xref: /openbmc/linux/arch/arm64/include/asm/kvm_host.h (revision dc6a81c3)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/include/asm/kvm_host.h:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #ifndef __ARM64_KVM_HOST_H__
12 #define __ARM64_KVM_HOST_H__
13 
14 #include <linux/bitmap.h>
15 #include <linux/types.h>
16 #include <linux/jump_label.h>
17 #include <linux/kvm_types.h>
18 #include <linux/percpu.h>
19 #include <asm/arch_gicv3.h>
20 #include <asm/barrier.h>
21 #include <asm/cpufeature.h>
22 #include <asm/cputype.h>
23 #include <asm/daifflags.h>
24 #include <asm/fpsimd.h>
25 #include <asm/kvm.h>
26 #include <asm/kvm_asm.h>
27 #include <asm/thread_info.h>
28 
29 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
30 
31 #define KVM_USER_MEM_SLOTS 512
32 #define KVM_HALT_POLL_NS_DEFAULT 500000
33 
34 #include <kvm/arm_vgic.h>
35 #include <kvm/arm_arch_timer.h>
36 #include <kvm/arm_pmu.h>
37 
38 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
39 
40 #define KVM_VCPU_MAX_FEATURES 7
41 
42 #define KVM_REQ_SLEEP \
43 	KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
44 #define KVM_REQ_IRQ_PENDING	KVM_ARCH_REQ(1)
45 #define KVM_REQ_VCPU_RESET	KVM_ARCH_REQ(2)
46 #define KVM_REQ_RECORD_STEAL	KVM_ARCH_REQ(3)
47 
48 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
49 
50 extern unsigned int kvm_sve_max_vl;
51 int kvm_arm_init_sve(void);
52 
53 int __attribute_const__ kvm_target_cpu(void);
54 int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
55 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
56 int kvm_arch_vm_ioctl_check_extension(struct kvm *kvm, long ext);
57 void __extended_idmap_trampoline(phys_addr_t boot_pgd, phys_addr_t idmap_start);
58 
59 struct kvm_vmid {
60 	/* The VMID generation used for the virt. memory system */
61 	u64    vmid_gen;
62 	u32    vmid;
63 };
64 
65 struct kvm_arch {
66 	struct kvm_vmid vmid;
67 
68 	/* stage2 entry level table */
69 	pgd_t *pgd;
70 	phys_addr_t pgd_phys;
71 
72 	/* VTCR_EL2 value for this VM */
73 	u64    vtcr;
74 
75 	/* The last vcpu id that ran on each physical CPU */
76 	int __percpu *last_vcpu_ran;
77 
78 	/* The maximum number of vCPUs depends on the used GIC model */
79 	int max_vcpus;
80 
81 	/* Interrupt controller */
82 	struct vgic_dist	vgic;
83 
84 	/* Mandated version of PSCI */
85 	u32 psci_version;
86 
87 	/*
88 	 * If we encounter a data abort without valid instruction syndrome
89 	 * information, report this to user space.  User space can (and
90 	 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
91 	 * supported.
92 	 */
93 	bool return_nisv_io_abort_to_user;
94 };
95 
96 #define KVM_NR_MEM_OBJS     40
97 
98 /*
99  * We don't want allocation failures within the mmu code, so we preallocate
100  * enough memory for a single page fault in a cache.
101  */
102 struct kvm_mmu_memory_cache {
103 	int nobjs;
104 	void *objects[KVM_NR_MEM_OBJS];
105 };
106 
107 struct kvm_vcpu_fault_info {
108 	u32 esr_el2;		/* Hyp Syndrom Register */
109 	u64 far_el2;		/* Hyp Fault Address Register */
110 	u64 hpfar_el2;		/* Hyp IPA Fault Address Register */
111 	u64 disr_el1;		/* Deferred [SError] Status Register */
112 };
113 
114 /*
115  * 0 is reserved as an invalid value.
116  * Order should be kept in sync with the save/restore code.
117  */
118 enum vcpu_sysreg {
119 	__INVALID_SYSREG__,
120 	MPIDR_EL1,	/* MultiProcessor Affinity Register */
121 	CSSELR_EL1,	/* Cache Size Selection Register */
122 	SCTLR_EL1,	/* System Control Register */
123 	ACTLR_EL1,	/* Auxiliary Control Register */
124 	CPACR_EL1,	/* Coprocessor Access Control */
125 	ZCR_EL1,	/* SVE Control */
126 	TTBR0_EL1,	/* Translation Table Base Register 0 */
127 	TTBR1_EL1,	/* Translation Table Base Register 1 */
128 	TCR_EL1,	/* Translation Control Register */
129 	ESR_EL1,	/* Exception Syndrome Register */
130 	AFSR0_EL1,	/* Auxiliary Fault Status Register 0 */
131 	AFSR1_EL1,	/* Auxiliary Fault Status Register 1 */
132 	FAR_EL1,	/* Fault Address Register */
133 	MAIR_EL1,	/* Memory Attribute Indirection Register */
134 	VBAR_EL1,	/* Vector Base Address Register */
135 	CONTEXTIDR_EL1,	/* Context ID Register */
136 	TPIDR_EL0,	/* Thread ID, User R/W */
137 	TPIDRRO_EL0,	/* Thread ID, User R/O */
138 	TPIDR_EL1,	/* Thread ID, Privileged */
139 	AMAIR_EL1,	/* Aux Memory Attribute Indirection Register */
140 	CNTKCTL_EL1,	/* Timer Control Register (EL1) */
141 	PAR_EL1,	/* Physical Address Register */
142 	MDSCR_EL1,	/* Monitor Debug System Control Register */
143 	MDCCINT_EL1,	/* Monitor Debug Comms Channel Interrupt Enable Reg */
144 	DISR_EL1,	/* Deferred Interrupt Status Register */
145 
146 	/* Performance Monitors Registers */
147 	PMCR_EL0,	/* Control Register */
148 	PMSELR_EL0,	/* Event Counter Selection Register */
149 	PMEVCNTR0_EL0,	/* Event Counter Register (0-30) */
150 	PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
151 	PMCCNTR_EL0,	/* Cycle Counter Register */
152 	PMEVTYPER0_EL0,	/* Event Type Register (0-30) */
153 	PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
154 	PMCCFILTR_EL0,	/* Cycle Count Filter Register */
155 	PMCNTENSET_EL0,	/* Count Enable Set Register */
156 	PMINTENSET_EL1,	/* Interrupt Enable Set Register */
157 	PMOVSSET_EL0,	/* Overflow Flag Status Set Register */
158 	PMSWINC_EL0,	/* Software Increment Register */
159 	PMUSERENR_EL0,	/* User Enable Register */
160 
161 	/* Pointer Authentication Registers in a strict increasing order. */
162 	APIAKEYLO_EL1,
163 	APIAKEYHI_EL1,
164 	APIBKEYLO_EL1,
165 	APIBKEYHI_EL1,
166 	APDAKEYLO_EL1,
167 	APDAKEYHI_EL1,
168 	APDBKEYLO_EL1,
169 	APDBKEYHI_EL1,
170 	APGAKEYLO_EL1,
171 	APGAKEYHI_EL1,
172 
173 	/* 32bit specific registers. Keep them at the end of the range */
174 	DACR32_EL2,	/* Domain Access Control Register */
175 	IFSR32_EL2,	/* Instruction Fault Status Register */
176 	FPEXC32_EL2,	/* Floating-Point Exception Control Register */
177 	DBGVCR32_EL2,	/* Debug Vector Catch Register */
178 
179 	NR_SYS_REGS	/* Nothing after this line! */
180 };
181 
182 /* 32bit mapping */
183 #define c0_MPIDR	(MPIDR_EL1 * 2)	/* MultiProcessor ID Register */
184 #define c0_CSSELR	(CSSELR_EL1 * 2)/* Cache Size Selection Register */
185 #define c1_SCTLR	(SCTLR_EL1 * 2)	/* System Control Register */
186 #define c1_ACTLR	(ACTLR_EL1 * 2)	/* Auxiliary Control Register */
187 #define c1_CPACR	(CPACR_EL1 * 2)	/* Coprocessor Access Control */
188 #define c2_TTBR0	(TTBR0_EL1 * 2)	/* Translation Table Base Register 0 */
189 #define c2_TTBR0_high	(c2_TTBR0 + 1)	/* TTBR0 top 32 bits */
190 #define c2_TTBR1	(TTBR1_EL1 * 2)	/* Translation Table Base Register 1 */
191 #define c2_TTBR1_high	(c2_TTBR1 + 1)	/* TTBR1 top 32 bits */
192 #define c2_TTBCR	(TCR_EL1 * 2)	/* Translation Table Base Control R. */
193 #define c3_DACR		(DACR32_EL2 * 2)/* Domain Access Control Register */
194 #define c5_DFSR		(ESR_EL1 * 2)	/* Data Fault Status Register */
195 #define c5_IFSR		(IFSR32_EL2 * 2)/* Instruction Fault Status Register */
196 #define c5_ADFSR	(AFSR0_EL1 * 2)	/* Auxiliary Data Fault Status R */
197 #define c5_AIFSR	(AFSR1_EL1 * 2)	/* Auxiliary Instr Fault Status R */
198 #define c6_DFAR		(FAR_EL1 * 2)	/* Data Fault Address Register */
199 #define c6_IFAR		(c6_DFAR + 1)	/* Instruction Fault Address Register */
200 #define c7_PAR		(PAR_EL1 * 2)	/* Physical Address Register */
201 #define c7_PAR_high	(c7_PAR + 1)	/* PAR top 32 bits */
202 #define c10_PRRR	(MAIR_EL1 * 2)	/* Primary Region Remap Register */
203 #define c10_NMRR	(c10_PRRR + 1)	/* Normal Memory Remap Register */
204 #define c12_VBAR	(VBAR_EL1 * 2)	/* Vector Base Address Register */
205 #define c13_CID		(CONTEXTIDR_EL1 * 2)	/* Context ID Register */
206 #define c13_TID_URW	(TPIDR_EL0 * 2)	/* Thread ID, User R/W */
207 #define c13_TID_URO	(TPIDRRO_EL0 * 2)/* Thread ID, User R/O */
208 #define c13_TID_PRIV	(TPIDR_EL1 * 2)	/* Thread ID, Privileged */
209 #define c10_AMAIR0	(AMAIR_EL1 * 2)	/* Aux Memory Attr Indirection Reg */
210 #define c10_AMAIR1	(c10_AMAIR0 + 1)/* Aux Memory Attr Indirection Reg */
211 #define c14_CNTKCTL	(CNTKCTL_EL1 * 2) /* Timer Control Register (PL1) */
212 
213 #define cp14_DBGDSCRext	(MDSCR_EL1 * 2)
214 #define cp14_DBGBCR0	(DBGBCR0_EL1 * 2)
215 #define cp14_DBGBVR0	(DBGBVR0_EL1 * 2)
216 #define cp14_DBGBXVR0	(cp14_DBGBVR0 + 1)
217 #define cp14_DBGWCR0	(DBGWCR0_EL1 * 2)
218 #define cp14_DBGWVR0	(DBGWVR0_EL1 * 2)
219 #define cp14_DBGDCCINT	(MDCCINT_EL1 * 2)
220 
221 #define NR_COPRO_REGS	(NR_SYS_REGS * 2)
222 
223 struct kvm_cpu_context {
224 	struct kvm_regs	gp_regs;
225 	union {
226 		u64 sys_regs[NR_SYS_REGS];
227 		u32 copro[NR_COPRO_REGS];
228 	};
229 
230 	struct kvm_vcpu *__hyp_running_vcpu;
231 };
232 
233 struct kvm_pmu_events {
234 	u32 events_host;
235 	u32 events_guest;
236 };
237 
238 struct kvm_host_data {
239 	struct kvm_cpu_context host_ctxt;
240 	struct kvm_pmu_events pmu_events;
241 };
242 
243 typedef struct kvm_host_data kvm_host_data_t;
244 
245 struct vcpu_reset_state {
246 	unsigned long	pc;
247 	unsigned long	r0;
248 	bool		be;
249 	bool		reset;
250 };
251 
252 struct kvm_vcpu_arch {
253 	struct kvm_cpu_context ctxt;
254 	void *sve_state;
255 	unsigned int sve_max_vl;
256 
257 	/* HYP configuration */
258 	u64 hcr_el2;
259 	u32 mdcr_el2;
260 
261 	/* Exception Information */
262 	struct kvm_vcpu_fault_info fault;
263 
264 	/* State of various workarounds, see kvm_asm.h for bit assignment */
265 	u64 workaround_flags;
266 
267 	/* Miscellaneous vcpu state flags */
268 	u64 flags;
269 
270 	/*
271 	 * We maintain more than a single set of debug registers to support
272 	 * debugging the guest from the host and to maintain separate host and
273 	 * guest state during world switches. vcpu_debug_state are the debug
274 	 * registers of the vcpu as the guest sees them.  host_debug_state are
275 	 * the host registers which are saved and restored during
276 	 * world switches. external_debug_state contains the debug
277 	 * values we want to debug the guest. This is set via the
278 	 * KVM_SET_GUEST_DEBUG ioctl.
279 	 *
280 	 * debug_ptr points to the set of debug registers that should be loaded
281 	 * onto the hardware when running the guest.
282 	 */
283 	struct kvm_guest_debug_arch *debug_ptr;
284 	struct kvm_guest_debug_arch vcpu_debug_state;
285 	struct kvm_guest_debug_arch external_debug_state;
286 
287 	/* Pointer to host CPU context */
288 	struct kvm_cpu_context *host_cpu_context;
289 
290 	struct thread_info *host_thread_info;	/* hyp VA */
291 	struct user_fpsimd_state *host_fpsimd_state;	/* hyp VA */
292 
293 	struct {
294 		/* {Break,watch}point registers */
295 		struct kvm_guest_debug_arch regs;
296 		/* Statistical profiling extension */
297 		u64 pmscr_el1;
298 	} host_debug_state;
299 
300 	/* VGIC state */
301 	struct vgic_cpu vgic_cpu;
302 	struct arch_timer_cpu timer_cpu;
303 	struct kvm_pmu pmu;
304 
305 	/*
306 	 * Anything that is not used directly from assembly code goes
307 	 * here.
308 	 */
309 
310 	/*
311 	 * Guest registers we preserve during guest debugging.
312 	 *
313 	 * These shadow registers are updated by the kvm_handle_sys_reg
314 	 * trap handler if the guest accesses or updates them while we
315 	 * are using guest debug.
316 	 */
317 	struct {
318 		u32	mdscr_el1;
319 	} guest_debug_preserved;
320 
321 	/* vcpu power-off state */
322 	bool power_off;
323 
324 	/* Don't run the guest (internal implementation need) */
325 	bool pause;
326 
327 	/* Cache some mmu pages needed inside spinlock regions */
328 	struct kvm_mmu_memory_cache mmu_page_cache;
329 
330 	/* Target CPU and feature flags */
331 	int target;
332 	DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);
333 
334 	/* Detect first run of a vcpu */
335 	bool has_run_once;
336 
337 	/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
338 	u64 vsesr_el2;
339 
340 	/* Additional reset state */
341 	struct vcpu_reset_state	reset_state;
342 
343 	/* True when deferrable sysregs are loaded on the physical CPU,
344 	 * see kvm_vcpu_load_sysregs and kvm_vcpu_put_sysregs. */
345 	bool sysregs_loaded_on_cpu;
346 
347 	/* Guest PV state */
348 	struct {
349 		u64 steal;
350 		u64 last_steal;
351 		gpa_t base;
352 	} steal;
353 };
354 
355 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
356 #define vcpu_sve_pffr(vcpu) ((void *)((char *)((vcpu)->arch.sve_state) + \
357 				      sve_ffr_offset((vcpu)->arch.sve_max_vl)))
358 
359 #define vcpu_sve_state_size(vcpu) ({					\
360 	size_t __size_ret;						\
361 	unsigned int __vcpu_vq;						\
362 									\
363 	if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {		\
364 		__size_ret = 0;						\
365 	} else {							\
366 		__vcpu_vq = sve_vq_from_vl((vcpu)->arch.sve_max_vl);	\
367 		__size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);		\
368 	}								\
369 									\
370 	__size_ret;							\
371 })
372 
373 /* vcpu_arch flags field values: */
374 #define KVM_ARM64_DEBUG_DIRTY		(1 << 0)
375 #define KVM_ARM64_FP_ENABLED		(1 << 1) /* guest FP regs loaded */
376 #define KVM_ARM64_FP_HOST		(1 << 2) /* host FP regs loaded */
377 #define KVM_ARM64_HOST_SVE_IN_USE	(1 << 3) /* backup for host TIF_SVE */
378 #define KVM_ARM64_HOST_SVE_ENABLED	(1 << 4) /* SVE enabled for EL0 */
379 #define KVM_ARM64_GUEST_HAS_SVE		(1 << 5) /* SVE exposed to guest */
380 #define KVM_ARM64_VCPU_SVE_FINALIZED	(1 << 6) /* SVE config completed */
381 #define KVM_ARM64_GUEST_HAS_PTRAUTH	(1 << 7) /* PTRAUTH exposed to guest */
382 
383 #define vcpu_has_sve(vcpu) (system_supports_sve() && \
384 			    ((vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_SVE))
385 
386 #define vcpu_has_ptrauth(vcpu)	((system_supports_address_auth() || \
387 				  system_supports_generic_auth()) && \
388 				 ((vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_PTRAUTH))
389 
390 #define vcpu_gp_regs(v)		(&(v)->arch.ctxt.gp_regs)
391 
392 /*
393  * Only use __vcpu_sys_reg if you know you want the memory backed version of a
394  * register, and not the one most recently accessed by a running VCPU.  For
395  * example, for userspace access or for system registers that are never context
396  * switched, but only emulated.
397  */
398 #define __vcpu_sys_reg(v,r)	((v)->arch.ctxt.sys_regs[(r)])
399 
400 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
401 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
402 
403 /*
404  * CP14 and CP15 live in the same array, as they are backed by the
405  * same system registers.
406  */
407 #define vcpu_cp14(v,r)		((v)->arch.ctxt.copro[(r)])
408 #define vcpu_cp15(v,r)		((v)->arch.ctxt.copro[(r)])
409 
410 struct kvm_vm_stat {
411 	ulong remote_tlb_flush;
412 };
413 
414 struct kvm_vcpu_stat {
415 	u64 halt_successful_poll;
416 	u64 halt_attempted_poll;
417 	u64 halt_poll_invalid;
418 	u64 halt_wakeup;
419 	u64 hvc_exit_stat;
420 	u64 wfe_exit_stat;
421 	u64 wfi_exit_stat;
422 	u64 mmio_exit_user;
423 	u64 mmio_exit_kernel;
424 	u64 exits;
425 };
426 
427 int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init);
428 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
429 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
430 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
431 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
432 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
433 			      struct kvm_vcpu_events *events);
434 
435 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
436 			      struct kvm_vcpu_events *events);
437 
438 #define KVM_ARCH_WANT_MMU_NOTIFIER
439 int kvm_unmap_hva_range(struct kvm *kvm,
440 			unsigned long start, unsigned long end);
441 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);
442 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end);
443 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva);
444 
445 void kvm_arm_halt_guest(struct kvm *kvm);
446 void kvm_arm_resume_guest(struct kvm *kvm);
447 
448 u64 __kvm_call_hyp(void *hypfn, ...);
449 
450 /*
451  * The couple of isb() below are there to guarantee the same behaviour
452  * on VHE as on !VHE, where the eret to EL1 acts as a context
453  * synchronization event.
454  */
455 #define kvm_call_hyp(f, ...)						\
456 	do {								\
457 		if (has_vhe()) {					\
458 			f(__VA_ARGS__);					\
459 			isb();						\
460 		} else {						\
461 			__kvm_call_hyp(kvm_ksym_ref(f), ##__VA_ARGS__); \
462 		}							\
463 	} while(0)
464 
465 #define kvm_call_hyp_ret(f, ...)					\
466 	({								\
467 		typeof(f(__VA_ARGS__)) ret;				\
468 									\
469 		if (has_vhe()) {					\
470 			ret = f(__VA_ARGS__);				\
471 			isb();						\
472 		} else {						\
473 			ret = __kvm_call_hyp(kvm_ksym_ref(f),		\
474 					     ##__VA_ARGS__);		\
475 		}							\
476 									\
477 		ret;							\
478 	})
479 
480 void force_vm_exit(const cpumask_t *mask);
481 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot);
482 
483 int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
484 		int exception_index);
485 void handle_exit_early(struct kvm_vcpu *vcpu, struct kvm_run *run,
486 		       int exception_index);
487 
488 /* MMIO helpers */
489 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
490 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
491 
492 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu, struct kvm_run *run);
493 int io_mem_abort(struct kvm_vcpu *vcpu, struct kvm_run *run,
494 		 phys_addr_t fault_ipa);
495 
496 int kvm_perf_init(void);
497 int kvm_perf_teardown(void);
498 
499 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
500 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
501 void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
502 
503 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
504 			    struct kvm_device_attr *attr);
505 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
506 			    struct kvm_device_attr *attr);
507 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
508 			    struct kvm_device_attr *attr);
509 
510 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
511 {
512 	vcpu_arch->steal.base = GPA_INVALID;
513 }
514 
515 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
516 {
517 	return (vcpu_arch->steal.base != GPA_INVALID);
518 }
519 
520 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
521 
522 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
523 
524 DECLARE_PER_CPU(kvm_host_data_t, kvm_host_data);
525 
526 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
527 {
528 	/* The host's MPIDR is immutable, so let's set it up at boot time */
529 	cpu_ctxt->sys_regs[MPIDR_EL1] = read_cpuid_mpidr();
530 }
531 
532 void __kvm_enable_ssbs(void);
533 
534 static inline void __cpu_init_hyp_mode(phys_addr_t pgd_ptr,
535 				       unsigned long hyp_stack_ptr,
536 				       unsigned long vector_ptr)
537 {
538 	/*
539 	 * Calculate the raw per-cpu offset without a translation from the
540 	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
541 	 * so that we can use adr_l to access per-cpu variables in EL2.
542 	 */
543 	u64 tpidr_el2 = ((u64)this_cpu_ptr(&kvm_host_data) -
544 			 (u64)kvm_ksym_ref(kvm_host_data));
545 
546 	/*
547 	 * Call initialization code, and switch to the full blown HYP code.
548 	 * If the cpucaps haven't been finalized yet, something has gone very
549 	 * wrong, and hyp will crash and burn when it uses any
550 	 * cpus_have_const_cap() wrapper.
551 	 */
552 	BUG_ON(!system_capabilities_finalized());
553 	__kvm_call_hyp((void *)pgd_ptr, hyp_stack_ptr, vector_ptr, tpidr_el2);
554 
555 	/*
556 	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
557 	 * at EL2.
558 	 */
559 	if (!has_vhe() && this_cpu_has_cap(ARM64_SSBS) &&
560 	    arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
561 		kvm_call_hyp(__kvm_enable_ssbs);
562 	}
563 }
564 
565 static inline bool kvm_arch_requires_vhe(void)
566 {
567 	/*
568 	 * The Arm architecture specifies that implementation of SVE
569 	 * requires VHE also to be implemented.  The KVM code for arm64
570 	 * relies on this when SVE is present:
571 	 */
572 	if (system_supports_sve())
573 		return true;
574 
575 	/* Some implementations have defects that confine them to VHE */
576 	if (cpus_have_cap(ARM64_WORKAROUND_SPECULATIVE_AT_VHE))
577 		return true;
578 
579 	return false;
580 }
581 
582 void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu);
583 
584 static inline void kvm_arch_hardware_unsetup(void) {}
585 static inline void kvm_arch_sync_events(struct kvm *kvm) {}
586 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
587 static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {}
588 
589 void kvm_arm_init_debug(void);
590 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
591 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
592 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
593 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
594 			       struct kvm_device_attr *attr);
595 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
596 			       struct kvm_device_attr *attr);
597 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
598 			       struct kvm_device_attr *attr);
599 
600 static inline void __cpu_init_stage2(void) {}
601 
602 /* Guest/host FPSIMD coordination helpers */
603 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
604 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
605 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
606 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
607 
608 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
609 {
610 	return (!has_vhe() && attr->exclude_host);
611 }
612 
613 #ifdef CONFIG_KVM /* Avoid conflicts with core headers if CONFIG_KVM=n */
614 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
615 {
616 	return kvm_arch_vcpu_run_map_fp(vcpu);
617 }
618 
619 void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr);
620 void kvm_clr_pmu_events(u32 clr);
621 
622 void kvm_vcpu_pmu_restore_guest(struct kvm_vcpu *vcpu);
623 void kvm_vcpu_pmu_restore_host(struct kvm_vcpu *vcpu);
624 #else
625 static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {}
626 static inline void kvm_clr_pmu_events(u32 clr) {}
627 #endif
628 
629 static inline void kvm_arm_vhe_guest_enter(void)
630 {
631 	local_daif_mask();
632 
633 	/*
634 	 * Having IRQs masked via PMR when entering the guest means the GIC
635 	 * will not signal the CPU of interrupts of lower priority, and the
636 	 * only way to get out will be via guest exceptions.
637 	 * Naturally, we want to avoid this.
638 	 *
639 	 * local_daif_mask() already sets GIC_PRIO_PSR_I_SET, we just need a
640 	 * dsb to ensure the redistributor is forwards EL2 IRQs to the CPU.
641 	 */
642 	pmr_sync();
643 }
644 
645 static inline void kvm_arm_vhe_guest_exit(void)
646 {
647 	/*
648 	 * local_daif_restore() takes care to properly restore PSTATE.DAIF
649 	 * and the GIC PMR if the host is using IRQ priorities.
650 	 */
651 	local_daif_restore(DAIF_PROCCTX_NOIRQ);
652 
653 	/*
654 	 * When we exit from the guest we change a number of CPU configuration
655 	 * parameters, such as traps.  Make sure these changes take effect
656 	 * before running the host or additional guests.
657 	 */
658 	isb();
659 }
660 
661 #define KVM_BP_HARDEN_UNKNOWN		-1
662 #define KVM_BP_HARDEN_WA_NEEDED		0
663 #define KVM_BP_HARDEN_NOT_REQUIRED	1
664 
665 static inline int kvm_arm_harden_branch_predictor(void)
666 {
667 	switch (get_spectre_v2_workaround_state()) {
668 	case ARM64_BP_HARDEN_WA_NEEDED:
669 		return KVM_BP_HARDEN_WA_NEEDED;
670 	case ARM64_BP_HARDEN_NOT_REQUIRED:
671 		return KVM_BP_HARDEN_NOT_REQUIRED;
672 	case ARM64_BP_HARDEN_UNKNOWN:
673 	default:
674 		return KVM_BP_HARDEN_UNKNOWN;
675 	}
676 }
677 
678 #define KVM_SSBD_UNKNOWN		-1
679 #define KVM_SSBD_FORCE_DISABLE		0
680 #define KVM_SSBD_KERNEL		1
681 #define KVM_SSBD_FORCE_ENABLE		2
682 #define KVM_SSBD_MITIGATED		3
683 
684 static inline int kvm_arm_have_ssbd(void)
685 {
686 	switch (arm64_get_ssbd_state()) {
687 	case ARM64_SSBD_FORCE_DISABLE:
688 		return KVM_SSBD_FORCE_DISABLE;
689 	case ARM64_SSBD_KERNEL:
690 		return KVM_SSBD_KERNEL;
691 	case ARM64_SSBD_FORCE_ENABLE:
692 		return KVM_SSBD_FORCE_ENABLE;
693 	case ARM64_SSBD_MITIGATED:
694 		return KVM_SSBD_MITIGATED;
695 	case ARM64_SSBD_UNKNOWN:
696 	default:
697 		return KVM_SSBD_UNKNOWN;
698 	}
699 }
700 
701 void kvm_vcpu_load_sysregs(struct kvm_vcpu *vcpu);
702 void kvm_vcpu_put_sysregs(struct kvm_vcpu *vcpu);
703 
704 void kvm_set_ipa_limit(void);
705 
706 #define __KVM_HAVE_ARCH_VM_ALLOC
707 struct kvm *kvm_arch_alloc_vm(void);
708 void kvm_arch_free_vm(struct kvm *kvm);
709 
710 int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type);
711 
712 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
713 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
714 
715 #define kvm_arm_vcpu_sve_finalized(vcpu) \
716 	((vcpu)->arch.flags & KVM_ARM64_VCPU_SVE_FINALIZED)
717 
718 #endif /* __ARM64_KVM_HOST_H__ */
719