1 /* 2 * Copyright (C) 2012,2013 - ARM Ltd 3 * Author: Marc Zyngier <marc.zyngier@arm.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #ifndef __ARM64_KVM_MMU_H__ 19 #define __ARM64_KVM_MMU_H__ 20 21 #include <asm/page.h> 22 #include <asm/memory.h> 23 #include <asm/cpufeature.h> 24 25 /* 26 * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express 27 * "negative" addresses. This makes it impossible to directly share 28 * mappings with the kernel. 29 * 30 * Instead, give the HYP mode its own VA region at a fixed offset from 31 * the kernel by just masking the top bits (which are all ones for a 32 * kernel address). We need to find out how many bits to mask. 33 * 34 * We want to build a set of page tables that cover both parts of the 35 * idmap (the trampoline page used to initialize EL2), and our normal 36 * runtime VA space, at the same time. 37 * 38 * Given that the kernel uses VA_BITS for its entire address space, 39 * and that half of that space (VA_BITS - 1) is used for the linear 40 * mapping, we can also limit the EL2 space to (VA_BITS - 1). 41 * 42 * The main question is "Within the VA_BITS space, does EL2 use the 43 * top or the bottom half of that space to shadow the kernel's linear 44 * mapping?". As we need to idmap the trampoline page, this is 45 * determined by the range in which this page lives. 46 * 47 * If the page is in the bottom half, we have to use the top half. If 48 * the page is in the top half, we have to use the bottom half: 49 * 50 * T = __pa_symbol(__hyp_idmap_text_start) 51 * if (T & BIT(VA_BITS - 1)) 52 * HYP_VA_MIN = 0 //idmap in upper half 53 * else 54 * HYP_VA_MIN = 1 << (VA_BITS - 1) 55 * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1 56 * 57 * This of course assumes that the trampoline page exists within the 58 * VA_BITS range. If it doesn't, then it means we're in the odd case 59 * where the kernel idmap (as well as HYP) uses more levels than the 60 * kernel runtime page tables (as seen when the kernel is configured 61 * for 4k pages, 39bits VA, and yet memory lives just above that 62 * limit, forcing the idmap to use 4 levels of page tables while the 63 * kernel itself only uses 3). In this particular case, it doesn't 64 * matter which side of VA_BITS we use, as we're guaranteed not to 65 * conflict with anything. 66 * 67 * When using VHE, there are no separate hyp mappings and all KVM 68 * functionality is already mapped as part of the main kernel 69 * mappings, and none of this applies in that case. 70 */ 71 72 #define HYP_PAGE_OFFSET_HIGH_MASK ((UL(1) << VA_BITS) - 1) 73 #define HYP_PAGE_OFFSET_LOW_MASK ((UL(1) << (VA_BITS - 1)) - 1) 74 75 #ifdef __ASSEMBLY__ 76 77 #include <asm/alternative.h> 78 #include <asm/cpufeature.h> 79 80 /* 81 * Convert a kernel VA into a HYP VA. 82 * reg: VA to be converted. 83 * 84 * This generates the following sequences: 85 * - High mask: 86 * and x0, x0, #HYP_PAGE_OFFSET_HIGH_MASK 87 * nop 88 * - Low mask: 89 * and x0, x0, #HYP_PAGE_OFFSET_HIGH_MASK 90 * and x0, x0, #HYP_PAGE_OFFSET_LOW_MASK 91 * - VHE: 92 * nop 93 * nop 94 * 95 * The "low mask" version works because the mask is a strict subset of 96 * the "high mask", hence performing the first mask for nothing. 97 * Should be completely invisible on any viable CPU. 98 */ 99 .macro kern_hyp_va reg 100 alternative_if_not ARM64_HAS_VIRT_HOST_EXTN 101 and \reg, \reg, #HYP_PAGE_OFFSET_HIGH_MASK 102 alternative_else_nop_endif 103 alternative_if ARM64_HYP_OFFSET_LOW 104 and \reg, \reg, #HYP_PAGE_OFFSET_LOW_MASK 105 alternative_else_nop_endif 106 .endm 107 108 #else 109 110 #include <asm/pgalloc.h> 111 #include <asm/cachetype.h> 112 #include <asm/cacheflush.h> 113 #include <asm/mmu_context.h> 114 #include <asm/pgtable.h> 115 116 static inline unsigned long __kern_hyp_va(unsigned long v) 117 { 118 asm volatile(ALTERNATIVE("and %0, %0, %1", 119 "nop", 120 ARM64_HAS_VIRT_HOST_EXTN) 121 : "+r" (v) 122 : "i" (HYP_PAGE_OFFSET_HIGH_MASK)); 123 asm volatile(ALTERNATIVE("nop", 124 "and %0, %0, %1", 125 ARM64_HYP_OFFSET_LOW) 126 : "+r" (v) 127 : "i" (HYP_PAGE_OFFSET_LOW_MASK)); 128 return v; 129 } 130 131 #define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v)))) 132 133 /* 134 * We currently only support a 40bit IPA. 135 */ 136 #define KVM_PHYS_SHIFT (40) 137 #define KVM_PHYS_SIZE (1UL << KVM_PHYS_SHIFT) 138 #define KVM_PHYS_MASK (KVM_PHYS_SIZE - 1UL) 139 140 #include <asm/stage2_pgtable.h> 141 142 int create_hyp_mappings(void *from, void *to, pgprot_t prot); 143 int create_hyp_io_mappings(void *from, void *to, phys_addr_t); 144 void free_hyp_pgds(void); 145 146 void stage2_unmap_vm(struct kvm *kvm); 147 int kvm_alloc_stage2_pgd(struct kvm *kvm); 148 void kvm_free_stage2_pgd(struct kvm *kvm); 149 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, 150 phys_addr_t pa, unsigned long size, bool writable); 151 152 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run); 153 154 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu); 155 156 phys_addr_t kvm_mmu_get_httbr(void); 157 phys_addr_t kvm_get_idmap_vector(void); 158 phys_addr_t kvm_get_idmap_start(void); 159 int kvm_mmu_init(void); 160 void kvm_clear_hyp_idmap(void); 161 162 #define kvm_set_pte(ptep, pte) set_pte(ptep, pte) 163 #define kvm_set_pmd(pmdp, pmd) set_pmd(pmdp, pmd) 164 165 static inline pte_t kvm_s2pte_mkwrite(pte_t pte) 166 { 167 pte_val(pte) |= PTE_S2_RDWR; 168 return pte; 169 } 170 171 static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd) 172 { 173 pmd_val(pmd) |= PMD_S2_RDWR; 174 return pmd; 175 } 176 177 static inline void kvm_set_s2pte_readonly(pte_t *pte) 178 { 179 pteval_t pteval; 180 unsigned long tmp; 181 182 asm volatile("// kvm_set_s2pte_readonly\n" 183 " prfm pstl1strm, %2\n" 184 "1: ldxr %0, %2\n" 185 " and %0, %0, %3 // clear PTE_S2_RDWR\n" 186 " orr %0, %0, %4 // set PTE_S2_RDONLY\n" 187 " stxr %w1, %0, %2\n" 188 " cbnz %w1, 1b\n" 189 : "=&r" (pteval), "=&r" (tmp), "+Q" (pte_val(*pte)) 190 : "L" (~PTE_S2_RDWR), "L" (PTE_S2_RDONLY)); 191 } 192 193 static inline bool kvm_s2pte_readonly(pte_t *pte) 194 { 195 return (pte_val(*pte) & PTE_S2_RDWR) == PTE_S2_RDONLY; 196 } 197 198 static inline void kvm_set_s2pmd_readonly(pmd_t *pmd) 199 { 200 kvm_set_s2pte_readonly((pte_t *)pmd); 201 } 202 203 static inline bool kvm_s2pmd_readonly(pmd_t *pmd) 204 { 205 return kvm_s2pte_readonly((pte_t *)pmd); 206 } 207 208 static inline bool kvm_page_empty(void *ptr) 209 { 210 struct page *ptr_page = virt_to_page(ptr); 211 return page_count(ptr_page) == 1; 212 } 213 214 #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep) 215 216 #ifdef __PAGETABLE_PMD_FOLDED 217 #define hyp_pmd_table_empty(pmdp) (0) 218 #else 219 #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp) 220 #endif 221 222 #ifdef __PAGETABLE_PUD_FOLDED 223 #define hyp_pud_table_empty(pudp) (0) 224 #else 225 #define hyp_pud_table_empty(pudp) kvm_page_empty(pudp) 226 #endif 227 228 struct kvm; 229 230 #define kvm_flush_dcache_to_poc(a,l) __flush_dcache_area((a), (l)) 231 232 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu) 233 { 234 return (vcpu_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101; 235 } 236 237 static inline void __coherent_cache_guest_page(struct kvm_vcpu *vcpu, 238 kvm_pfn_t pfn, 239 unsigned long size) 240 { 241 void *va = page_address(pfn_to_page(pfn)); 242 243 kvm_flush_dcache_to_poc(va, size); 244 245 if (!icache_is_aliasing()) { /* PIPT */ 246 flush_icache_range((unsigned long)va, 247 (unsigned long)va + size); 248 } else if (!icache_is_aivivt()) { /* non ASID-tagged VIVT */ 249 /* any kind of VIPT cache */ 250 __flush_icache_all(); 251 } 252 } 253 254 static inline void __kvm_flush_dcache_pte(pte_t pte) 255 { 256 struct page *page = pte_page(pte); 257 kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE); 258 } 259 260 static inline void __kvm_flush_dcache_pmd(pmd_t pmd) 261 { 262 struct page *page = pmd_page(pmd); 263 kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE); 264 } 265 266 static inline void __kvm_flush_dcache_pud(pud_t pud) 267 { 268 struct page *page = pud_page(pud); 269 kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE); 270 } 271 272 #define kvm_virt_to_phys(x) __pa_symbol(x) 273 274 void kvm_set_way_flush(struct kvm_vcpu *vcpu); 275 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled); 276 277 static inline bool __kvm_cpu_uses_extended_idmap(void) 278 { 279 return __cpu_uses_extended_idmap(); 280 } 281 282 static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd, 283 pgd_t *hyp_pgd, 284 pgd_t *merged_hyp_pgd, 285 unsigned long hyp_idmap_start) 286 { 287 int idmap_idx; 288 289 /* 290 * Use the first entry to access the HYP mappings. It is 291 * guaranteed to be free, otherwise we wouldn't use an 292 * extended idmap. 293 */ 294 VM_BUG_ON(pgd_val(merged_hyp_pgd[0])); 295 merged_hyp_pgd[0] = __pgd(__pa(hyp_pgd) | PMD_TYPE_TABLE); 296 297 /* 298 * Create another extended level entry that points to the boot HYP map, 299 * which contains an ID mapping of the HYP init code. We essentially 300 * merge the boot and runtime HYP maps by doing so, but they don't 301 * overlap anyway, so this is fine. 302 */ 303 idmap_idx = hyp_idmap_start >> VA_BITS; 304 VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx])); 305 merged_hyp_pgd[idmap_idx] = __pgd(__pa(boot_hyp_pgd) | PMD_TYPE_TABLE); 306 } 307 308 static inline unsigned int kvm_get_vmid_bits(void) 309 { 310 int reg = read_system_reg(SYS_ID_AA64MMFR1_EL1); 311 312 return (cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR1_VMIDBITS_SHIFT) == 2) ? 16 : 8; 313 } 314 315 #endif /* __ASSEMBLY__ */ 316 #endif /* __ARM64_KVM_MMU_H__ */ 317