xref: /openbmc/linux/arch/arm64/include/asm/kvm_mmu.h (revision 32c2e6dd)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #ifndef __ARM64_KVM_MMU_H__
8 #define __ARM64_KVM_MMU_H__
9 
10 #include <asm/page.h>
11 #include <asm/memory.h>
12 #include <asm/mmu.h>
13 #include <asm/cpufeature.h>
14 
15 /*
16  * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
17  * "negative" addresses. This makes it impossible to directly share
18  * mappings with the kernel.
19  *
20  * Instead, give the HYP mode its own VA region at a fixed offset from
21  * the kernel by just masking the top bits (which are all ones for a
22  * kernel address). We need to find out how many bits to mask.
23  *
24  * We want to build a set of page tables that cover both parts of the
25  * idmap (the trampoline page used to initialize EL2), and our normal
26  * runtime VA space, at the same time.
27  *
28  * Given that the kernel uses VA_BITS for its entire address space,
29  * and that half of that space (VA_BITS - 1) is used for the linear
30  * mapping, we can also limit the EL2 space to (VA_BITS - 1).
31  *
32  * The main question is "Within the VA_BITS space, does EL2 use the
33  * top or the bottom half of that space to shadow the kernel's linear
34  * mapping?". As we need to idmap the trampoline page, this is
35  * determined by the range in which this page lives.
36  *
37  * If the page is in the bottom half, we have to use the top half. If
38  * the page is in the top half, we have to use the bottom half:
39  *
40  * T = __pa_symbol(__hyp_idmap_text_start)
41  * if (T & BIT(VA_BITS - 1))
42  *	HYP_VA_MIN = 0  //idmap in upper half
43  * else
44  *	HYP_VA_MIN = 1 << (VA_BITS - 1)
45  * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
46  *
47  * When using VHE, there are no separate hyp mappings and all KVM
48  * functionality is already mapped as part of the main kernel
49  * mappings, and none of this applies in that case.
50  */
51 
52 #ifdef __ASSEMBLY__
53 
54 #include <asm/alternative.h>
55 
56 /*
57  * Convert a kernel VA into a HYP VA.
58  * reg: VA to be converted.
59  *
60  * The actual code generation takes place in kvm_update_va_mask, and
61  * the instructions below are only there to reserve the space and
62  * perform the register allocation (kvm_update_va_mask uses the
63  * specific registers encoded in the instructions).
64  */
65 .macro kern_hyp_va	reg
66 alternative_cb kvm_update_va_mask
67 	and     \reg, \reg, #1		/* mask with va_mask */
68 	ror	\reg, \reg, #1		/* rotate to the first tag bit */
69 	add	\reg, \reg, #0		/* insert the low 12 bits of the tag */
70 	add	\reg, \reg, #0, lsl 12	/* insert the top 12 bits of the tag */
71 	ror	\reg, \reg, #63		/* rotate back */
72 alternative_cb_end
73 .endm
74 
75 /*
76  * Convert a hypervisor VA to a PA
77  * reg: hypervisor address to be converted in place
78  * tmp: temporary register
79  */
80 .macro hyp_pa reg, tmp
81 	ldr_l	\tmp, hyp_physvirt_offset
82 	add	\reg, \reg, \tmp
83 .endm
84 
85 /*
86  * Convert a hypervisor VA to a kernel image address
87  * reg: hypervisor address to be converted in place
88  * tmp: temporary register
89  *
90  * The actual code generation takes place in kvm_get_kimage_voffset, and
91  * the instructions below are only there to reserve the space and
92  * perform the register allocation (kvm_get_kimage_voffset uses the
93  * specific registers encoded in the instructions).
94  */
95 .macro hyp_kimg_va reg, tmp
96 	/* Convert hyp VA -> PA. */
97 	hyp_pa	\reg, \tmp
98 
99 	/* Load kimage_voffset. */
100 alternative_cb kvm_get_kimage_voffset
101 	movz	\tmp, #0
102 	movk	\tmp, #0, lsl #16
103 	movk	\tmp, #0, lsl #32
104 	movk	\tmp, #0, lsl #48
105 alternative_cb_end
106 
107 	/* Convert PA -> kimg VA. */
108 	add	\reg, \reg, \tmp
109 .endm
110 
111 #else
112 
113 #include <linux/pgtable.h>
114 #include <asm/pgalloc.h>
115 #include <asm/cache.h>
116 #include <asm/cacheflush.h>
117 #include <asm/mmu_context.h>
118 
119 void kvm_update_va_mask(struct alt_instr *alt,
120 			__le32 *origptr, __le32 *updptr, int nr_inst);
121 void kvm_compute_layout(void);
122 void kvm_apply_hyp_relocations(void);
123 
124 static __always_inline unsigned long __kern_hyp_va(unsigned long v)
125 {
126 	asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n"
127 				    "ror %0, %0, #1\n"
128 				    "add %0, %0, #0\n"
129 				    "add %0, %0, #0, lsl 12\n"
130 				    "ror %0, %0, #63\n",
131 				    kvm_update_va_mask)
132 		     : "+r" (v));
133 	return v;
134 }
135 
136 #define kern_hyp_va(v) 	((typeof(v))(__kern_hyp_va((unsigned long)(v))))
137 
138 /*
139  * We currently support using a VM-specified IPA size. For backward
140  * compatibility, the default IPA size is fixed to 40bits.
141  */
142 #define KVM_PHYS_SHIFT	(40)
143 
144 #define kvm_phys_shift(kvm)		VTCR_EL2_IPA(kvm->arch.vtcr)
145 #define kvm_phys_size(kvm)		(_AC(1, ULL) << kvm_phys_shift(kvm))
146 #define kvm_phys_mask(kvm)		(kvm_phys_size(kvm) - _AC(1, ULL))
147 
148 #include <asm/kvm_pgtable.h>
149 #include <asm/stage2_pgtable.h>
150 
151 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot);
152 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
153 			   void __iomem **kaddr,
154 			   void __iomem **haddr);
155 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
156 			     void **haddr);
157 void free_hyp_pgds(void);
158 
159 void stage2_unmap_vm(struct kvm *kvm);
160 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu);
161 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu);
162 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
163 			  phys_addr_t pa, unsigned long size, bool writable);
164 
165 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu);
166 
167 phys_addr_t kvm_mmu_get_httbr(void);
168 phys_addr_t kvm_get_idmap_vector(void);
169 int kvm_mmu_init(void);
170 
171 struct kvm;
172 
173 #define kvm_flush_dcache_to_poc(a,l)	__flush_dcache_area((a), (l))
174 
175 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
176 {
177 	return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
178 }
179 
180 static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
181 {
182 	void *va = page_address(pfn_to_page(pfn));
183 
184 	/*
185 	 * With FWB, we ensure that the guest always accesses memory using
186 	 * cacheable attributes, and we don't have to clean to PoC when
187 	 * faulting in pages. Furthermore, FWB implies IDC, so cleaning to
188 	 * PoU is not required either in this case.
189 	 */
190 	if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
191 		return;
192 
193 	kvm_flush_dcache_to_poc(va, size);
194 }
195 
196 static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn,
197 						  unsigned long size)
198 {
199 	if (icache_is_aliasing()) {
200 		/* any kind of VIPT cache */
201 		__flush_icache_all();
202 	} else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
203 		/* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
204 		void *va = page_address(pfn_to_page(pfn));
205 
206 		invalidate_icache_range((unsigned long)va,
207 					(unsigned long)va + size);
208 	}
209 }
210 
211 void kvm_set_way_flush(struct kvm_vcpu *vcpu);
212 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
213 
214 static inline unsigned int kvm_get_vmid_bits(void)
215 {
216 	int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
217 
218 	return get_vmid_bits(reg);
219 }
220 
221 /*
222  * We are not in the kvm->srcu critical section most of the time, so we take
223  * the SRCU read lock here. Since we copy the data from the user page, we
224  * can immediately drop the lock again.
225  */
226 static inline int kvm_read_guest_lock(struct kvm *kvm,
227 				      gpa_t gpa, void *data, unsigned long len)
228 {
229 	int srcu_idx = srcu_read_lock(&kvm->srcu);
230 	int ret = kvm_read_guest(kvm, gpa, data, len);
231 
232 	srcu_read_unlock(&kvm->srcu, srcu_idx);
233 
234 	return ret;
235 }
236 
237 static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa,
238 				       const void *data, unsigned long len)
239 {
240 	int srcu_idx = srcu_read_lock(&kvm->srcu);
241 	int ret = kvm_write_guest(kvm, gpa, data, len);
242 
243 	srcu_read_unlock(&kvm->srcu, srcu_idx);
244 
245 	return ret;
246 }
247 
248 #define kvm_phys_to_vttbr(addr)		phys_to_ttbr(addr)
249 
250 static __always_inline u64 kvm_get_vttbr(struct kvm_s2_mmu *mmu)
251 {
252 	struct kvm_vmid *vmid = &mmu->vmid;
253 	u64 vmid_field, baddr;
254 	u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0;
255 
256 	baddr = mmu->pgd_phys;
257 	vmid_field = (u64)vmid->vmid << VTTBR_VMID_SHIFT;
258 	return kvm_phys_to_vttbr(baddr) | vmid_field | cnp;
259 }
260 
261 /*
262  * Must be called from hyp code running at EL2 with an updated VTTBR
263  * and interrupts disabled.
264  */
265 static __always_inline void __load_guest_stage2(struct kvm_s2_mmu *mmu)
266 {
267 	write_sysreg(kern_hyp_va(mmu->kvm)->arch.vtcr, vtcr_el2);
268 	write_sysreg(kvm_get_vttbr(mmu), vttbr_el2);
269 
270 	/*
271 	 * ARM errata 1165522 and 1530923 require the actual execution of the
272 	 * above before we can switch to the EL1/EL0 translation regime used by
273 	 * the guest.
274 	 */
275 	asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT));
276 }
277 
278 #endif /* __ASSEMBLY__ */
279 #endif /* __ARM64_KVM_MMU_H__ */
280