xref: /openbmc/linux/arch/arm64/include/asm/kvm_mmu.h (revision 2d972b6a)
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #ifndef __ARM64_KVM_MMU_H__
19 #define __ARM64_KVM_MMU_H__
20 
21 #include <asm/page.h>
22 #include <asm/memory.h>
23 #include <asm/cpufeature.h>
24 
25 /*
26  * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
27  * "negative" addresses. This makes it impossible to directly share
28  * mappings with the kernel.
29  *
30  * Instead, give the HYP mode its own VA region at a fixed offset from
31  * the kernel by just masking the top bits (which are all ones for a
32  * kernel address). We need to find out how many bits to mask.
33  *
34  * We want to build a set of page tables that cover both parts of the
35  * idmap (the trampoline page used to initialize EL2), and our normal
36  * runtime VA space, at the same time.
37  *
38  * Given that the kernel uses VA_BITS for its entire address space,
39  * and that half of that space (VA_BITS - 1) is used for the linear
40  * mapping, we can also limit the EL2 space to (VA_BITS - 1).
41  *
42  * The main question is "Within the VA_BITS space, does EL2 use the
43  * top or the bottom half of that space to shadow the kernel's linear
44  * mapping?". As we need to idmap the trampoline page, this is
45  * determined by the range in which this page lives.
46  *
47  * If the page is in the bottom half, we have to use the top half. If
48  * the page is in the top half, we have to use the bottom half:
49  *
50  * T = __pa_symbol(__hyp_idmap_text_start)
51  * if (T & BIT(VA_BITS - 1))
52  *	HYP_VA_MIN = 0  //idmap in upper half
53  * else
54  *	HYP_VA_MIN = 1 << (VA_BITS - 1)
55  * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
56  *
57  * This of course assumes that the trampoline page exists within the
58  * VA_BITS range. If it doesn't, then it means we're in the odd case
59  * where the kernel idmap (as well as HYP) uses more levels than the
60  * kernel runtime page tables (as seen when the kernel is configured
61  * for 4k pages, 39bits VA, and yet memory lives just above that
62  * limit, forcing the idmap to use 4 levels of page tables while the
63  * kernel itself only uses 3). In this particular case, it doesn't
64  * matter which side of VA_BITS we use, as we're guaranteed not to
65  * conflict with anything.
66  *
67  * When using VHE, there are no separate hyp mappings and all KVM
68  * functionality is already mapped as part of the main kernel
69  * mappings, and none of this applies in that case.
70  */
71 
72 #ifdef __ASSEMBLY__
73 
74 #include <asm/alternative.h>
75 #include <asm/cpufeature.h>
76 
77 /*
78  * Convert a kernel VA into a HYP VA.
79  * reg: VA to be converted.
80  *
81  * The actual code generation takes place in kvm_update_va_mask, and
82  * the instructions below are only there to reserve the space and
83  * perform the register allocation (kvm_update_va_mask uses the
84  * specific registers encoded in the instructions).
85  */
86 .macro kern_hyp_va	reg
87 alternative_cb kvm_update_va_mask
88 	and     \reg, \reg, #1		/* mask with va_mask */
89 	ror	\reg, \reg, #1		/* rotate to the first tag bit */
90 	add	\reg, \reg, #0		/* insert the low 12 bits of the tag */
91 	add	\reg, \reg, #0, lsl 12	/* insert the top 12 bits of the tag */
92 	ror	\reg, \reg, #63		/* rotate back */
93 alternative_cb_end
94 .endm
95 
96 #else
97 
98 #include <asm/pgalloc.h>
99 #include <asm/cache.h>
100 #include <asm/cacheflush.h>
101 #include <asm/mmu_context.h>
102 #include <asm/pgtable.h>
103 
104 void kvm_update_va_mask(struct alt_instr *alt,
105 			__le32 *origptr, __le32 *updptr, int nr_inst);
106 
107 static inline unsigned long __kern_hyp_va(unsigned long v)
108 {
109 	asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n"
110 				    "ror %0, %0, #1\n"
111 				    "add %0, %0, #0\n"
112 				    "add %0, %0, #0, lsl 12\n"
113 				    "ror %0, %0, #63\n",
114 				    kvm_update_va_mask)
115 		     : "+r" (v));
116 	return v;
117 }
118 
119 #define kern_hyp_va(v) 	((typeof(v))(__kern_hyp_va((unsigned long)(v))))
120 
121 /*
122  * Obtain the PC-relative address of a kernel symbol
123  * s: symbol
124  *
125  * The goal of this macro is to return a symbol's address based on a
126  * PC-relative computation, as opposed to a loading the VA from a
127  * constant pool or something similar. This works well for HYP, as an
128  * absolute VA is guaranteed to be wrong. Only use this if trying to
129  * obtain the address of a symbol (i.e. not something you obtained by
130  * following a pointer).
131  */
132 #define hyp_symbol_addr(s)						\
133 	({								\
134 		typeof(s) *addr;					\
135 		asm("adrp	%0, %1\n"				\
136 		    "add	%0, %0, :lo12:%1\n"			\
137 		    : "=r" (addr) : "S" (&s));				\
138 		addr;							\
139 	})
140 
141 /*
142  * We currently only support a 40bit IPA.
143  */
144 #define KVM_PHYS_SHIFT	(40)
145 #define KVM_PHYS_SIZE	(1UL << KVM_PHYS_SHIFT)
146 #define KVM_PHYS_MASK	(KVM_PHYS_SIZE - 1UL)
147 
148 #include <asm/stage2_pgtable.h>
149 
150 int create_hyp_mappings(void *from, void *to, pgprot_t prot);
151 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
152 			   void __iomem **kaddr,
153 			   void __iomem **haddr);
154 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
155 			     void **haddr);
156 void free_hyp_pgds(void);
157 
158 void stage2_unmap_vm(struct kvm *kvm);
159 int kvm_alloc_stage2_pgd(struct kvm *kvm);
160 void kvm_free_stage2_pgd(struct kvm *kvm);
161 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
162 			  phys_addr_t pa, unsigned long size, bool writable);
163 
164 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
165 
166 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
167 
168 phys_addr_t kvm_mmu_get_httbr(void);
169 phys_addr_t kvm_get_idmap_vector(void);
170 int kvm_mmu_init(void);
171 void kvm_clear_hyp_idmap(void);
172 
173 #define	kvm_set_pte(ptep, pte)		set_pte(ptep, pte)
174 #define	kvm_set_pmd(pmdp, pmd)		set_pmd(pmdp, pmd)
175 
176 static inline pte_t kvm_s2pte_mkwrite(pte_t pte)
177 {
178 	pte_val(pte) |= PTE_S2_RDWR;
179 	return pte;
180 }
181 
182 static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd)
183 {
184 	pmd_val(pmd) |= PMD_S2_RDWR;
185 	return pmd;
186 }
187 
188 static inline pte_t kvm_s2pte_mkexec(pte_t pte)
189 {
190 	pte_val(pte) &= ~PTE_S2_XN;
191 	return pte;
192 }
193 
194 static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd)
195 {
196 	pmd_val(pmd) &= ~PMD_S2_XN;
197 	return pmd;
198 }
199 
200 static inline void kvm_set_s2pte_readonly(pte_t *ptep)
201 {
202 	pteval_t old_pteval, pteval;
203 
204 	pteval = READ_ONCE(pte_val(*ptep));
205 	do {
206 		old_pteval = pteval;
207 		pteval &= ~PTE_S2_RDWR;
208 		pteval |= PTE_S2_RDONLY;
209 		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
210 	} while (pteval != old_pteval);
211 }
212 
213 static inline bool kvm_s2pte_readonly(pte_t *ptep)
214 {
215 	return (READ_ONCE(pte_val(*ptep)) & PTE_S2_RDWR) == PTE_S2_RDONLY;
216 }
217 
218 static inline bool kvm_s2pte_exec(pte_t *ptep)
219 {
220 	return !(READ_ONCE(pte_val(*ptep)) & PTE_S2_XN);
221 }
222 
223 static inline void kvm_set_s2pmd_readonly(pmd_t *pmdp)
224 {
225 	kvm_set_s2pte_readonly((pte_t *)pmdp);
226 }
227 
228 static inline bool kvm_s2pmd_readonly(pmd_t *pmdp)
229 {
230 	return kvm_s2pte_readonly((pte_t *)pmdp);
231 }
232 
233 static inline bool kvm_s2pmd_exec(pmd_t *pmdp)
234 {
235 	return !(READ_ONCE(pmd_val(*pmdp)) & PMD_S2_XN);
236 }
237 
238 static inline bool kvm_page_empty(void *ptr)
239 {
240 	struct page *ptr_page = virt_to_page(ptr);
241 	return page_count(ptr_page) == 1;
242 }
243 
244 #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
245 
246 #ifdef __PAGETABLE_PMD_FOLDED
247 #define hyp_pmd_table_empty(pmdp) (0)
248 #else
249 #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
250 #endif
251 
252 #ifdef __PAGETABLE_PUD_FOLDED
253 #define hyp_pud_table_empty(pudp) (0)
254 #else
255 #define hyp_pud_table_empty(pudp) kvm_page_empty(pudp)
256 #endif
257 
258 struct kvm;
259 
260 #define kvm_flush_dcache_to_poc(a,l)	__flush_dcache_area((a), (l))
261 
262 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
263 {
264 	return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
265 }
266 
267 static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
268 {
269 	void *va = page_address(pfn_to_page(pfn));
270 
271 	kvm_flush_dcache_to_poc(va, size);
272 }
273 
274 static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn,
275 						  unsigned long size)
276 {
277 	if (icache_is_aliasing()) {
278 		/* any kind of VIPT cache */
279 		__flush_icache_all();
280 	} else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
281 		/* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
282 		void *va = page_address(pfn_to_page(pfn));
283 
284 		invalidate_icache_range((unsigned long)va,
285 					(unsigned long)va + size);
286 	}
287 }
288 
289 static inline void __kvm_flush_dcache_pte(pte_t pte)
290 {
291 	struct page *page = pte_page(pte);
292 	kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE);
293 }
294 
295 static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
296 {
297 	struct page *page = pmd_page(pmd);
298 	kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE);
299 }
300 
301 static inline void __kvm_flush_dcache_pud(pud_t pud)
302 {
303 	struct page *page = pud_page(pud);
304 	kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE);
305 }
306 
307 #define kvm_virt_to_phys(x)		__pa_symbol(x)
308 
309 void kvm_set_way_flush(struct kvm_vcpu *vcpu);
310 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
311 
312 static inline bool __kvm_cpu_uses_extended_idmap(void)
313 {
314 	return __cpu_uses_extended_idmap_level();
315 }
316 
317 static inline unsigned long __kvm_idmap_ptrs_per_pgd(void)
318 {
319 	return idmap_ptrs_per_pgd;
320 }
321 
322 /*
323  * Can't use pgd_populate here, because the extended idmap adds an extra level
324  * above CONFIG_PGTABLE_LEVELS (which is 2 or 3 if we're using the extended
325  * idmap), and pgd_populate is only available if CONFIG_PGTABLE_LEVELS = 4.
326  */
327 static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
328 				       pgd_t *hyp_pgd,
329 				       pgd_t *merged_hyp_pgd,
330 				       unsigned long hyp_idmap_start)
331 {
332 	int idmap_idx;
333 	u64 pgd_addr;
334 
335 	/*
336 	 * Use the first entry to access the HYP mappings. It is
337 	 * guaranteed to be free, otherwise we wouldn't use an
338 	 * extended idmap.
339 	 */
340 	VM_BUG_ON(pgd_val(merged_hyp_pgd[0]));
341 	pgd_addr = __phys_to_pgd_val(__pa(hyp_pgd));
342 	merged_hyp_pgd[0] = __pgd(pgd_addr | PMD_TYPE_TABLE);
343 
344 	/*
345 	 * Create another extended level entry that points to the boot HYP map,
346 	 * which contains an ID mapping of the HYP init code. We essentially
347 	 * merge the boot and runtime HYP maps by doing so, but they don't
348 	 * overlap anyway, so this is fine.
349 	 */
350 	idmap_idx = hyp_idmap_start >> VA_BITS;
351 	VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx]));
352 	pgd_addr = __phys_to_pgd_val(__pa(boot_hyp_pgd));
353 	merged_hyp_pgd[idmap_idx] = __pgd(pgd_addr | PMD_TYPE_TABLE);
354 }
355 
356 static inline unsigned int kvm_get_vmid_bits(void)
357 {
358 	int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
359 
360 	return (cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR1_VMIDBITS_SHIFT) == 2) ? 16 : 8;
361 }
362 
363 #ifdef CONFIG_KVM_INDIRECT_VECTORS
364 /*
365  * EL2 vectors can be mapped and rerouted in a number of ways,
366  * depending on the kernel configuration and CPU present:
367  *
368  * - If the CPU has the ARM64_HARDEN_BRANCH_PREDICTOR cap, the
369  *   hardening sequence is placed in one of the vector slots, which is
370  *   executed before jumping to the real vectors.
371  *
372  * - If the CPU has both the ARM64_HARDEN_EL2_VECTORS cap and the
373  *   ARM64_HARDEN_BRANCH_PREDICTOR cap, the slot containing the
374  *   hardening sequence is mapped next to the idmap page, and executed
375  *   before jumping to the real vectors.
376  *
377  * - If the CPU only has the ARM64_HARDEN_EL2_VECTORS cap, then an
378  *   empty slot is selected, mapped next to the idmap page, and
379  *   executed before jumping to the real vectors.
380  *
381  * Note that ARM64_HARDEN_EL2_VECTORS is somewhat incompatible with
382  * VHE, as we don't have hypervisor-specific mappings. If the system
383  * is VHE and yet selects this capability, it will be ignored.
384  */
385 #include <asm/mmu.h>
386 
387 extern void *__kvm_bp_vect_base;
388 extern int __kvm_harden_el2_vector_slot;
389 
390 static inline void *kvm_get_hyp_vector(void)
391 {
392 	struct bp_hardening_data *data = arm64_get_bp_hardening_data();
393 	void *vect = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
394 	int slot = -1;
395 
396 	if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR) && data->fn) {
397 		vect = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs_start));
398 		slot = data->hyp_vectors_slot;
399 	}
400 
401 	if (this_cpu_has_cap(ARM64_HARDEN_EL2_VECTORS) && !has_vhe()) {
402 		vect = __kvm_bp_vect_base;
403 		if (slot == -1)
404 			slot = __kvm_harden_el2_vector_slot;
405 	}
406 
407 	if (slot != -1)
408 		vect += slot * SZ_2K;
409 
410 	return vect;
411 }
412 
413 /*  This is only called on a !VHE system */
414 static inline int kvm_map_vectors(void)
415 {
416 	/*
417 	 * HBP  = ARM64_HARDEN_BRANCH_PREDICTOR
418 	 * HEL2 = ARM64_HARDEN_EL2_VECTORS
419 	 *
420 	 * !HBP + !HEL2 -> use direct vectors
421 	 *  HBP + !HEL2 -> use hardened vectors in place
422 	 * !HBP +  HEL2 -> allocate one vector slot and use exec mapping
423 	 *  HBP +  HEL2 -> use hardened vertors and use exec mapping
424 	 */
425 	if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR)) {
426 		__kvm_bp_vect_base = kvm_ksym_ref(__bp_harden_hyp_vecs_start);
427 		__kvm_bp_vect_base = kern_hyp_va(__kvm_bp_vect_base);
428 	}
429 
430 	if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) {
431 		phys_addr_t vect_pa = __pa_symbol(__bp_harden_hyp_vecs_start);
432 		unsigned long size = (__bp_harden_hyp_vecs_end -
433 				      __bp_harden_hyp_vecs_start);
434 
435 		/*
436 		 * Always allocate a spare vector slot, as we don't
437 		 * know yet which CPUs have a BP hardening slot that
438 		 * we can reuse.
439 		 */
440 		__kvm_harden_el2_vector_slot = atomic_inc_return(&arm64_el2_vector_last_slot);
441 		BUG_ON(__kvm_harden_el2_vector_slot >= BP_HARDEN_EL2_SLOTS);
442 		return create_hyp_exec_mappings(vect_pa, size,
443 						&__kvm_bp_vect_base);
444 	}
445 
446 	return 0;
447 }
448 #else
449 static inline void *kvm_get_hyp_vector(void)
450 {
451 	return kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
452 }
453 
454 static inline int kvm_map_vectors(void)
455 {
456 	return 0;
457 }
458 #endif
459 
460 #define kvm_phys_to_vttbr(addr)		phys_to_ttbr(addr)
461 
462 #endif /* __ASSEMBLY__ */
463 #endif /* __ARM64_KVM_MMU_H__ */
464