1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2012,2013 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 * 6 * Derived from arch/arm/include/asm/kvm_host.h: 7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 8 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 9 */ 10 11 #ifndef __ARM64_KVM_HOST_H__ 12 #define __ARM64_KVM_HOST_H__ 13 14 #include <linux/arm-smccc.h> 15 #include <linux/bitmap.h> 16 #include <linux/types.h> 17 #include <linux/jump_label.h> 18 #include <linux/kvm_types.h> 19 #include <linux/percpu.h> 20 #include <linux/psci.h> 21 #include <asm/arch_gicv3.h> 22 #include <asm/barrier.h> 23 #include <asm/cpufeature.h> 24 #include <asm/cputype.h> 25 #include <asm/daifflags.h> 26 #include <asm/fpsimd.h> 27 #include <asm/kvm.h> 28 #include <asm/kvm_asm.h> 29 30 #define __KVM_HAVE_ARCH_INTC_INITIALIZED 31 32 #define KVM_HALT_POLL_NS_DEFAULT 500000 33 34 #include <kvm/arm_vgic.h> 35 #include <kvm/arm_arch_timer.h> 36 #include <kvm/arm_pmu.h> 37 38 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS 39 40 #define KVM_VCPU_MAX_FEATURES 7 41 42 #define KVM_REQ_SLEEP \ 43 KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 44 #define KVM_REQ_IRQ_PENDING KVM_ARCH_REQ(1) 45 #define KVM_REQ_VCPU_RESET KVM_ARCH_REQ(2) 46 #define KVM_REQ_RECORD_STEAL KVM_ARCH_REQ(3) 47 #define KVM_REQ_RELOAD_GICv4 KVM_ARCH_REQ(4) 48 #define KVM_REQ_RELOAD_PMU KVM_ARCH_REQ(5) 49 #define KVM_REQ_SUSPEND KVM_ARCH_REQ(6) 50 51 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \ 52 KVM_DIRTY_LOG_INITIALLY_SET) 53 54 #define KVM_HAVE_MMU_RWLOCK 55 56 /* 57 * Mode of operation configurable with kvm-arm.mode early param. 58 * See Documentation/admin-guide/kernel-parameters.txt for more information. 59 */ 60 enum kvm_mode { 61 KVM_MODE_DEFAULT, 62 KVM_MODE_PROTECTED, 63 KVM_MODE_NV, 64 KVM_MODE_NONE, 65 }; 66 #ifdef CONFIG_KVM 67 enum kvm_mode kvm_get_mode(void); 68 #else 69 static inline enum kvm_mode kvm_get_mode(void) { return KVM_MODE_NONE; }; 70 #endif 71 72 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use); 73 74 extern unsigned int __ro_after_init kvm_sve_max_vl; 75 int __init kvm_arm_init_sve(void); 76 77 u32 __attribute_const__ kvm_target_cpu(void); 78 int kvm_reset_vcpu(struct kvm_vcpu *vcpu); 79 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu); 80 81 struct kvm_hyp_memcache { 82 phys_addr_t head; 83 unsigned long nr_pages; 84 }; 85 86 static inline void push_hyp_memcache(struct kvm_hyp_memcache *mc, 87 phys_addr_t *p, 88 phys_addr_t (*to_pa)(void *virt)) 89 { 90 *p = mc->head; 91 mc->head = to_pa(p); 92 mc->nr_pages++; 93 } 94 95 static inline void *pop_hyp_memcache(struct kvm_hyp_memcache *mc, 96 void *(*to_va)(phys_addr_t phys)) 97 { 98 phys_addr_t *p = to_va(mc->head); 99 100 if (!mc->nr_pages) 101 return NULL; 102 103 mc->head = *p; 104 mc->nr_pages--; 105 106 return p; 107 } 108 109 static inline int __topup_hyp_memcache(struct kvm_hyp_memcache *mc, 110 unsigned long min_pages, 111 void *(*alloc_fn)(void *arg), 112 phys_addr_t (*to_pa)(void *virt), 113 void *arg) 114 { 115 while (mc->nr_pages < min_pages) { 116 phys_addr_t *p = alloc_fn(arg); 117 118 if (!p) 119 return -ENOMEM; 120 push_hyp_memcache(mc, p, to_pa); 121 } 122 123 return 0; 124 } 125 126 static inline void __free_hyp_memcache(struct kvm_hyp_memcache *mc, 127 void (*free_fn)(void *virt, void *arg), 128 void *(*to_va)(phys_addr_t phys), 129 void *arg) 130 { 131 while (mc->nr_pages) 132 free_fn(pop_hyp_memcache(mc, to_va), arg); 133 } 134 135 void free_hyp_memcache(struct kvm_hyp_memcache *mc); 136 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages); 137 138 struct kvm_vmid { 139 atomic64_t id; 140 }; 141 142 struct kvm_s2_mmu { 143 struct kvm_vmid vmid; 144 145 /* 146 * stage2 entry level table 147 * 148 * Two kvm_s2_mmu structures in the same VM can point to the same 149 * pgd here. This happens when running a guest using a 150 * translation regime that isn't affected by its own stage-2 151 * translation, such as a non-VHE hypervisor running at vEL2, or 152 * for vEL1/EL0 with vHCR_EL2.VM == 0. In that case, we use the 153 * canonical stage-2 page tables. 154 */ 155 phys_addr_t pgd_phys; 156 struct kvm_pgtable *pgt; 157 158 /* The last vcpu id that ran on each physical CPU */ 159 int __percpu *last_vcpu_ran; 160 161 struct kvm_arch *arch; 162 }; 163 164 struct kvm_arch_memory_slot { 165 }; 166 167 /** 168 * struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests 169 * 170 * @std_bmap: Bitmap of standard secure service calls 171 * @std_hyp_bmap: Bitmap of standard hypervisor service calls 172 * @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls 173 */ 174 struct kvm_smccc_features { 175 unsigned long std_bmap; 176 unsigned long std_hyp_bmap; 177 unsigned long vendor_hyp_bmap; 178 }; 179 180 typedef unsigned int pkvm_handle_t; 181 182 struct kvm_protected_vm { 183 pkvm_handle_t handle; 184 struct kvm_hyp_memcache teardown_mc; 185 }; 186 187 struct kvm_arch { 188 struct kvm_s2_mmu mmu; 189 190 /* VTCR_EL2 value for this VM */ 191 u64 vtcr; 192 193 /* Interrupt controller */ 194 struct vgic_dist vgic; 195 196 /* Timers */ 197 struct arch_timer_vm_data timer_data; 198 199 /* Mandated version of PSCI */ 200 u32 psci_version; 201 202 /* 203 * If we encounter a data abort without valid instruction syndrome 204 * information, report this to user space. User space can (and 205 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is 206 * supported. 207 */ 208 #define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER 0 209 /* Memory Tagging Extension enabled for the guest */ 210 #define KVM_ARCH_FLAG_MTE_ENABLED 1 211 /* At least one vCPU has ran in the VM */ 212 #define KVM_ARCH_FLAG_HAS_RAN_ONCE 2 213 /* 214 * The following two bits are used to indicate the guest's EL1 215 * register width configuration. A value of KVM_ARCH_FLAG_EL1_32BIT 216 * bit is valid only when KVM_ARCH_FLAG_REG_WIDTH_CONFIGURED is set. 217 * Otherwise, the guest's EL1 register width has not yet been 218 * determined yet. 219 */ 220 #define KVM_ARCH_FLAG_REG_WIDTH_CONFIGURED 3 221 #define KVM_ARCH_FLAG_EL1_32BIT 4 222 /* PSCI SYSTEM_SUSPEND enabled for the guest */ 223 #define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED 5 224 225 unsigned long flags; 226 227 /* 228 * VM-wide PMU filter, implemented as a bitmap and big enough for 229 * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+). 230 */ 231 unsigned long *pmu_filter; 232 struct arm_pmu *arm_pmu; 233 234 cpumask_var_t supported_cpus; 235 236 u8 pfr0_csv2; 237 u8 pfr0_csv3; 238 struct { 239 u8 imp:4; 240 u8 unimp:4; 241 } dfr0_pmuver; 242 243 /* Hypercall features firmware registers' descriptor */ 244 struct kvm_smccc_features smccc_feat; 245 246 /* 247 * For an untrusted host VM, 'pkvm.handle' is used to lookup 248 * the associated pKVM instance in the hypervisor. 249 */ 250 struct kvm_protected_vm pkvm; 251 }; 252 253 struct kvm_vcpu_fault_info { 254 u64 esr_el2; /* Hyp Syndrom Register */ 255 u64 far_el2; /* Hyp Fault Address Register */ 256 u64 hpfar_el2; /* Hyp IPA Fault Address Register */ 257 u64 disr_el1; /* Deferred [SError] Status Register */ 258 }; 259 260 enum vcpu_sysreg { 261 __INVALID_SYSREG__, /* 0 is reserved as an invalid value */ 262 MPIDR_EL1, /* MultiProcessor Affinity Register */ 263 CLIDR_EL1, /* Cache Level ID Register */ 264 CSSELR_EL1, /* Cache Size Selection Register */ 265 SCTLR_EL1, /* System Control Register */ 266 ACTLR_EL1, /* Auxiliary Control Register */ 267 CPACR_EL1, /* Coprocessor Access Control */ 268 ZCR_EL1, /* SVE Control */ 269 TTBR0_EL1, /* Translation Table Base Register 0 */ 270 TTBR1_EL1, /* Translation Table Base Register 1 */ 271 TCR_EL1, /* Translation Control Register */ 272 ESR_EL1, /* Exception Syndrome Register */ 273 AFSR0_EL1, /* Auxiliary Fault Status Register 0 */ 274 AFSR1_EL1, /* Auxiliary Fault Status Register 1 */ 275 FAR_EL1, /* Fault Address Register */ 276 MAIR_EL1, /* Memory Attribute Indirection Register */ 277 VBAR_EL1, /* Vector Base Address Register */ 278 CONTEXTIDR_EL1, /* Context ID Register */ 279 TPIDR_EL0, /* Thread ID, User R/W */ 280 TPIDRRO_EL0, /* Thread ID, User R/O */ 281 TPIDR_EL1, /* Thread ID, Privileged */ 282 AMAIR_EL1, /* Aux Memory Attribute Indirection Register */ 283 CNTKCTL_EL1, /* Timer Control Register (EL1) */ 284 PAR_EL1, /* Physical Address Register */ 285 MDSCR_EL1, /* Monitor Debug System Control Register */ 286 MDCCINT_EL1, /* Monitor Debug Comms Channel Interrupt Enable Reg */ 287 OSLSR_EL1, /* OS Lock Status Register */ 288 DISR_EL1, /* Deferred Interrupt Status Register */ 289 290 /* Performance Monitors Registers */ 291 PMCR_EL0, /* Control Register */ 292 PMSELR_EL0, /* Event Counter Selection Register */ 293 PMEVCNTR0_EL0, /* Event Counter Register (0-30) */ 294 PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30, 295 PMCCNTR_EL0, /* Cycle Counter Register */ 296 PMEVTYPER0_EL0, /* Event Type Register (0-30) */ 297 PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30, 298 PMCCFILTR_EL0, /* Cycle Count Filter Register */ 299 PMCNTENSET_EL0, /* Count Enable Set Register */ 300 PMINTENSET_EL1, /* Interrupt Enable Set Register */ 301 PMOVSSET_EL0, /* Overflow Flag Status Set Register */ 302 PMUSERENR_EL0, /* User Enable Register */ 303 304 /* Pointer Authentication Registers in a strict increasing order. */ 305 APIAKEYLO_EL1, 306 APIAKEYHI_EL1, 307 APIBKEYLO_EL1, 308 APIBKEYHI_EL1, 309 APDAKEYLO_EL1, 310 APDAKEYHI_EL1, 311 APDBKEYLO_EL1, 312 APDBKEYHI_EL1, 313 APGAKEYLO_EL1, 314 APGAKEYHI_EL1, 315 316 ELR_EL1, 317 SP_EL1, 318 SPSR_EL1, 319 320 CNTVOFF_EL2, 321 CNTV_CVAL_EL0, 322 CNTV_CTL_EL0, 323 CNTP_CVAL_EL0, 324 CNTP_CTL_EL0, 325 326 /* Memory Tagging Extension registers */ 327 RGSR_EL1, /* Random Allocation Tag Seed Register */ 328 GCR_EL1, /* Tag Control Register */ 329 TFSR_EL1, /* Tag Fault Status Register (EL1) */ 330 TFSRE0_EL1, /* Tag Fault Status Register (EL0) */ 331 332 /* 32bit specific registers. */ 333 DACR32_EL2, /* Domain Access Control Register */ 334 IFSR32_EL2, /* Instruction Fault Status Register */ 335 FPEXC32_EL2, /* Floating-Point Exception Control Register */ 336 DBGVCR32_EL2, /* Debug Vector Catch Register */ 337 338 /* EL2 registers */ 339 VPIDR_EL2, /* Virtualization Processor ID Register */ 340 VMPIDR_EL2, /* Virtualization Multiprocessor ID Register */ 341 SCTLR_EL2, /* System Control Register (EL2) */ 342 ACTLR_EL2, /* Auxiliary Control Register (EL2) */ 343 HCR_EL2, /* Hypervisor Configuration Register */ 344 MDCR_EL2, /* Monitor Debug Configuration Register (EL2) */ 345 CPTR_EL2, /* Architectural Feature Trap Register (EL2) */ 346 HSTR_EL2, /* Hypervisor System Trap Register */ 347 HACR_EL2, /* Hypervisor Auxiliary Control Register */ 348 TTBR0_EL2, /* Translation Table Base Register 0 (EL2) */ 349 TTBR1_EL2, /* Translation Table Base Register 1 (EL2) */ 350 TCR_EL2, /* Translation Control Register (EL2) */ 351 VTTBR_EL2, /* Virtualization Translation Table Base Register */ 352 VTCR_EL2, /* Virtualization Translation Control Register */ 353 SPSR_EL2, /* EL2 saved program status register */ 354 ELR_EL2, /* EL2 exception link register */ 355 AFSR0_EL2, /* Auxiliary Fault Status Register 0 (EL2) */ 356 AFSR1_EL2, /* Auxiliary Fault Status Register 1 (EL2) */ 357 ESR_EL2, /* Exception Syndrome Register (EL2) */ 358 FAR_EL2, /* Fault Address Register (EL2) */ 359 HPFAR_EL2, /* Hypervisor IPA Fault Address Register */ 360 MAIR_EL2, /* Memory Attribute Indirection Register (EL2) */ 361 AMAIR_EL2, /* Auxiliary Memory Attribute Indirection Register (EL2) */ 362 VBAR_EL2, /* Vector Base Address Register (EL2) */ 363 RVBAR_EL2, /* Reset Vector Base Address Register */ 364 CONTEXTIDR_EL2, /* Context ID Register (EL2) */ 365 TPIDR_EL2, /* EL2 Software Thread ID Register */ 366 CNTHCTL_EL2, /* Counter-timer Hypervisor Control register */ 367 SP_EL2, /* EL2 Stack Pointer */ 368 369 NR_SYS_REGS /* Nothing after this line! */ 370 }; 371 372 struct kvm_cpu_context { 373 struct user_pt_regs regs; /* sp = sp_el0 */ 374 375 u64 spsr_abt; 376 u64 spsr_und; 377 u64 spsr_irq; 378 u64 spsr_fiq; 379 380 struct user_fpsimd_state fp_regs; 381 382 u64 sys_regs[NR_SYS_REGS]; 383 384 struct kvm_vcpu *__hyp_running_vcpu; 385 }; 386 387 struct kvm_host_data { 388 struct kvm_cpu_context host_ctxt; 389 }; 390 391 struct kvm_host_psci_config { 392 /* PSCI version used by host. */ 393 u32 version; 394 395 /* Function IDs used by host if version is v0.1. */ 396 struct psci_0_1_function_ids function_ids_0_1; 397 398 bool psci_0_1_cpu_suspend_implemented; 399 bool psci_0_1_cpu_on_implemented; 400 bool psci_0_1_cpu_off_implemented; 401 bool psci_0_1_migrate_implemented; 402 }; 403 404 extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config); 405 #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config) 406 407 extern s64 kvm_nvhe_sym(hyp_physvirt_offset); 408 #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset) 409 410 extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS]; 411 #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map) 412 413 struct vcpu_reset_state { 414 unsigned long pc; 415 unsigned long r0; 416 bool be; 417 bool reset; 418 }; 419 420 struct kvm_vcpu_arch { 421 struct kvm_cpu_context ctxt; 422 423 /* 424 * Guest floating point state 425 * 426 * The architecture has two main floating point extensions, 427 * the original FPSIMD and SVE. These have overlapping 428 * register views, with the FPSIMD V registers occupying the 429 * low 128 bits of the SVE Z registers. When the core 430 * floating point code saves the register state of a task it 431 * records which view it saved in fp_type. 432 */ 433 void *sve_state; 434 enum fp_type fp_type; 435 unsigned int sve_max_vl; 436 u64 svcr; 437 438 /* Stage 2 paging state used by the hardware on next switch */ 439 struct kvm_s2_mmu *hw_mmu; 440 441 /* Values of trap registers for the guest. */ 442 u64 hcr_el2; 443 u64 mdcr_el2; 444 u64 cptr_el2; 445 446 /* Values of trap registers for the host before guest entry. */ 447 u64 mdcr_el2_host; 448 449 /* Exception Information */ 450 struct kvm_vcpu_fault_info fault; 451 452 /* Ownership of the FP regs */ 453 enum { 454 FP_STATE_FREE, 455 FP_STATE_HOST_OWNED, 456 FP_STATE_GUEST_OWNED, 457 } fp_state; 458 459 /* Configuration flags, set once and for all before the vcpu can run */ 460 u8 cflags; 461 462 /* Input flags to the hypervisor code, potentially cleared after use */ 463 u8 iflags; 464 465 /* State flags for kernel bookkeeping, unused by the hypervisor code */ 466 u8 sflags; 467 468 /* 469 * Don't run the guest (internal implementation need). 470 * 471 * Contrary to the flags above, this is set/cleared outside of 472 * a vcpu context, and thus cannot be mixed with the flags 473 * themselves (or the flag accesses need to be made atomic). 474 */ 475 bool pause; 476 477 /* 478 * We maintain more than a single set of debug registers to support 479 * debugging the guest from the host and to maintain separate host and 480 * guest state during world switches. vcpu_debug_state are the debug 481 * registers of the vcpu as the guest sees them. host_debug_state are 482 * the host registers which are saved and restored during 483 * world switches. external_debug_state contains the debug 484 * values we want to debug the guest. This is set via the 485 * KVM_SET_GUEST_DEBUG ioctl. 486 * 487 * debug_ptr points to the set of debug registers that should be loaded 488 * onto the hardware when running the guest. 489 */ 490 struct kvm_guest_debug_arch *debug_ptr; 491 struct kvm_guest_debug_arch vcpu_debug_state; 492 struct kvm_guest_debug_arch external_debug_state; 493 494 struct user_fpsimd_state *host_fpsimd_state; /* hyp VA */ 495 struct task_struct *parent_task; 496 497 struct { 498 /* {Break,watch}point registers */ 499 struct kvm_guest_debug_arch regs; 500 /* Statistical profiling extension */ 501 u64 pmscr_el1; 502 /* Self-hosted trace */ 503 u64 trfcr_el1; 504 } host_debug_state; 505 506 /* VGIC state */ 507 struct vgic_cpu vgic_cpu; 508 struct arch_timer_cpu timer_cpu; 509 struct kvm_pmu pmu; 510 511 /* 512 * Guest registers we preserve during guest debugging. 513 * 514 * These shadow registers are updated by the kvm_handle_sys_reg 515 * trap handler if the guest accesses or updates them while we 516 * are using guest debug. 517 */ 518 struct { 519 u32 mdscr_el1; 520 bool pstate_ss; 521 } guest_debug_preserved; 522 523 /* vcpu power state */ 524 struct kvm_mp_state mp_state; 525 526 /* Cache some mmu pages needed inside spinlock regions */ 527 struct kvm_mmu_memory_cache mmu_page_cache; 528 529 /* Target CPU and feature flags */ 530 int target; 531 DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES); 532 533 /* Virtual SError ESR to restore when HCR_EL2.VSE is set */ 534 u64 vsesr_el2; 535 536 /* Additional reset state */ 537 struct vcpu_reset_state reset_state; 538 539 /* Guest PV state */ 540 struct { 541 u64 last_steal; 542 gpa_t base; 543 } steal; 544 545 /* Per-vcpu CCSIDR override or NULL */ 546 u32 *ccsidr; 547 }; 548 549 /* 550 * Each 'flag' is composed of a comma-separated triplet: 551 * 552 * - the flag-set it belongs to in the vcpu->arch structure 553 * - the value for that flag 554 * - the mask for that flag 555 * 556 * __vcpu_single_flag() builds such a triplet for a single-bit flag. 557 * unpack_vcpu_flag() extract the flag value from the triplet for 558 * direct use outside of the flag accessors. 559 */ 560 #define __vcpu_single_flag(_set, _f) _set, (_f), (_f) 561 562 #define __unpack_flag(_set, _f, _m) _f 563 #define unpack_vcpu_flag(...) __unpack_flag(__VA_ARGS__) 564 565 #define __build_check_flag(v, flagset, f, m) \ 566 do { \ 567 typeof(v->arch.flagset) *_fset; \ 568 \ 569 /* Check that the flags fit in the mask */ \ 570 BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m))); \ 571 /* Check that the flags fit in the type */ \ 572 BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m)); \ 573 } while (0) 574 575 #define __vcpu_get_flag(v, flagset, f, m) \ 576 ({ \ 577 __build_check_flag(v, flagset, f, m); \ 578 \ 579 v->arch.flagset & (m); \ 580 }) 581 582 #define __vcpu_set_flag(v, flagset, f, m) \ 583 do { \ 584 typeof(v->arch.flagset) *fset; \ 585 \ 586 __build_check_flag(v, flagset, f, m); \ 587 \ 588 fset = &v->arch.flagset; \ 589 if (HWEIGHT(m) > 1) \ 590 *fset &= ~(m); \ 591 *fset |= (f); \ 592 } while (0) 593 594 #define __vcpu_clear_flag(v, flagset, f, m) \ 595 do { \ 596 typeof(v->arch.flagset) *fset; \ 597 \ 598 __build_check_flag(v, flagset, f, m); \ 599 \ 600 fset = &v->arch.flagset; \ 601 *fset &= ~(m); \ 602 } while (0) 603 604 #define vcpu_get_flag(v, ...) __vcpu_get_flag((v), __VA_ARGS__) 605 #define vcpu_set_flag(v, ...) __vcpu_set_flag((v), __VA_ARGS__) 606 #define vcpu_clear_flag(v, ...) __vcpu_clear_flag((v), __VA_ARGS__) 607 608 /* SVE exposed to guest */ 609 #define GUEST_HAS_SVE __vcpu_single_flag(cflags, BIT(0)) 610 /* SVE config completed */ 611 #define VCPU_SVE_FINALIZED __vcpu_single_flag(cflags, BIT(1)) 612 /* PTRAUTH exposed to guest */ 613 #define GUEST_HAS_PTRAUTH __vcpu_single_flag(cflags, BIT(2)) 614 615 /* Exception pending */ 616 #define PENDING_EXCEPTION __vcpu_single_flag(iflags, BIT(0)) 617 /* 618 * PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't 619 * be set together with an exception... 620 */ 621 #define INCREMENT_PC __vcpu_single_flag(iflags, BIT(1)) 622 /* Target EL/MODE (not a single flag, but let's abuse the macro) */ 623 #define EXCEPT_MASK __vcpu_single_flag(iflags, GENMASK(3, 1)) 624 625 /* Helpers to encode exceptions with minimum fuss */ 626 #define __EXCEPT_MASK_VAL unpack_vcpu_flag(EXCEPT_MASK) 627 #define __EXCEPT_SHIFT __builtin_ctzl(__EXCEPT_MASK_VAL) 628 #define __vcpu_except_flags(_f) iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL 629 630 /* 631 * When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following 632 * values: 633 * 634 * For AArch32 EL1: 635 */ 636 #define EXCEPT_AA32_UND __vcpu_except_flags(0) 637 #define EXCEPT_AA32_IABT __vcpu_except_flags(1) 638 #define EXCEPT_AA32_DABT __vcpu_except_flags(2) 639 /* For AArch64: */ 640 #define EXCEPT_AA64_EL1_SYNC __vcpu_except_flags(0) 641 #define EXCEPT_AA64_EL1_IRQ __vcpu_except_flags(1) 642 #define EXCEPT_AA64_EL1_FIQ __vcpu_except_flags(2) 643 #define EXCEPT_AA64_EL1_SERR __vcpu_except_flags(3) 644 /* For AArch64 with NV: */ 645 #define EXCEPT_AA64_EL2_SYNC __vcpu_except_flags(4) 646 #define EXCEPT_AA64_EL2_IRQ __vcpu_except_flags(5) 647 #define EXCEPT_AA64_EL2_FIQ __vcpu_except_flags(6) 648 #define EXCEPT_AA64_EL2_SERR __vcpu_except_flags(7) 649 /* Guest debug is live */ 650 #define DEBUG_DIRTY __vcpu_single_flag(iflags, BIT(4)) 651 /* Save SPE context if active */ 652 #define DEBUG_STATE_SAVE_SPE __vcpu_single_flag(iflags, BIT(5)) 653 /* Save TRBE context if active */ 654 #define DEBUG_STATE_SAVE_TRBE __vcpu_single_flag(iflags, BIT(6)) 655 /* vcpu running in HYP context */ 656 #define VCPU_HYP_CONTEXT __vcpu_single_flag(iflags, BIT(7)) 657 658 /* SVE enabled for host EL0 */ 659 #define HOST_SVE_ENABLED __vcpu_single_flag(sflags, BIT(0)) 660 /* SME enabled for EL0 */ 661 #define HOST_SME_ENABLED __vcpu_single_flag(sflags, BIT(1)) 662 /* Physical CPU not in supported_cpus */ 663 #define ON_UNSUPPORTED_CPU __vcpu_single_flag(sflags, BIT(2)) 664 /* WFIT instruction trapped */ 665 #define IN_WFIT __vcpu_single_flag(sflags, BIT(3)) 666 /* vcpu system registers loaded on physical CPU */ 667 #define SYSREGS_ON_CPU __vcpu_single_flag(sflags, BIT(4)) 668 /* Software step state is Active-pending */ 669 #define DBG_SS_ACTIVE_PENDING __vcpu_single_flag(sflags, BIT(5)) 670 671 672 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */ 673 #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) + \ 674 sve_ffr_offset((vcpu)->arch.sve_max_vl)) 675 676 #define vcpu_sve_max_vq(vcpu) sve_vq_from_vl((vcpu)->arch.sve_max_vl) 677 678 #define vcpu_sve_state_size(vcpu) ({ \ 679 size_t __size_ret; \ 680 unsigned int __vcpu_vq; \ 681 \ 682 if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) { \ 683 __size_ret = 0; \ 684 } else { \ 685 __vcpu_vq = vcpu_sve_max_vq(vcpu); \ 686 __size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq); \ 687 } \ 688 \ 689 __size_ret; \ 690 }) 691 692 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \ 693 KVM_GUESTDBG_USE_SW_BP | \ 694 KVM_GUESTDBG_USE_HW | \ 695 KVM_GUESTDBG_SINGLESTEP) 696 697 #define vcpu_has_sve(vcpu) (system_supports_sve() && \ 698 vcpu_get_flag(vcpu, GUEST_HAS_SVE)) 699 700 #ifdef CONFIG_ARM64_PTR_AUTH 701 #define vcpu_has_ptrauth(vcpu) \ 702 ((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) || \ 703 cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) && \ 704 vcpu_get_flag(vcpu, GUEST_HAS_PTRAUTH)) 705 #else 706 #define vcpu_has_ptrauth(vcpu) false 707 #endif 708 709 #define vcpu_on_unsupported_cpu(vcpu) \ 710 vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU) 711 712 #define vcpu_set_on_unsupported_cpu(vcpu) \ 713 vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU) 714 715 #define vcpu_clear_on_unsupported_cpu(vcpu) \ 716 vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU) 717 718 #define vcpu_gp_regs(v) (&(v)->arch.ctxt.regs) 719 720 /* 721 * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the 722 * memory backed version of a register, and not the one most recently 723 * accessed by a running VCPU. For example, for userspace access or 724 * for system registers that are never context switched, but only 725 * emulated. 726 */ 727 #define __ctxt_sys_reg(c,r) (&(c)->sys_regs[(r)]) 728 729 #define ctxt_sys_reg(c,r) (*__ctxt_sys_reg(c,r)) 730 731 #define __vcpu_sys_reg(v,r) (ctxt_sys_reg(&(v)->arch.ctxt, (r))) 732 733 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg); 734 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg); 735 736 static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val) 737 { 738 /* 739 * *** VHE ONLY *** 740 * 741 * System registers listed in the switch are not saved on every 742 * exit from the guest but are only saved on vcpu_put. 743 * 744 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but 745 * should never be listed below, because the guest cannot modify its 746 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's 747 * thread when emulating cross-VCPU communication. 748 */ 749 if (!has_vhe()) 750 return false; 751 752 switch (reg) { 753 case SCTLR_EL1: *val = read_sysreg_s(SYS_SCTLR_EL12); break; 754 case CPACR_EL1: *val = read_sysreg_s(SYS_CPACR_EL12); break; 755 case TTBR0_EL1: *val = read_sysreg_s(SYS_TTBR0_EL12); break; 756 case TTBR1_EL1: *val = read_sysreg_s(SYS_TTBR1_EL12); break; 757 case TCR_EL1: *val = read_sysreg_s(SYS_TCR_EL12); break; 758 case ESR_EL1: *val = read_sysreg_s(SYS_ESR_EL12); break; 759 case AFSR0_EL1: *val = read_sysreg_s(SYS_AFSR0_EL12); break; 760 case AFSR1_EL1: *val = read_sysreg_s(SYS_AFSR1_EL12); break; 761 case FAR_EL1: *val = read_sysreg_s(SYS_FAR_EL12); break; 762 case MAIR_EL1: *val = read_sysreg_s(SYS_MAIR_EL12); break; 763 case VBAR_EL1: *val = read_sysreg_s(SYS_VBAR_EL12); break; 764 case CONTEXTIDR_EL1: *val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break; 765 case TPIDR_EL0: *val = read_sysreg_s(SYS_TPIDR_EL0); break; 766 case TPIDRRO_EL0: *val = read_sysreg_s(SYS_TPIDRRO_EL0); break; 767 case TPIDR_EL1: *val = read_sysreg_s(SYS_TPIDR_EL1); break; 768 case AMAIR_EL1: *val = read_sysreg_s(SYS_AMAIR_EL12); break; 769 case CNTKCTL_EL1: *val = read_sysreg_s(SYS_CNTKCTL_EL12); break; 770 case ELR_EL1: *val = read_sysreg_s(SYS_ELR_EL12); break; 771 case PAR_EL1: *val = read_sysreg_par(); break; 772 case DACR32_EL2: *val = read_sysreg_s(SYS_DACR32_EL2); break; 773 case IFSR32_EL2: *val = read_sysreg_s(SYS_IFSR32_EL2); break; 774 case DBGVCR32_EL2: *val = read_sysreg_s(SYS_DBGVCR32_EL2); break; 775 default: return false; 776 } 777 778 return true; 779 } 780 781 static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg) 782 { 783 /* 784 * *** VHE ONLY *** 785 * 786 * System registers listed in the switch are not restored on every 787 * entry to the guest but are only restored on vcpu_load. 788 * 789 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but 790 * should never be listed below, because the MPIDR should only be set 791 * once, before running the VCPU, and never changed later. 792 */ 793 if (!has_vhe()) 794 return false; 795 796 switch (reg) { 797 case SCTLR_EL1: write_sysreg_s(val, SYS_SCTLR_EL12); break; 798 case CPACR_EL1: write_sysreg_s(val, SYS_CPACR_EL12); break; 799 case TTBR0_EL1: write_sysreg_s(val, SYS_TTBR0_EL12); break; 800 case TTBR1_EL1: write_sysreg_s(val, SYS_TTBR1_EL12); break; 801 case TCR_EL1: write_sysreg_s(val, SYS_TCR_EL12); break; 802 case ESR_EL1: write_sysreg_s(val, SYS_ESR_EL12); break; 803 case AFSR0_EL1: write_sysreg_s(val, SYS_AFSR0_EL12); break; 804 case AFSR1_EL1: write_sysreg_s(val, SYS_AFSR1_EL12); break; 805 case FAR_EL1: write_sysreg_s(val, SYS_FAR_EL12); break; 806 case MAIR_EL1: write_sysreg_s(val, SYS_MAIR_EL12); break; 807 case VBAR_EL1: write_sysreg_s(val, SYS_VBAR_EL12); break; 808 case CONTEXTIDR_EL1: write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break; 809 case TPIDR_EL0: write_sysreg_s(val, SYS_TPIDR_EL0); break; 810 case TPIDRRO_EL0: write_sysreg_s(val, SYS_TPIDRRO_EL0); break; 811 case TPIDR_EL1: write_sysreg_s(val, SYS_TPIDR_EL1); break; 812 case AMAIR_EL1: write_sysreg_s(val, SYS_AMAIR_EL12); break; 813 case CNTKCTL_EL1: write_sysreg_s(val, SYS_CNTKCTL_EL12); break; 814 case ELR_EL1: write_sysreg_s(val, SYS_ELR_EL12); break; 815 case PAR_EL1: write_sysreg_s(val, SYS_PAR_EL1); break; 816 case DACR32_EL2: write_sysreg_s(val, SYS_DACR32_EL2); break; 817 case IFSR32_EL2: write_sysreg_s(val, SYS_IFSR32_EL2); break; 818 case DBGVCR32_EL2: write_sysreg_s(val, SYS_DBGVCR32_EL2); break; 819 default: return false; 820 } 821 822 return true; 823 } 824 825 struct kvm_vm_stat { 826 struct kvm_vm_stat_generic generic; 827 }; 828 829 struct kvm_vcpu_stat { 830 struct kvm_vcpu_stat_generic generic; 831 u64 hvc_exit_stat; 832 u64 wfe_exit_stat; 833 u64 wfi_exit_stat; 834 u64 mmio_exit_user; 835 u64 mmio_exit_kernel; 836 u64 signal_exits; 837 u64 exits; 838 }; 839 840 void kvm_vcpu_preferred_target(struct kvm_vcpu_init *init); 841 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu); 842 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices); 843 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg); 844 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg); 845 846 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu); 847 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices); 848 849 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, 850 struct kvm_vcpu_events *events); 851 852 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, 853 struct kvm_vcpu_events *events); 854 855 #define KVM_ARCH_WANT_MMU_NOTIFIER 856 857 void kvm_arm_halt_guest(struct kvm *kvm); 858 void kvm_arm_resume_guest(struct kvm *kvm); 859 860 #define vcpu_has_run_once(vcpu) !!rcu_access_pointer((vcpu)->pid) 861 862 #ifndef __KVM_NVHE_HYPERVISOR__ 863 #define kvm_call_hyp_nvhe(f, ...) \ 864 ({ \ 865 struct arm_smccc_res res; \ 866 \ 867 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f), \ 868 ##__VA_ARGS__, &res); \ 869 WARN_ON(res.a0 != SMCCC_RET_SUCCESS); \ 870 \ 871 res.a1; \ 872 }) 873 874 /* 875 * The couple of isb() below are there to guarantee the same behaviour 876 * on VHE as on !VHE, where the eret to EL1 acts as a context 877 * synchronization event. 878 */ 879 #define kvm_call_hyp(f, ...) \ 880 do { \ 881 if (has_vhe()) { \ 882 f(__VA_ARGS__); \ 883 isb(); \ 884 } else { \ 885 kvm_call_hyp_nvhe(f, ##__VA_ARGS__); \ 886 } \ 887 } while(0) 888 889 #define kvm_call_hyp_ret(f, ...) \ 890 ({ \ 891 typeof(f(__VA_ARGS__)) ret; \ 892 \ 893 if (has_vhe()) { \ 894 ret = f(__VA_ARGS__); \ 895 isb(); \ 896 } else { \ 897 ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__); \ 898 } \ 899 \ 900 ret; \ 901 }) 902 #else /* __KVM_NVHE_HYPERVISOR__ */ 903 #define kvm_call_hyp(f, ...) f(__VA_ARGS__) 904 #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__) 905 #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__) 906 #endif /* __KVM_NVHE_HYPERVISOR__ */ 907 908 void force_vm_exit(const cpumask_t *mask); 909 910 int handle_exit(struct kvm_vcpu *vcpu, int exception_index); 911 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index); 912 913 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu); 914 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu); 915 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu); 916 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu); 917 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu); 918 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu); 919 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu); 920 921 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu); 922 923 int __init kvm_sys_reg_table_init(void); 924 925 /* MMIO helpers */ 926 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data); 927 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len); 928 929 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu); 930 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa); 931 932 /* 933 * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event, 934 * arrived in guest context. For arm64, any event that arrives while a vCPU is 935 * loaded is considered to be "in guest". 936 */ 937 static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu) 938 { 939 return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu; 940 } 941 942 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu); 943 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu); 944 void kvm_update_stolen_time(struct kvm_vcpu *vcpu); 945 946 bool kvm_arm_pvtime_supported(void); 947 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu, 948 struct kvm_device_attr *attr); 949 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu, 950 struct kvm_device_attr *attr); 951 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu, 952 struct kvm_device_attr *attr); 953 954 extern unsigned int __ro_after_init kvm_arm_vmid_bits; 955 int __init kvm_arm_vmid_alloc_init(void); 956 void __init kvm_arm_vmid_alloc_free(void); 957 void kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid); 958 void kvm_arm_vmid_clear_active(void); 959 960 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch) 961 { 962 vcpu_arch->steal.base = INVALID_GPA; 963 } 964 965 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch) 966 { 967 return (vcpu_arch->steal.base != INVALID_GPA); 968 } 969 970 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome); 971 972 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr); 973 974 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data); 975 976 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt) 977 { 978 /* The host's MPIDR is immutable, so let's set it up at boot time */ 979 ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr(); 980 } 981 982 static inline bool kvm_system_needs_idmapped_vectors(void) 983 { 984 return cpus_have_const_cap(ARM64_SPECTRE_V3A); 985 } 986 987 void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu); 988 989 static inline void kvm_arch_sync_events(struct kvm *kvm) {} 990 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {} 991 992 void kvm_arm_init_debug(void); 993 void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu); 994 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu); 995 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu); 996 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu); 997 998 #define kvm_vcpu_os_lock_enabled(vcpu) \ 999 (!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & SYS_OSLSR_OSLK)) 1000 1001 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu, 1002 struct kvm_device_attr *attr); 1003 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu, 1004 struct kvm_device_attr *attr); 1005 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu, 1006 struct kvm_device_attr *attr); 1007 1008 long kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm, 1009 struct kvm_arm_copy_mte_tags *copy_tags); 1010 1011 /* Guest/host FPSIMD coordination helpers */ 1012 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu); 1013 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu); 1014 void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu); 1015 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu); 1016 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu); 1017 void kvm_vcpu_unshare_task_fp(struct kvm_vcpu *vcpu); 1018 1019 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr) 1020 { 1021 return (!has_vhe() && attr->exclude_host); 1022 } 1023 1024 /* Flags for host debug state */ 1025 void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu); 1026 void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu); 1027 1028 #ifdef CONFIG_KVM 1029 void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr); 1030 void kvm_clr_pmu_events(u32 clr); 1031 #else 1032 static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {} 1033 static inline void kvm_clr_pmu_events(u32 clr) {} 1034 #endif 1035 1036 void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu); 1037 void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu); 1038 1039 int __init kvm_set_ipa_limit(void); 1040 1041 #define __KVM_HAVE_ARCH_VM_ALLOC 1042 struct kvm *kvm_arch_alloc_vm(void); 1043 1044 static inline bool kvm_vm_is_protected(struct kvm *kvm) 1045 { 1046 return false; 1047 } 1048 1049 void kvm_init_protected_traps(struct kvm_vcpu *vcpu); 1050 1051 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature); 1052 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu); 1053 1054 #define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED) 1055 1056 #define kvm_has_mte(kvm) \ 1057 (system_supports_mte() && \ 1058 test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags)) 1059 1060 #define kvm_supports_32bit_el0() \ 1061 (system_supports_32bit_el0() && \ 1062 !static_branch_unlikely(&arm64_mismatched_32bit_el0)) 1063 1064 int kvm_trng_call(struct kvm_vcpu *vcpu); 1065 #ifdef CONFIG_KVM 1066 extern phys_addr_t hyp_mem_base; 1067 extern phys_addr_t hyp_mem_size; 1068 void __init kvm_hyp_reserve(void); 1069 #else 1070 static inline void kvm_hyp_reserve(void) { } 1071 #endif 1072 1073 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu); 1074 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu); 1075 1076 #endif /* __ARM64_KVM_HOST_H__ */ 1077