xref: /openbmc/linux/arch/arm64/include/asm/kvm_mmu.h (revision 4f6cce39)
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #ifndef __ARM64_KVM_MMU_H__
19 #define __ARM64_KVM_MMU_H__
20 
21 #include <asm/page.h>
22 #include <asm/memory.h>
23 #include <asm/cpufeature.h>
24 
25 /*
26  * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
27  * "negative" addresses. This makes it impossible to directly share
28  * mappings with the kernel.
29  *
30  * Instead, give the HYP mode its own VA region at a fixed offset from
31  * the kernel by just masking the top bits (which are all ones for a
32  * kernel address). We need to find out how many bits to mask.
33  *
34  * We want to build a set of page tables that cover both parts of the
35  * idmap (the trampoline page used to initialize EL2), and our normal
36  * runtime VA space, at the same time.
37  *
38  * Given that the kernel uses VA_BITS for its entire address space,
39  * and that half of that space (VA_BITS - 1) is used for the linear
40  * mapping, we can also limit the EL2 space to (VA_BITS - 1).
41  *
42  * The main question is "Within the VA_BITS space, does EL2 use the
43  * top or the bottom half of that space to shadow the kernel's linear
44  * mapping?". As we need to idmap the trampoline page, this is
45  * determined by the range in which this page lives.
46  *
47  * If the page is in the bottom half, we have to use the top half. If
48  * the page is in the top half, we have to use the bottom half:
49  *
50  * T = __pa_symbol(__hyp_idmap_text_start)
51  * if (T & BIT(VA_BITS - 1))
52  *	HYP_VA_MIN = 0  //idmap in upper half
53  * else
54  *	HYP_VA_MIN = 1 << (VA_BITS - 1)
55  * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
56  *
57  * This of course assumes that the trampoline page exists within the
58  * VA_BITS range. If it doesn't, then it means we're in the odd case
59  * where the kernel idmap (as well as HYP) uses more levels than the
60  * kernel runtime page tables (as seen when the kernel is configured
61  * for 4k pages, 39bits VA, and yet memory lives just above that
62  * limit, forcing the idmap to use 4 levels of page tables while the
63  * kernel itself only uses 3). In this particular case, it doesn't
64  * matter which side of VA_BITS we use, as we're guaranteed not to
65  * conflict with anything.
66  *
67  * When using VHE, there are no separate hyp mappings and all KVM
68  * functionality is already mapped as part of the main kernel
69  * mappings, and none of this applies in that case.
70  */
71 
72 #define HYP_PAGE_OFFSET_HIGH_MASK	((UL(1) << VA_BITS) - 1)
73 #define HYP_PAGE_OFFSET_LOW_MASK	((UL(1) << (VA_BITS - 1)) - 1)
74 
75 #ifdef __ASSEMBLY__
76 
77 #include <asm/alternative.h>
78 #include <asm/cpufeature.h>
79 
80 /*
81  * Convert a kernel VA into a HYP VA.
82  * reg: VA to be converted.
83  *
84  * This generates the following sequences:
85  * - High mask:
86  *		and x0, x0, #HYP_PAGE_OFFSET_HIGH_MASK
87  *		nop
88  * - Low mask:
89  *		and x0, x0, #HYP_PAGE_OFFSET_HIGH_MASK
90  *		and x0, x0, #HYP_PAGE_OFFSET_LOW_MASK
91  * - VHE:
92  *		nop
93  *		nop
94  *
95  * The "low mask" version works because the mask is a strict subset of
96  * the "high mask", hence performing the first mask for nothing.
97  * Should be completely invisible on any viable CPU.
98  */
99 .macro kern_hyp_va	reg
100 alternative_if_not ARM64_HAS_VIRT_HOST_EXTN
101 	and     \reg, \reg, #HYP_PAGE_OFFSET_HIGH_MASK
102 alternative_else_nop_endif
103 alternative_if ARM64_HYP_OFFSET_LOW
104 	and     \reg, \reg, #HYP_PAGE_OFFSET_LOW_MASK
105 alternative_else_nop_endif
106 .endm
107 
108 #else
109 
110 #include <asm/pgalloc.h>
111 #include <asm/cachetype.h>
112 #include <asm/cacheflush.h>
113 #include <asm/mmu_context.h>
114 #include <asm/pgtable.h>
115 
116 static inline unsigned long __kern_hyp_va(unsigned long v)
117 {
118 	asm volatile(ALTERNATIVE("and %0, %0, %1",
119 				 "nop",
120 				 ARM64_HAS_VIRT_HOST_EXTN)
121 		     : "+r" (v)
122 		     : "i" (HYP_PAGE_OFFSET_HIGH_MASK));
123 	asm volatile(ALTERNATIVE("nop",
124 				 "and %0, %0, %1",
125 				 ARM64_HYP_OFFSET_LOW)
126 		     : "+r" (v)
127 		     : "i" (HYP_PAGE_OFFSET_LOW_MASK));
128 	return v;
129 }
130 
131 #define kern_hyp_va(v) 	((typeof(v))(__kern_hyp_va((unsigned long)(v))))
132 
133 /*
134  * We currently only support a 40bit IPA.
135  */
136 #define KVM_PHYS_SHIFT	(40)
137 #define KVM_PHYS_SIZE	(1UL << KVM_PHYS_SHIFT)
138 #define KVM_PHYS_MASK	(KVM_PHYS_SIZE - 1UL)
139 
140 #include <asm/stage2_pgtable.h>
141 
142 int create_hyp_mappings(void *from, void *to, pgprot_t prot);
143 int create_hyp_io_mappings(void *from, void *to, phys_addr_t);
144 void free_hyp_pgds(void);
145 
146 void stage2_unmap_vm(struct kvm *kvm);
147 int kvm_alloc_stage2_pgd(struct kvm *kvm);
148 void kvm_free_stage2_pgd(struct kvm *kvm);
149 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
150 			  phys_addr_t pa, unsigned long size, bool writable);
151 
152 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
153 
154 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
155 
156 phys_addr_t kvm_mmu_get_httbr(void);
157 phys_addr_t kvm_get_idmap_vector(void);
158 phys_addr_t kvm_get_idmap_start(void);
159 int kvm_mmu_init(void);
160 void kvm_clear_hyp_idmap(void);
161 
162 #define	kvm_set_pte(ptep, pte)		set_pte(ptep, pte)
163 #define	kvm_set_pmd(pmdp, pmd)		set_pmd(pmdp, pmd)
164 
165 static inline pte_t kvm_s2pte_mkwrite(pte_t pte)
166 {
167 	pte_val(pte) |= PTE_S2_RDWR;
168 	return pte;
169 }
170 
171 static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd)
172 {
173 	pmd_val(pmd) |= PMD_S2_RDWR;
174 	return pmd;
175 }
176 
177 static inline void kvm_set_s2pte_readonly(pte_t *pte)
178 {
179 	pteval_t pteval;
180 	unsigned long tmp;
181 
182 	asm volatile("//	kvm_set_s2pte_readonly\n"
183 	"	prfm	pstl1strm, %2\n"
184 	"1:	ldxr	%0, %2\n"
185 	"	and	%0, %0, %3		// clear PTE_S2_RDWR\n"
186 	"	orr	%0, %0, %4		// set PTE_S2_RDONLY\n"
187 	"	stxr	%w1, %0, %2\n"
188 	"	cbnz	%w1, 1b\n"
189 	: "=&r" (pteval), "=&r" (tmp), "+Q" (pte_val(*pte))
190 	: "L" (~PTE_S2_RDWR), "L" (PTE_S2_RDONLY));
191 }
192 
193 static inline bool kvm_s2pte_readonly(pte_t *pte)
194 {
195 	return (pte_val(*pte) & PTE_S2_RDWR) == PTE_S2_RDONLY;
196 }
197 
198 static inline void kvm_set_s2pmd_readonly(pmd_t *pmd)
199 {
200 	kvm_set_s2pte_readonly((pte_t *)pmd);
201 }
202 
203 static inline bool kvm_s2pmd_readonly(pmd_t *pmd)
204 {
205 	return kvm_s2pte_readonly((pte_t *)pmd);
206 }
207 
208 static inline bool kvm_page_empty(void *ptr)
209 {
210 	struct page *ptr_page = virt_to_page(ptr);
211 	return page_count(ptr_page) == 1;
212 }
213 
214 #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
215 
216 #ifdef __PAGETABLE_PMD_FOLDED
217 #define hyp_pmd_table_empty(pmdp) (0)
218 #else
219 #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
220 #endif
221 
222 #ifdef __PAGETABLE_PUD_FOLDED
223 #define hyp_pud_table_empty(pudp) (0)
224 #else
225 #define hyp_pud_table_empty(pudp) kvm_page_empty(pudp)
226 #endif
227 
228 struct kvm;
229 
230 #define kvm_flush_dcache_to_poc(a,l)	__flush_dcache_area((a), (l))
231 
232 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
233 {
234 	return (vcpu_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
235 }
236 
237 static inline void __coherent_cache_guest_page(struct kvm_vcpu *vcpu,
238 					       kvm_pfn_t pfn,
239 					       unsigned long size)
240 {
241 	void *va = page_address(pfn_to_page(pfn));
242 
243 	kvm_flush_dcache_to_poc(va, size);
244 
245 	if (!icache_is_aliasing()) {		/* PIPT */
246 		flush_icache_range((unsigned long)va,
247 				   (unsigned long)va + size);
248 	} else if (!icache_is_aivivt()) {	/* non ASID-tagged VIVT */
249 		/* any kind of VIPT cache */
250 		__flush_icache_all();
251 	}
252 }
253 
254 static inline void __kvm_flush_dcache_pte(pte_t pte)
255 {
256 	struct page *page = pte_page(pte);
257 	kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE);
258 }
259 
260 static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
261 {
262 	struct page *page = pmd_page(pmd);
263 	kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE);
264 }
265 
266 static inline void __kvm_flush_dcache_pud(pud_t pud)
267 {
268 	struct page *page = pud_page(pud);
269 	kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE);
270 }
271 
272 #define kvm_virt_to_phys(x)		__pa_symbol(x)
273 
274 void kvm_set_way_flush(struct kvm_vcpu *vcpu);
275 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
276 
277 static inline bool __kvm_cpu_uses_extended_idmap(void)
278 {
279 	return __cpu_uses_extended_idmap();
280 }
281 
282 static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
283 				       pgd_t *hyp_pgd,
284 				       pgd_t *merged_hyp_pgd,
285 				       unsigned long hyp_idmap_start)
286 {
287 	int idmap_idx;
288 
289 	/*
290 	 * Use the first entry to access the HYP mappings. It is
291 	 * guaranteed to be free, otherwise we wouldn't use an
292 	 * extended idmap.
293 	 */
294 	VM_BUG_ON(pgd_val(merged_hyp_pgd[0]));
295 	merged_hyp_pgd[0] = __pgd(__pa(hyp_pgd) | PMD_TYPE_TABLE);
296 
297 	/*
298 	 * Create another extended level entry that points to the boot HYP map,
299 	 * which contains an ID mapping of the HYP init code. We essentially
300 	 * merge the boot and runtime HYP maps by doing so, but they don't
301 	 * overlap anyway, so this is fine.
302 	 */
303 	idmap_idx = hyp_idmap_start >> VA_BITS;
304 	VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx]));
305 	merged_hyp_pgd[idmap_idx] = __pgd(__pa(boot_hyp_pgd) | PMD_TYPE_TABLE);
306 }
307 
308 static inline unsigned int kvm_get_vmid_bits(void)
309 {
310 	int reg = read_system_reg(SYS_ID_AA64MMFR1_EL1);
311 
312 	return (cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR1_VMIDBITS_SHIFT) == 2) ? 16 : 8;
313 }
314 
315 #endif /* __ASSEMBLY__ */
316 #endif /* __ARM64_KVM_MMU_H__ */
317