165 
166 void stage2_unmap_vm(struct kvm *kvm);
167 int kvm_alloc_stage2_pgd(struct kvm *kvm);
168 void kvm_free_stage2_pgd(struct kvm *kvm);
169 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
170 			  phys_addr_t pa, unsigned long size, bool writable);
171 
172 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
173 
174 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
175 
176 phys_addr_t kvm_mmu_get_httbr(void);
177 phys_addr_t kvm_get_idmap_vector(void);
178 int kvm_mmu_init(void);
179 void kvm_clear_hyp_idmap(void);
180 
181 #define kvm_mk_pmd(ptep)					\
182 	__pmd(__phys_to_pmd_val(__pa(ptep)) | PMD_TYPE_TABLE)
183 #define kvm_mk_pud(pmdp)					\
184 	__pud(__phys_to_pud_val(__pa(pmdp)) | PMD_TYPE_TABLE)
185 #define kvm_mk_pgd(pudp)					\
186 	__pgd(__phys_to_pgd_val(__pa(pudp)) | PUD_TYPE_TABLE)
187 
188 #define kvm_set_pud(pudp, pud)		set_pud(pudp, pud)
189 
190 #define kvm_pfn_pte(pfn, prot)		pfn_pte(pfn, prot)
191 #define kvm_pfn_pmd(pfn, prot)		pfn_pmd(pfn, prot)
192 #define kvm_pfn_pud(pfn, prot)		pfn_pud(pfn, prot)
193 
194 #define kvm_pud_pfn(pud)		pud_pfn(pud)
195 
196 #define kvm_pmd_mkhuge(pmd)		pmd_mkhuge(pmd)
197 #define kvm_pud_mkhuge(pud)		pud_mkhuge(pud)
198 
199 static inline pte_t kvm_s2pte_mkwrite(pte_t pte)
200 {
201 	pte_val(pte) |= PTE_S2_RDWR;
202 	return pte;
203 }
204 
205 static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd)
206 {
207 	pmd_val(pmd) |= PMD_S2_RDWR;
208 	return pmd;
209 }
210 
211 static inline pud_t kvm_s2pud_mkwrite(pud_t pud)
212 {
213 	pud_val(pud) |= PUD_S2_RDWR;
214 	return pud;
215 }
216 
217 static inline pte_t kvm_s2pte_mkexec(pte_t pte)
218 {
219 	pte_val(pte) &= ~PTE_S2_XN;
220 	return pte;
221 }
222 
223 static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd)
224 {
225 	pmd_val(pmd) &= ~PMD_S2_XN;
226 	return pmd;
227 }
228 
229 static inline pud_t kvm_s2pud_mkexec(pud_t pud)
230 {
231 	pud_val(pud) &= ~PUD_S2_XN;
232 	return pud;
233 }
234 
235 static inline void kvm_set_s2pte_readonly(pte_t *ptep)
236 {
237 	pteval_t old_pteval, pteval;
238 
239 	pteval = READ_ONCE(pte_val(*ptep));
240 	do {
241 		old_pteval = pteval;
242 		pteval &= ~PTE_S2_RDWR;
243 		pteval |= PTE_S2_RDONLY;
244 		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
245 	} while (pteval != old_pteval);
246 }
247 
248 static inline bool kvm_s2pte_readonly(pte_t *ptep)
249 {
250 	return (READ_ONCE(pte_val(*ptep)) & PTE_S2_RDWR) == PTE_S2_RDONLY;
251 }
252 
253 static inline bool kvm_s2pte_exec(pte_t *ptep)
254 {
255 	return !(READ_ONCE(pte_val(*ptep)) & PTE_S2_XN);
256 }
257 
258 static inline void kvm_set_s2pmd_readonly(pmd_t *pmdp)
259 {
260 	kvm_set_s2pte_readonly((pte_t *)pmdp);
261 }
262 
263 static inline bool kvm_s2pmd_readonly(pmd_t *pmdp)
264 {
265 	return kvm_s2pte_readonly((pte_t *)pmdp);
266 }
267 
268 static inline bool kvm_s2pmd_exec(pmd_t *pmdp)
269 {
270 	return !(READ_ONCE(pmd_val(*pmdp)) & PMD_S2_XN);
271 }
272 
273 static inline void kvm_set_s2pud_readonly(pud_t *pudp)
274 {
275 	kvm_set_s2pte_readonly((pte_t *)pudp);
276 }
277 
278 static inline bool kvm_s2pud_readonly(pud_t *pudp)
279 {
280 	return kvm_s2pte_readonly((pte_t *)pudp);
281 }
282 
283 static inline bool kvm_s2pud_exec(pud_t *pudp)
284 {
285 	return !(READ_ONCE(pud_val(*pudp)) & PUD_S2_XN);
286 }
287 
288 static inline pud_t kvm_s2pud_mkyoung(pud_t pud)
289 {
290 	return pud_mkyoung(pud);
291 }
292 
293 static inline bool kvm_s2pud_young(pud_t pud)
294 {
295 	return pud_young(pud);
296 }
297 
298 #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
299 
300 #ifdef __PAGETABLE_PMD_FOLDED
301 #define hyp_pmd_table_empty(pmdp) (0)
302 #else
303 #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
304 #endif
305 
306 #ifdef __PAGETABLE_PUD_FOLDED
307 #define hyp_pud_table_empty(pudp) (0)
308 #else
309 #define hyp_pud_table_empty(pudp) kvm_page_empty(pudp)
310 #endif
311 
312 struct kvm;
313 
314 #define kvm_flush_dcache_to_poc(a,l)	__flush_dcache_area((a), (l))
315 
316 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
317 {
318 	return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
319 }
320 
321 static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
322 {
323 	void *va = page_address(pfn_to_page(pfn));
324 
325 	/*
326 	 * With FWB, we ensure that the guest always accesses memory using
327 	 * cacheable attributes, and we don't have to clean to PoC when
328 	 * faulting in pages. Furthermore, FWB implies IDC, so cleaning to
329 	 * PoU is not required either in this case.
330 	 */
331 	if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
332 		return;
333 
334 	kvm_flush_dcache_to_poc(va, size);
335 }
336 
337 static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn,
338 						  unsigned long size)
339 {
340 	if (icache_is_aliasing()) {
341 		/* any kind of VIPT cache */
342 		__flush_icache_all();
343 	} else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
344 		/* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
345 		void *va = page_address(pfn_to_page(pfn));
346 
347 		invalidate_icache_range((unsigned long)va,
348 					(unsigned long)va + size);
349 	}
350 }
351 
352 static inline void __kvm_flush_dcache_pte(pte_t pte)
353 {
354 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
355 		struct page *page = pte_page(pte);
356 		kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE);
357 	}
358 }
359 
360 static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
361 {
362 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
363 		struct page *page = pmd_page(pmd);
364 		kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE);
365 	}
366 }
367 
368 static inline void __kvm_flush_dcache_pud(pud_t pud)
369 {
370 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
371 		struct page *page = pud_page(pud);
372 		kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE);
373 	}
374 }
375 
376 #define kvm_virt_to_phys(x)		__pa_symbol(x)
377 
378 void kvm_set_way_flush(struct kvm_vcpu *vcpu);
379 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
380 
381 static inline bool __kvm_cpu_uses_extended_idmap(void)
382 {
383 	return __cpu_uses_extended_idmap_level();
384 }
385 
386 static inline unsigned long __kvm_idmap_ptrs_per_pgd(void)
387 {
388 	return idmap_ptrs_per_pgd;
389 }
390 
391 /*
392  * Can't use pgd_populate here, because the extended idmap adds an extra level
393  * above CONFIG_PGTABLE_LEVELS (which is 2 or 3 if we're using the extended
394  * idmap), and pgd_populate is only available if CONFIG_PGTABLE_LEVELS = 4.
395  */
396 static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
397 				       pgd_t *hyp_pgd,
398 				       pgd_t *merged_hyp_pgd,
399 				       unsigned long hyp_idmap_start)
400 {
401 	int idmap_idx;
402 	u64 pgd_addr;
403 
404 	/*
405 	 * Use the first entry to access the HYP mappings. It is
406 	 * guaranteed to be free, otherwise we wouldn't use an
407 	 * extended idmap.
408 	 */
409 	VM_BUG_ON(pgd_val(merged_hyp_pgd[0]));
410 	pgd_addr = __phys_to_pgd_val(__pa(hyp_pgd));
411 	merged_hyp_pgd[0] = __pgd(pgd_addr | PMD_TYPE_TABLE);
412 
413 	/*
414 	 * Create another extended level entry that points to the boot HYP map,
415 	 * which contains an ID mapping of the HYP init code. We essentially
416 	 * merge the boot and runtime HYP maps by doing so, but they don't
417 	 * overlap anyway, so this is fine.
418 	 */
419 	idmap_idx = hyp_idmap_start >> VA_BITS;
420 	VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx]));
421 	pgd_addr = __phys_to_pgd_val(__pa(boot_hyp_pgd));
422 	merged_hyp_pgd[idmap_idx] = __pgd(pgd_addr | PMD_TYPE_TABLE);
423 }
424 
425 static inline unsigned int kvm_get_vmid_bits(void)
426 {
427 	int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
428 
429 	return (cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR1_VMIDBITS_SHIFT) == 2) ? 16 : 8;
430 }
431 
432 /*
433  * We are not in the kvm->srcu critical section most of the time, so we take
434  * the SRCU read lock here. Since we copy the data from the user page, we
435  * can immediately drop the lock again.
436  */
437 static inline int kvm_read_guest_lock(struct kvm *kvm,
438 				      gpa_t gpa, void *data, unsigned long len)
439 {
440 	int srcu_idx = srcu_read_lock(&kvm->srcu);
441 	int ret = kvm_read_guest(kvm, gpa, data, len);
442 
443 	srcu_read_unlock(&kvm->srcu, srcu_idx);
444 
445 	return ret;
446 }
447 
448 static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa,
449 				       const void *data, unsigned long len)
450 {
451 	int srcu_idx = srcu_read_lock(&kvm->srcu);
452 	int ret = kvm_write_guest(kvm, gpa, data, len);
453 
454 	srcu_read_unlock(&kvm->srcu, srcu_idx);
455 
456 	return ret;
457 }
458 
459 #ifdef CONFIG_KVM_INDIRECT_VECTORS
460 /*
461  * EL2 vectors can be mapped and rerouted in a number of ways,
462  * depending on the kernel configuration and CPU present:
463  *
464  * - If the CPU has the ARM64_HARDEN_BRANCH_PREDICTOR cap, the
465  *   hardening sequence is placed in one of the vector slots, which is
466  *   executed before jumping to the real vectors.
467  *
468  * - If the CPU has both the ARM64_HARDEN_EL2_VECTORS cap and the
469  *   ARM64_HARDEN_BRANCH_PREDICTOR cap, the slot containing the
470  *   hardening sequence is mapped next to the idmap page, and executed
471  *   before jumping to the real vectors.
472  *
473  * - If the CPU only has the ARM64_HARDEN_EL2_VECTORS cap, then an
474  *   empty slot is selected, mapped next to the idmap page, and
475  *   executed before jumping to the real vectors.
476  *
477  * Note that ARM64_HARDEN_EL2_VECTORS is somewhat incompatible with
478  * VHE, as we don't have hypervisor-specific mappings. If the system
479  * is VHE and yet selects this capability, it will be ignored.
480  */
481 #include <asm/mmu.h>
482 
483 extern void *__kvm_bp_vect_base;
484 extern int __kvm_harden_el2_vector_slot;
485 
486 static inline void *kvm_get_hyp_vector(void)
487 {
488 	struct bp_hardening_data *data = arm64_get_bp_hardening_data();
489 	void *vect = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
490 	int slot = -1;
491 
492 	if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR) && data->fn) {
493 		vect = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs_start));
494 		slot = data->hyp_vectors_slot;
495 	}
496 
497 	if (this_cpu_has_cap(ARM64_HARDEN_EL2_VECTORS) && !has_vhe()) {
498 		vect = __kvm_bp_vect_base;
499 		if (slot == -1)
500 			slot = __kvm_harden_el2_vector_slot;
501 	}
502 
503 	if (slot != -1)
504 		vect += slot * SZ_2K;
505 
506 	return vect;
507 }
508 
509 /*  This is only called on a !VHE system */
510 static inline int kvm_map_vectors(void)
511 {
512 	/*
513 	 * HBP  = ARM64_HARDEN_BRANCH_PREDICTOR
514 	 * HEL2 = ARM64_HARDEN_EL2_VECTORS
515 	 *
516 	 * !HBP + !HEL2 -> use direct vectors
517 	 *  HBP + !HEL2 -> use hardened vectors in place
518 	 * !HBP +  HEL2 -> allocate one vector slot and use exec mapping
519 	 *  HBP +  HEL2 -> use hardened vertors and use exec mapping
520 	 */
521 	if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR)) {
522 		__kvm_bp_vect_base = kvm_ksym_ref(__bp_harden_hyp_vecs_start);
523 		__kvm_bp_vect_base = kern_hyp_va(__kvm_bp_vect_base);
524 	}
525 
526 	if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) {
527 		phys_addr_t vect_pa = __pa_symbol(__bp_harden_hyp_vecs_start);
528 		unsigned long size = (__bp_harden_hyp_vecs_end -
529 				      __bp_harden_hyp_vecs_start);
530 
531 		/*
532 		 * Always allocate a spare vector slot, as we don't
533 		 * know yet which CPUs have a BP hardening slot that
534 		 * we can reuse.
535 		 */
536 		__kvm_harden_el2_vector_slot = atomic_inc_return(&arm64_el2_vector_last_slot);
537 		BUG_ON(__kvm_harden_el2_vector_slot >= BP_HARDEN_EL2_SLOTS);
538 		return create_hyp_exec_mappings(vect_pa, size,
539 						&__kvm_bp_vect_base);
540 	}
541 
542 	return 0;
543 }
544 #else
545 static inline void *kvm_get_hyp_vector(void)
546 {
547 	return kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
548 }
549 
550 static inline int kvm_map_vectors(void)
551 {
552 	return 0;
553 }
554 #endif
555 
556 #ifdef CONFIG_ARM64_SSBD
557 DECLARE_PER_CPU_READ_MOSTLY(u64, arm64_ssbd_callback_required);
558 
559 static inline int hyp_map_aux_data(void)
560 {
561 	int cpu, err;
562 
563 	for_each_possible_cpu(cpu) {
564 		u64 *ptr;
565 
566 		ptr = per_cpu_ptr(&arm64_ssbd_callback_required, cpu);
567 		err = create_hyp_mappings(ptr, ptr + 1, PAGE_HYP);
568 		if (err)
569 			return err;
570 	}
571 	return 0;
572 }
573 #else
574 static inline int hyp_map_aux_data(void)
575 {
576 	return 0;
577 }
578 #endif
579 
580 #define kvm_phys_to_vttbr(addr)		phys_to_ttbr(addr)
581 
582 /*
583  * Get the magic number 'x' for VTTBR:BADDR of this KVM instance.
584  * With v8.2 LVA extensions, 'x' should be a minimum of 6 with
585  * 52bit IPS.
586  */
587 static inline int arm64_vttbr_x(u32 ipa_shift, u32 levels)
588 {
589 	int x = ARM64_VTTBR_X(ipa_shift, levels);
590 
591 	return (IS_ENABLED(CONFIG_ARM64_PA_BITS_52) && x < 6) ? 6 : x;
592 }
593 
594 static inline u64 vttbr_baddr_mask(u32 ipa_shift, u32 levels)
595 {
596 	unsigned int x = arm64_vttbr_x(ipa_shift, levels);
597 
598 	return GENMASK_ULL(PHYS_MASK_SHIFT - 1, x);
599 }
600 
601 static inline u64 kvm_vttbr_baddr_mask(struct kvm *kvm)
602 {
603 	return vttbr_baddr_mask(kvm_phys_shift(kvm), kvm_stage2_levels(kvm));
604 }
605 
606 static __always_inline u64 kvm_get_vttbr(struct kvm *kvm)
607 {
608 	struct kvm_vmid *vmid = &kvm->arch.vmid;
609 	u64 vmid_field, baddr;
610 	u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0;
611 
612 	baddr = kvm->arch.pgd_phys;
613 	vmid_field = (u64)vmid->vmid << VTTBR_VMID_SHIFT;
614 	return kvm_phys_to_vttbr(baddr) | vmid_field | cnp;
615 }
616 
617 #endif /* __ASSEMBLY__ */
618 #endif /* __ARM64_KVM_MMU_H__ */
619