1 /* 2 * Copyright (C) 2012,2013 - ARM Ltd 3 * Author: Marc Zyngier <marc.zyngier@arm.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #ifndef __ARM64_KVM_MMU_H__ 19 #define __ARM64_KVM_MMU_H__ 20 21 #include <asm/page.h> 22 #include <asm/memory.h> 23 #include <asm/cpufeature.h> 24 25 /* 26 * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express 27 * "negative" addresses. This makes it impossible to directly share 28 * mappings with the kernel. 29 * 30 * Instead, give the HYP mode its own VA region at a fixed offset from 31 * the kernel by just masking the top bits (which are all ones for a 32 * kernel address). We need to find out how many bits to mask. 33 * 34 * We want to build a set of page tables that cover both parts of the 35 * idmap (the trampoline page used to initialize EL2), and our normal 36 * runtime VA space, at the same time. 37 * 38 * Given that the kernel uses VA_BITS for its entire address space, 39 * and that half of that space (VA_BITS - 1) is used for the linear 40 * mapping, we can also limit the EL2 space to (VA_BITS - 1). 41 * 42 * The main question is "Within the VA_BITS space, does EL2 use the 43 * top or the bottom half of that space to shadow the kernel's linear 44 * mapping?". As we need to idmap the trampoline page, this is 45 * determined by the range in which this page lives. 46 * 47 * If the page is in the bottom half, we have to use the top half. If 48 * the page is in the top half, we have to use the bottom half: 49 * 50 * T = __pa_symbol(__hyp_idmap_text_start) 51 * if (T & BIT(VA_BITS - 1)) 52 * HYP_VA_MIN = 0 //idmap in upper half 53 * else 54 * HYP_VA_MIN = 1 << (VA_BITS - 1) 55 * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1 56 * 57 * This of course assumes that the trampoline page exists within the 58 * VA_BITS range. If it doesn't, then it means we're in the odd case 59 * where the kernel idmap (as well as HYP) uses more levels than the 60 * kernel runtime page tables (as seen when the kernel is configured 61 * for 4k pages, 39bits VA, and yet memory lives just above that 62 * limit, forcing the idmap to use 4 levels of page tables while the 63 * kernel itself only uses 3). In this particular case, it doesn't 64 * matter which side of VA_BITS we use, as we're guaranteed not to 65 * conflict with anything. 66 * 67 * When using VHE, there are no separate hyp mappings and all KVM 68 * functionality is already mapped as part of the main kernel 69 * mappings, and none of this applies in that case. 70 */ 71 72 #ifdef __ASSEMBLY__ 73 74 #include <asm/alternative.h> 75 76 /* 77 * Convert a kernel VA into a HYP VA. 78 * reg: VA to be converted. 79 * 80 * The actual code generation takes place in kvm_update_va_mask, and 81 * the instructions below are only there to reserve the space and 82 * perform the register allocation (kvm_update_va_mask uses the 83 * specific registers encoded in the instructions). 84 */ 85 .macro kern_hyp_va reg 86 alternative_cb kvm_update_va_mask 87 and \reg, \reg, #1 /* mask with va_mask */ 88 ror \reg, \reg, #1 /* rotate to the first tag bit */ 89 add \reg, \reg, #0 /* insert the low 12 bits of the tag */ 90 add \reg, \reg, #0, lsl 12 /* insert the top 12 bits of the tag */ 91 ror \reg, \reg, #63 /* rotate back */ 92 alternative_cb_end 93 .endm 94 95 #else 96 97 #include <asm/pgalloc.h> 98 #include <asm/cache.h> 99 #include <asm/cacheflush.h> 100 #include <asm/mmu_context.h> 101 #include <asm/pgtable.h> 102 103 void kvm_update_va_mask(struct alt_instr *alt, 104 __le32 *origptr, __le32 *updptr, int nr_inst); 105 106 static inline unsigned long __kern_hyp_va(unsigned long v) 107 { 108 asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n" 109 "ror %0, %0, #1\n" 110 "add %0, %0, #0\n" 111 "add %0, %0, #0, lsl 12\n" 112 "ror %0, %0, #63\n", 113 kvm_update_va_mask) 114 : "+r" (v)); 115 return v; 116 } 117 118 #define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v)))) 119 120 /* 121 * Obtain the PC-relative address of a kernel symbol 122 * s: symbol 123 * 124 * The goal of this macro is to return a symbol's address based on a 125 * PC-relative computation, as opposed to a loading the VA from a 126 * constant pool or something similar. This works well for HYP, as an 127 * absolute VA is guaranteed to be wrong. Only use this if trying to 128 * obtain the address of a symbol (i.e. not something you obtained by 129 * following a pointer). 130 */ 131 #define hyp_symbol_addr(s) \ 132 ({ \ 133 typeof(s) *addr; \ 134 asm("adrp %0, %1\n" \ 135 "add %0, %0, :lo12:%1\n" \ 136 : "=r" (addr) : "S" (&s)); \ 137 addr; \ 138 }) 139 140 /* 141 * We currently only support a 40bit IPA. 142 */ 143 #define KVM_PHYS_SHIFT (40) 144 145 #define kvm_phys_shift(kvm) VTCR_EL2_IPA(kvm->arch.vtcr) 146 #define kvm_phys_size(kvm) (_AC(1, ULL) << kvm_phys_shift(kvm)) 147 #define kvm_phys_mask(kvm) (kvm_phys_size(kvm) - _AC(1, ULL)) 148 149 static inline bool kvm_page_empty(void *ptr) 150 { 151 struct page *ptr_page = virt_to_page(ptr); 152 return page_count(ptr_page) == 1; 153 } 154 155 #include <asm/stage2_pgtable.h> 156 157 int create_hyp_mappings(void *from, void *to, pgprot_t prot); 158 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, 159 void __iomem **kaddr, 160 void __iomem **haddr); 161 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, 162 void **haddr); 163 void free_hyp_pgds(void); 164 165 void stage2_unmap_vm(struct kvm *kvm); 166 int kvm_alloc_stage2_pgd(struct kvm *kvm); 167 void kvm_free_stage2_pgd(struct kvm *kvm); 168 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, 169 phys_addr_t pa, unsigned long size, bool writable); 170 171 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run); 172 173 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu); 174 175 phys_addr_t kvm_mmu_get_httbr(void); 176 phys_addr_t kvm_get_idmap_vector(void); 177 int kvm_mmu_init(void); 178 void kvm_clear_hyp_idmap(void); 179 180 #define kvm_mk_pmd(ptep) \ 181 __pmd(__phys_to_pmd_val(__pa(ptep)) | PMD_TYPE_TABLE) 182 #define kvm_mk_pud(pmdp) \ 183 __pud(__phys_to_pud_val(__pa(pmdp)) | PMD_TYPE_TABLE) 184 #define kvm_mk_pgd(pudp) \ 185 __pgd(__phys_to_pgd_val(__pa(pudp)) | PUD_TYPE_TABLE) 186 187 static inline pte_t kvm_s2pte_mkwrite(pte_t pte) 188 { 189 pte_val(pte) |= PTE_S2_RDWR; 190 return pte; 191 } 192 193 static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd) 194 { 195 pmd_val(pmd) |= PMD_S2_RDWR; 196 return pmd; 197 } 198 199 static inline pte_t kvm_s2pte_mkexec(pte_t pte) 200 { 201 pte_val(pte) &= ~PTE_S2_XN; 202 return pte; 203 } 204 205 static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd) 206 { 207 pmd_val(pmd) &= ~PMD_S2_XN; 208 return pmd; 209 } 210 211 static inline void kvm_set_s2pte_readonly(pte_t *ptep) 212 { 213 pteval_t old_pteval, pteval; 214 215 pteval = READ_ONCE(pte_val(*ptep)); 216 do { 217 old_pteval = pteval; 218 pteval &= ~PTE_S2_RDWR; 219 pteval |= PTE_S2_RDONLY; 220 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval); 221 } while (pteval != old_pteval); 222 } 223 224 static inline bool kvm_s2pte_readonly(pte_t *ptep) 225 { 226 return (READ_ONCE(pte_val(*ptep)) & PTE_S2_RDWR) == PTE_S2_RDONLY; 227 } 228 229 static inline bool kvm_s2pte_exec(pte_t *ptep) 230 { 231 return !(READ_ONCE(pte_val(*ptep)) & PTE_S2_XN); 232 } 233 234 static inline void kvm_set_s2pmd_readonly(pmd_t *pmdp) 235 { 236 kvm_set_s2pte_readonly((pte_t *)pmdp); 237 } 238 239 static inline bool kvm_s2pmd_readonly(pmd_t *pmdp) 240 { 241 return kvm_s2pte_readonly((pte_t *)pmdp); 242 } 243 244 static inline bool kvm_s2pmd_exec(pmd_t *pmdp) 245 { 246 return !(READ_ONCE(pmd_val(*pmdp)) & PMD_S2_XN); 247 } 248 249 #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep) 250 251 #ifdef __PAGETABLE_PMD_FOLDED 252 #define hyp_pmd_table_empty(pmdp) (0) 253 #else 254 #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp) 255 #endif 256 257 #ifdef __PAGETABLE_PUD_FOLDED 258 #define hyp_pud_table_empty(pudp) (0) 259 #else 260 #define hyp_pud_table_empty(pudp) kvm_page_empty(pudp) 261 #endif 262 263 struct kvm; 264 265 #define kvm_flush_dcache_to_poc(a,l) __flush_dcache_area((a), (l)) 266 267 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu) 268 { 269 return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101; 270 } 271 272 static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size) 273 { 274 void *va = page_address(pfn_to_page(pfn)); 275 276 /* 277 * With FWB, we ensure that the guest always accesses memory using 278 * cacheable attributes, and we don't have to clean to PoC when 279 * faulting in pages. Furthermore, FWB implies IDC, so cleaning to 280 * PoU is not required either in this case. 281 */ 282 if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) 283 return; 284 285 kvm_flush_dcache_to_poc(va, size); 286 } 287 288 static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn, 289 unsigned long size) 290 { 291 if (icache_is_aliasing()) { 292 /* any kind of VIPT cache */ 293 __flush_icache_all(); 294 } else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) { 295 /* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */ 296 void *va = page_address(pfn_to_page(pfn)); 297 298 invalidate_icache_range((unsigned long)va, 299 (unsigned long)va + size); 300 } 301 } 302 303 static inline void __kvm_flush_dcache_pte(pte_t pte) 304 { 305 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) { 306 struct page *page = pte_page(pte); 307 kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE); 308 } 309 } 310 311 static inline void __kvm_flush_dcache_pmd(pmd_t pmd) 312 { 313 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) { 314 struct page *page = pmd_page(pmd); 315 kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE); 316 } 317 } 318 319 static inline void __kvm_flush_dcache_pud(pud_t pud) 320 { 321 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) { 322 struct page *page = pud_page(pud); 323 kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE); 324 } 325 } 326 327 #define kvm_virt_to_phys(x) __pa_symbol(x) 328 329 void kvm_set_way_flush(struct kvm_vcpu *vcpu); 330 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled); 331 332 static inline bool __kvm_cpu_uses_extended_idmap(void) 333 { 334 return __cpu_uses_extended_idmap_level(); 335 } 336 337 static inline unsigned long __kvm_idmap_ptrs_per_pgd(void) 338 { 339 return idmap_ptrs_per_pgd; 340 } 341 342 /* 343 * Can't use pgd_populate here, because the extended idmap adds an extra level 344 * above CONFIG_PGTABLE_LEVELS (which is 2 or 3 if we're using the extended 345 * idmap), and pgd_populate is only available if CONFIG_PGTABLE_LEVELS = 4. 346 */ 347 static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd, 348 pgd_t *hyp_pgd, 349 pgd_t *merged_hyp_pgd, 350 unsigned long hyp_idmap_start) 351 { 352 int idmap_idx; 353 u64 pgd_addr; 354 355 /* 356 * Use the first entry to access the HYP mappings. It is 357 * guaranteed to be free, otherwise we wouldn't use an 358 * extended idmap. 359 */ 360 VM_BUG_ON(pgd_val(merged_hyp_pgd[0])); 361 pgd_addr = __phys_to_pgd_val(__pa(hyp_pgd)); 362 merged_hyp_pgd[0] = __pgd(pgd_addr | PMD_TYPE_TABLE); 363 364 /* 365 * Create another extended level entry that points to the boot HYP map, 366 * which contains an ID mapping of the HYP init code. We essentially 367 * merge the boot and runtime HYP maps by doing so, but they don't 368 * overlap anyway, so this is fine. 369 */ 370 idmap_idx = hyp_idmap_start >> VA_BITS; 371 VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx])); 372 pgd_addr = __phys_to_pgd_val(__pa(boot_hyp_pgd)); 373 merged_hyp_pgd[idmap_idx] = __pgd(pgd_addr | PMD_TYPE_TABLE); 374 } 375 376 static inline unsigned int kvm_get_vmid_bits(void) 377 { 378 int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 379 380 return (cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR1_VMIDBITS_SHIFT) == 2) ? 16 : 8; 381 } 382 383 /* 384 * We are not in the kvm->srcu critical section most of the time, so we take 385 * the SRCU read lock here. Since we copy the data from the user page, we 386 * can immediately drop the lock again. 387 */ 388 static inline int kvm_read_guest_lock(struct kvm *kvm, 389 gpa_t gpa, void *data, unsigned long len) 390 { 391 int srcu_idx = srcu_read_lock(&kvm->srcu); 392 int ret = kvm_read_guest(kvm, gpa, data, len); 393 394 srcu_read_unlock(&kvm->srcu, srcu_idx); 395 396 return ret; 397 } 398 399 #ifdef CONFIG_KVM_INDIRECT_VECTORS 400 /* 401 * EL2 vectors can be mapped and rerouted in a number of ways, 402 * depending on the kernel configuration and CPU present: 403 * 404 * - If the CPU has the ARM64_HARDEN_BRANCH_PREDICTOR cap, the 405 * hardening sequence is placed in one of the vector slots, which is 406 * executed before jumping to the real vectors. 407 * 408 * - If the CPU has both the ARM64_HARDEN_EL2_VECTORS cap and the 409 * ARM64_HARDEN_BRANCH_PREDICTOR cap, the slot containing the 410 * hardening sequence is mapped next to the idmap page, and executed 411 * before jumping to the real vectors. 412 * 413 * - If the CPU only has the ARM64_HARDEN_EL2_VECTORS cap, then an 414 * empty slot is selected, mapped next to the idmap page, and 415 * executed before jumping to the real vectors. 416 * 417 * Note that ARM64_HARDEN_EL2_VECTORS is somewhat incompatible with 418 * VHE, as we don't have hypervisor-specific mappings. If the system 419 * is VHE and yet selects this capability, it will be ignored. 420 */ 421 #include <asm/mmu.h> 422 423 extern void *__kvm_bp_vect_base; 424 extern int __kvm_harden_el2_vector_slot; 425 426 static inline void *kvm_get_hyp_vector(void) 427 { 428 struct bp_hardening_data *data = arm64_get_bp_hardening_data(); 429 void *vect = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); 430 int slot = -1; 431 432 if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR) && data->fn) { 433 vect = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs_start)); 434 slot = data->hyp_vectors_slot; 435 } 436 437 if (this_cpu_has_cap(ARM64_HARDEN_EL2_VECTORS) && !has_vhe()) { 438 vect = __kvm_bp_vect_base; 439 if (slot == -1) 440 slot = __kvm_harden_el2_vector_slot; 441 } 442 443 if (slot != -1) 444 vect += slot * SZ_2K; 445 446 return vect; 447 } 448 449 /* This is only called on a !VHE system */ 450 static inline int kvm_map_vectors(void) 451 { 452 /* 453 * HBP = ARM64_HARDEN_BRANCH_PREDICTOR 454 * HEL2 = ARM64_HARDEN_EL2_VECTORS 455 * 456 * !HBP + !HEL2 -> use direct vectors 457 * HBP + !HEL2 -> use hardened vectors in place 458 * !HBP + HEL2 -> allocate one vector slot and use exec mapping 459 * HBP + HEL2 -> use hardened vertors and use exec mapping 460 */ 461 if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR)) { 462 __kvm_bp_vect_base = kvm_ksym_ref(__bp_harden_hyp_vecs_start); 463 __kvm_bp_vect_base = kern_hyp_va(__kvm_bp_vect_base); 464 } 465 466 if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) { 467 phys_addr_t vect_pa = __pa_symbol(__bp_harden_hyp_vecs_start); 468 unsigned long size = (__bp_harden_hyp_vecs_end - 469 __bp_harden_hyp_vecs_start); 470 471 /* 472 * Always allocate a spare vector slot, as we don't 473 * know yet which CPUs have a BP hardening slot that 474 * we can reuse. 475 */ 476 __kvm_harden_el2_vector_slot = atomic_inc_return(&arm64_el2_vector_last_slot); 477 BUG_ON(__kvm_harden_el2_vector_slot >= BP_HARDEN_EL2_SLOTS); 478 return create_hyp_exec_mappings(vect_pa, size, 479 &__kvm_bp_vect_base); 480 } 481 482 return 0; 483 } 484 #else 485 static inline void *kvm_get_hyp_vector(void) 486 { 487 return kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); 488 } 489 490 static inline int kvm_map_vectors(void) 491 { 492 return 0; 493 } 494 #endif 495 496 #ifdef CONFIG_ARM64_SSBD 497 DECLARE_PER_CPU_READ_MOSTLY(u64, arm64_ssbd_callback_required); 498 499 static inline int hyp_map_aux_data(void) 500 { 501 int cpu, err; 502 503 for_each_possible_cpu(cpu) { 504 u64 *ptr; 505 506 ptr = per_cpu_ptr(&arm64_ssbd_callback_required, cpu); 507 err = create_hyp_mappings(ptr, ptr + 1, PAGE_HYP); 508 if (err) 509 return err; 510 } 511 return 0; 512 } 513 #else 514 static inline int hyp_map_aux_data(void) 515 { 516 return 0; 517 } 518 #endif 519 520 #define kvm_phys_to_vttbr(addr) phys_to_ttbr(addr) 521 522 /* 523 * Get the magic number 'x' for VTTBR:BADDR of this KVM instance. 524 * With v8.2 LVA extensions, 'x' should be a minimum of 6 with 525 * 52bit IPS. 526 */ 527 static inline int arm64_vttbr_x(u32 ipa_shift, u32 levels) 528 { 529 int x = ARM64_VTTBR_X(ipa_shift, levels); 530 531 return (IS_ENABLED(CONFIG_ARM64_PA_BITS_52) && x < 6) ? 6 : x; 532 } 533 534 static inline u64 vttbr_baddr_mask(u32 ipa_shift, u32 levels) 535 { 536 unsigned int x = arm64_vttbr_x(ipa_shift, levels); 537 538 return GENMASK_ULL(PHYS_MASK_SHIFT - 1, x); 539 } 540 541 static inline u64 kvm_vttbr_baddr_mask(struct kvm *kvm) 542 { 543 return vttbr_baddr_mask(kvm_phys_shift(kvm), kvm_stage2_levels(kvm)); 544 } 545 546 static inline bool kvm_cpu_has_cnp(void) 547 { 548 return system_supports_cnp(); 549 } 550 551 #endif /* __ASSEMBLY__ */ 552 #endif /* __ARM64_KVM_MMU_H__ */ 553