1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2012,2013 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 * 6 * Derived from arch/arm/include/asm/kvm_host.h: 7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 8 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 9 */ 10 11 #ifndef __ARM64_KVM_HOST_H__ 12 #define __ARM64_KVM_HOST_H__ 13 14 #include <linux/arm-smccc.h> 15 #include <linux/bitmap.h> 16 #include <linux/types.h> 17 #include <linux/jump_label.h> 18 #include <linux/kvm_types.h> 19 #include <linux/percpu.h> 20 #include <linux/psci.h> 21 #include <asm/arch_gicv3.h> 22 #include <asm/barrier.h> 23 #include <asm/cpufeature.h> 24 #include <asm/cputype.h> 25 #include <asm/daifflags.h> 26 #include <asm/fpsimd.h> 27 #include <asm/kvm.h> 28 #include <asm/kvm_asm.h> 29 #include <asm/thread_info.h> 30 31 #define __KVM_HAVE_ARCH_INTC_INITIALIZED 32 33 #define KVM_HALT_POLL_NS_DEFAULT 500000 34 35 #include <kvm/arm_vgic.h> 36 #include <kvm/arm_arch_timer.h> 37 #include <kvm/arm_pmu.h> 38 39 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS 40 41 #define KVM_VCPU_MAX_FEATURES 7 42 43 #define KVM_REQ_SLEEP \ 44 KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 45 #define KVM_REQ_IRQ_PENDING KVM_ARCH_REQ(1) 46 #define KVM_REQ_VCPU_RESET KVM_ARCH_REQ(2) 47 #define KVM_REQ_RECORD_STEAL KVM_ARCH_REQ(3) 48 #define KVM_REQ_RELOAD_GICv4 KVM_ARCH_REQ(4) 49 50 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \ 51 KVM_DIRTY_LOG_INITIALLY_SET) 52 53 /* 54 * Mode of operation configurable with kvm-arm.mode early param. 55 * See Documentation/admin-guide/kernel-parameters.txt for more information. 56 */ 57 enum kvm_mode { 58 KVM_MODE_DEFAULT, 59 KVM_MODE_PROTECTED, 60 }; 61 enum kvm_mode kvm_get_mode(void); 62 63 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use); 64 65 extern unsigned int kvm_sve_max_vl; 66 int kvm_arm_init_sve(void); 67 68 int __attribute_const__ kvm_target_cpu(void); 69 int kvm_reset_vcpu(struct kvm_vcpu *vcpu); 70 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu); 71 72 struct kvm_vmid { 73 /* The VMID generation used for the virt. memory system */ 74 u64 vmid_gen; 75 u32 vmid; 76 }; 77 78 struct kvm_s2_mmu { 79 struct kvm_vmid vmid; 80 81 /* 82 * stage2 entry level table 83 * 84 * Two kvm_s2_mmu structures in the same VM can point to the same 85 * pgd here. This happens when running a guest using a 86 * translation regime that isn't affected by its own stage-2 87 * translation, such as a non-VHE hypervisor running at vEL2, or 88 * for vEL1/EL0 with vHCR_EL2.VM == 0. In that case, we use the 89 * canonical stage-2 page tables. 90 */ 91 phys_addr_t pgd_phys; 92 struct kvm_pgtable *pgt; 93 94 /* The last vcpu id that ran on each physical CPU */ 95 int __percpu *last_vcpu_ran; 96 97 struct kvm *kvm; 98 }; 99 100 struct kvm_arch_memory_slot { 101 }; 102 103 struct kvm_arch { 104 struct kvm_s2_mmu mmu; 105 106 /* VTCR_EL2 value for this VM */ 107 u64 vtcr; 108 109 /* The maximum number of vCPUs depends on the used GIC model */ 110 int max_vcpus; 111 112 /* Interrupt controller */ 113 struct vgic_dist vgic; 114 115 /* Mandated version of PSCI */ 116 u32 psci_version; 117 118 /* 119 * If we encounter a data abort without valid instruction syndrome 120 * information, report this to user space. User space can (and 121 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is 122 * supported. 123 */ 124 bool return_nisv_io_abort_to_user; 125 126 /* 127 * VM-wide PMU filter, implemented as a bitmap and big enough for 128 * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+). 129 */ 130 unsigned long *pmu_filter; 131 unsigned int pmuver; 132 133 u8 pfr0_csv2; 134 u8 pfr0_csv3; 135 }; 136 137 struct kvm_vcpu_fault_info { 138 u32 esr_el2; /* Hyp Syndrom Register */ 139 u64 far_el2; /* Hyp Fault Address Register */ 140 u64 hpfar_el2; /* Hyp IPA Fault Address Register */ 141 u64 disr_el1; /* Deferred [SError] Status Register */ 142 }; 143 144 enum vcpu_sysreg { 145 __INVALID_SYSREG__, /* 0 is reserved as an invalid value */ 146 MPIDR_EL1, /* MultiProcessor Affinity Register */ 147 CSSELR_EL1, /* Cache Size Selection Register */ 148 SCTLR_EL1, /* System Control Register */ 149 ACTLR_EL1, /* Auxiliary Control Register */ 150 CPACR_EL1, /* Coprocessor Access Control */ 151 ZCR_EL1, /* SVE Control */ 152 TTBR0_EL1, /* Translation Table Base Register 0 */ 153 TTBR1_EL1, /* Translation Table Base Register 1 */ 154 TCR_EL1, /* Translation Control Register */ 155 ESR_EL1, /* Exception Syndrome Register */ 156 AFSR0_EL1, /* Auxiliary Fault Status Register 0 */ 157 AFSR1_EL1, /* Auxiliary Fault Status Register 1 */ 158 FAR_EL1, /* Fault Address Register */ 159 MAIR_EL1, /* Memory Attribute Indirection Register */ 160 VBAR_EL1, /* Vector Base Address Register */ 161 CONTEXTIDR_EL1, /* Context ID Register */ 162 TPIDR_EL0, /* Thread ID, User R/W */ 163 TPIDRRO_EL0, /* Thread ID, User R/O */ 164 TPIDR_EL1, /* Thread ID, Privileged */ 165 AMAIR_EL1, /* Aux Memory Attribute Indirection Register */ 166 CNTKCTL_EL1, /* Timer Control Register (EL1) */ 167 PAR_EL1, /* Physical Address Register */ 168 MDSCR_EL1, /* Monitor Debug System Control Register */ 169 MDCCINT_EL1, /* Monitor Debug Comms Channel Interrupt Enable Reg */ 170 DISR_EL1, /* Deferred Interrupt Status Register */ 171 172 /* Performance Monitors Registers */ 173 PMCR_EL0, /* Control Register */ 174 PMSELR_EL0, /* Event Counter Selection Register */ 175 PMEVCNTR0_EL0, /* Event Counter Register (0-30) */ 176 PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30, 177 PMCCNTR_EL0, /* Cycle Counter Register */ 178 PMEVTYPER0_EL0, /* Event Type Register (0-30) */ 179 PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30, 180 PMCCFILTR_EL0, /* Cycle Count Filter Register */ 181 PMCNTENSET_EL0, /* Count Enable Set Register */ 182 PMINTENSET_EL1, /* Interrupt Enable Set Register */ 183 PMOVSSET_EL0, /* Overflow Flag Status Set Register */ 184 PMSWINC_EL0, /* Software Increment Register */ 185 PMUSERENR_EL0, /* User Enable Register */ 186 187 /* Pointer Authentication Registers in a strict increasing order. */ 188 APIAKEYLO_EL1, 189 APIAKEYHI_EL1, 190 APIBKEYLO_EL1, 191 APIBKEYHI_EL1, 192 APDAKEYLO_EL1, 193 APDAKEYHI_EL1, 194 APDBKEYLO_EL1, 195 APDBKEYHI_EL1, 196 APGAKEYLO_EL1, 197 APGAKEYHI_EL1, 198 199 ELR_EL1, 200 SP_EL1, 201 SPSR_EL1, 202 203 CNTVOFF_EL2, 204 CNTV_CVAL_EL0, 205 CNTV_CTL_EL0, 206 CNTP_CVAL_EL0, 207 CNTP_CTL_EL0, 208 209 /* 32bit specific registers. Keep them at the end of the range */ 210 DACR32_EL2, /* Domain Access Control Register */ 211 IFSR32_EL2, /* Instruction Fault Status Register */ 212 FPEXC32_EL2, /* Floating-Point Exception Control Register */ 213 DBGVCR32_EL2, /* Debug Vector Catch Register */ 214 215 NR_SYS_REGS /* Nothing after this line! */ 216 }; 217 218 struct kvm_cpu_context { 219 struct user_pt_regs regs; /* sp = sp_el0 */ 220 221 u64 spsr_abt; 222 u64 spsr_und; 223 u64 spsr_irq; 224 u64 spsr_fiq; 225 226 struct user_fpsimd_state fp_regs; 227 228 u64 sys_regs[NR_SYS_REGS]; 229 230 struct kvm_vcpu *__hyp_running_vcpu; 231 }; 232 233 struct kvm_pmu_events { 234 u32 events_host; 235 u32 events_guest; 236 }; 237 238 struct kvm_host_data { 239 struct kvm_cpu_context host_ctxt; 240 struct kvm_pmu_events pmu_events; 241 }; 242 243 struct kvm_host_psci_config { 244 /* PSCI version used by host. */ 245 u32 version; 246 247 /* Function IDs used by host if version is v0.1. */ 248 struct psci_0_1_function_ids function_ids_0_1; 249 250 bool psci_0_1_cpu_suspend_implemented; 251 bool psci_0_1_cpu_on_implemented; 252 bool psci_0_1_cpu_off_implemented; 253 bool psci_0_1_migrate_implemented; 254 }; 255 256 extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config); 257 #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config) 258 259 extern s64 kvm_nvhe_sym(hyp_physvirt_offset); 260 #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset) 261 262 extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS]; 263 #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map) 264 265 struct vcpu_reset_state { 266 unsigned long pc; 267 unsigned long r0; 268 bool be; 269 bool reset; 270 }; 271 272 struct kvm_vcpu_arch { 273 struct kvm_cpu_context ctxt; 274 void *sve_state; 275 unsigned int sve_max_vl; 276 277 /* Stage 2 paging state used by the hardware on next switch */ 278 struct kvm_s2_mmu *hw_mmu; 279 280 /* HYP configuration */ 281 u64 hcr_el2; 282 u32 mdcr_el2; 283 284 /* Exception Information */ 285 struct kvm_vcpu_fault_info fault; 286 287 /* State of various workarounds, see kvm_asm.h for bit assignment */ 288 u64 workaround_flags; 289 290 /* Miscellaneous vcpu state flags */ 291 u64 flags; 292 293 /* 294 * We maintain more than a single set of debug registers to support 295 * debugging the guest from the host and to maintain separate host and 296 * guest state during world switches. vcpu_debug_state are the debug 297 * registers of the vcpu as the guest sees them. host_debug_state are 298 * the host registers which are saved and restored during 299 * world switches. external_debug_state contains the debug 300 * values we want to debug the guest. This is set via the 301 * KVM_SET_GUEST_DEBUG ioctl. 302 * 303 * debug_ptr points to the set of debug registers that should be loaded 304 * onto the hardware when running the guest. 305 */ 306 struct kvm_guest_debug_arch *debug_ptr; 307 struct kvm_guest_debug_arch vcpu_debug_state; 308 struct kvm_guest_debug_arch external_debug_state; 309 310 struct thread_info *host_thread_info; /* hyp VA */ 311 struct user_fpsimd_state *host_fpsimd_state; /* hyp VA */ 312 313 struct { 314 /* {Break,watch}point registers */ 315 struct kvm_guest_debug_arch regs; 316 /* Statistical profiling extension */ 317 u64 pmscr_el1; 318 } host_debug_state; 319 320 /* VGIC state */ 321 struct vgic_cpu vgic_cpu; 322 struct arch_timer_cpu timer_cpu; 323 struct kvm_pmu pmu; 324 325 /* 326 * Anything that is not used directly from assembly code goes 327 * here. 328 */ 329 330 /* 331 * Guest registers we preserve during guest debugging. 332 * 333 * These shadow registers are updated by the kvm_handle_sys_reg 334 * trap handler if the guest accesses or updates them while we 335 * are using guest debug. 336 */ 337 struct { 338 u32 mdscr_el1; 339 } guest_debug_preserved; 340 341 /* vcpu power-off state */ 342 bool power_off; 343 344 /* Don't run the guest (internal implementation need) */ 345 bool pause; 346 347 /* Cache some mmu pages needed inside spinlock regions */ 348 struct kvm_mmu_memory_cache mmu_page_cache; 349 350 /* Target CPU and feature flags */ 351 int target; 352 DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES); 353 354 /* Detect first run of a vcpu */ 355 bool has_run_once; 356 357 /* Virtual SError ESR to restore when HCR_EL2.VSE is set */ 358 u64 vsesr_el2; 359 360 /* Additional reset state */ 361 struct vcpu_reset_state reset_state; 362 363 /* True when deferrable sysregs are loaded on the physical CPU, 364 * see kvm_vcpu_load_sysregs_vhe and kvm_vcpu_put_sysregs_vhe. */ 365 bool sysregs_loaded_on_cpu; 366 367 /* Guest PV state */ 368 struct { 369 u64 last_steal; 370 gpa_t base; 371 } steal; 372 }; 373 374 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */ 375 #define vcpu_sve_pffr(vcpu) ((void *)((char *)((vcpu)->arch.sve_state) + \ 376 sve_ffr_offset((vcpu)->arch.sve_max_vl))) 377 378 #define vcpu_sve_state_size(vcpu) ({ \ 379 size_t __size_ret; \ 380 unsigned int __vcpu_vq; \ 381 \ 382 if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) { \ 383 __size_ret = 0; \ 384 } else { \ 385 __vcpu_vq = sve_vq_from_vl((vcpu)->arch.sve_max_vl); \ 386 __size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq); \ 387 } \ 388 \ 389 __size_ret; \ 390 }) 391 392 /* vcpu_arch flags field values: */ 393 #define KVM_ARM64_DEBUG_DIRTY (1 << 0) 394 #define KVM_ARM64_FP_ENABLED (1 << 1) /* guest FP regs loaded */ 395 #define KVM_ARM64_FP_HOST (1 << 2) /* host FP regs loaded */ 396 #define KVM_ARM64_HOST_SVE_IN_USE (1 << 3) /* backup for host TIF_SVE */ 397 #define KVM_ARM64_HOST_SVE_ENABLED (1 << 4) /* SVE enabled for EL0 */ 398 #define KVM_ARM64_GUEST_HAS_SVE (1 << 5) /* SVE exposed to guest */ 399 #define KVM_ARM64_VCPU_SVE_FINALIZED (1 << 6) /* SVE config completed */ 400 #define KVM_ARM64_GUEST_HAS_PTRAUTH (1 << 7) /* PTRAUTH exposed to guest */ 401 #define KVM_ARM64_PENDING_EXCEPTION (1 << 8) /* Exception pending */ 402 #define KVM_ARM64_EXCEPT_MASK (7 << 9) /* Target EL/MODE */ 403 404 /* 405 * When KVM_ARM64_PENDING_EXCEPTION is set, KVM_ARM64_EXCEPT_MASK can 406 * take the following values: 407 * 408 * For AArch32 EL1: 409 */ 410 #define KVM_ARM64_EXCEPT_AA32_UND (0 << 9) 411 #define KVM_ARM64_EXCEPT_AA32_IABT (1 << 9) 412 #define KVM_ARM64_EXCEPT_AA32_DABT (2 << 9) 413 /* For AArch64: */ 414 #define KVM_ARM64_EXCEPT_AA64_ELx_SYNC (0 << 9) 415 #define KVM_ARM64_EXCEPT_AA64_ELx_IRQ (1 << 9) 416 #define KVM_ARM64_EXCEPT_AA64_ELx_FIQ (2 << 9) 417 #define KVM_ARM64_EXCEPT_AA64_ELx_SERR (3 << 9) 418 #define KVM_ARM64_EXCEPT_AA64_EL1 (0 << 11) 419 #define KVM_ARM64_EXCEPT_AA64_EL2 (1 << 11) 420 421 /* 422 * Overlaps with KVM_ARM64_EXCEPT_MASK on purpose so that it can't be 423 * set together with an exception... 424 */ 425 #define KVM_ARM64_INCREMENT_PC (1 << 9) /* Increment PC */ 426 427 #define vcpu_has_sve(vcpu) (system_supports_sve() && \ 428 ((vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_SVE)) 429 430 #ifdef CONFIG_ARM64_PTR_AUTH 431 #define vcpu_has_ptrauth(vcpu) \ 432 ((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) || \ 433 cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) && \ 434 (vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_PTRAUTH) 435 #else 436 #define vcpu_has_ptrauth(vcpu) false 437 #endif 438 439 #define vcpu_gp_regs(v) (&(v)->arch.ctxt.regs) 440 441 /* 442 * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the 443 * memory backed version of a register, and not the one most recently 444 * accessed by a running VCPU. For example, for userspace access or 445 * for system registers that are never context switched, but only 446 * emulated. 447 */ 448 #define __ctxt_sys_reg(c,r) (&(c)->sys_regs[(r)]) 449 450 #define ctxt_sys_reg(c,r) (*__ctxt_sys_reg(c,r)) 451 452 #define __vcpu_sys_reg(v,r) (ctxt_sys_reg(&(v)->arch.ctxt, (r))) 453 454 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg); 455 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg); 456 457 static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val) 458 { 459 /* 460 * *** VHE ONLY *** 461 * 462 * System registers listed in the switch are not saved on every 463 * exit from the guest but are only saved on vcpu_put. 464 * 465 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but 466 * should never be listed below, because the guest cannot modify its 467 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's 468 * thread when emulating cross-VCPU communication. 469 */ 470 if (!has_vhe()) 471 return false; 472 473 switch (reg) { 474 case CSSELR_EL1: *val = read_sysreg_s(SYS_CSSELR_EL1); break; 475 case SCTLR_EL1: *val = read_sysreg_s(SYS_SCTLR_EL12); break; 476 case CPACR_EL1: *val = read_sysreg_s(SYS_CPACR_EL12); break; 477 case TTBR0_EL1: *val = read_sysreg_s(SYS_TTBR0_EL12); break; 478 case TTBR1_EL1: *val = read_sysreg_s(SYS_TTBR1_EL12); break; 479 case TCR_EL1: *val = read_sysreg_s(SYS_TCR_EL12); break; 480 case ESR_EL1: *val = read_sysreg_s(SYS_ESR_EL12); break; 481 case AFSR0_EL1: *val = read_sysreg_s(SYS_AFSR0_EL12); break; 482 case AFSR1_EL1: *val = read_sysreg_s(SYS_AFSR1_EL12); break; 483 case FAR_EL1: *val = read_sysreg_s(SYS_FAR_EL12); break; 484 case MAIR_EL1: *val = read_sysreg_s(SYS_MAIR_EL12); break; 485 case VBAR_EL1: *val = read_sysreg_s(SYS_VBAR_EL12); break; 486 case CONTEXTIDR_EL1: *val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break; 487 case TPIDR_EL0: *val = read_sysreg_s(SYS_TPIDR_EL0); break; 488 case TPIDRRO_EL0: *val = read_sysreg_s(SYS_TPIDRRO_EL0); break; 489 case TPIDR_EL1: *val = read_sysreg_s(SYS_TPIDR_EL1); break; 490 case AMAIR_EL1: *val = read_sysreg_s(SYS_AMAIR_EL12); break; 491 case CNTKCTL_EL1: *val = read_sysreg_s(SYS_CNTKCTL_EL12); break; 492 case ELR_EL1: *val = read_sysreg_s(SYS_ELR_EL12); break; 493 case PAR_EL1: *val = read_sysreg_par(); break; 494 case DACR32_EL2: *val = read_sysreg_s(SYS_DACR32_EL2); break; 495 case IFSR32_EL2: *val = read_sysreg_s(SYS_IFSR32_EL2); break; 496 case DBGVCR32_EL2: *val = read_sysreg_s(SYS_DBGVCR32_EL2); break; 497 default: return false; 498 } 499 500 return true; 501 } 502 503 static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg) 504 { 505 /* 506 * *** VHE ONLY *** 507 * 508 * System registers listed in the switch are not restored on every 509 * entry to the guest but are only restored on vcpu_load. 510 * 511 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but 512 * should never be listed below, because the MPIDR should only be set 513 * once, before running the VCPU, and never changed later. 514 */ 515 if (!has_vhe()) 516 return false; 517 518 switch (reg) { 519 case CSSELR_EL1: write_sysreg_s(val, SYS_CSSELR_EL1); break; 520 case SCTLR_EL1: write_sysreg_s(val, SYS_SCTLR_EL12); break; 521 case CPACR_EL1: write_sysreg_s(val, SYS_CPACR_EL12); break; 522 case TTBR0_EL1: write_sysreg_s(val, SYS_TTBR0_EL12); break; 523 case TTBR1_EL1: write_sysreg_s(val, SYS_TTBR1_EL12); break; 524 case TCR_EL1: write_sysreg_s(val, SYS_TCR_EL12); break; 525 case ESR_EL1: write_sysreg_s(val, SYS_ESR_EL12); break; 526 case AFSR0_EL1: write_sysreg_s(val, SYS_AFSR0_EL12); break; 527 case AFSR1_EL1: write_sysreg_s(val, SYS_AFSR1_EL12); break; 528 case FAR_EL1: write_sysreg_s(val, SYS_FAR_EL12); break; 529 case MAIR_EL1: write_sysreg_s(val, SYS_MAIR_EL12); break; 530 case VBAR_EL1: write_sysreg_s(val, SYS_VBAR_EL12); break; 531 case CONTEXTIDR_EL1: write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break; 532 case TPIDR_EL0: write_sysreg_s(val, SYS_TPIDR_EL0); break; 533 case TPIDRRO_EL0: write_sysreg_s(val, SYS_TPIDRRO_EL0); break; 534 case TPIDR_EL1: write_sysreg_s(val, SYS_TPIDR_EL1); break; 535 case AMAIR_EL1: write_sysreg_s(val, SYS_AMAIR_EL12); break; 536 case CNTKCTL_EL1: write_sysreg_s(val, SYS_CNTKCTL_EL12); break; 537 case ELR_EL1: write_sysreg_s(val, SYS_ELR_EL12); break; 538 case PAR_EL1: write_sysreg_s(val, SYS_PAR_EL1); break; 539 case DACR32_EL2: write_sysreg_s(val, SYS_DACR32_EL2); break; 540 case IFSR32_EL2: write_sysreg_s(val, SYS_IFSR32_EL2); break; 541 case DBGVCR32_EL2: write_sysreg_s(val, SYS_DBGVCR32_EL2); break; 542 default: return false; 543 } 544 545 return true; 546 } 547 548 struct kvm_vm_stat { 549 ulong remote_tlb_flush; 550 }; 551 552 struct kvm_vcpu_stat { 553 u64 halt_successful_poll; 554 u64 halt_attempted_poll; 555 u64 halt_poll_success_ns; 556 u64 halt_poll_fail_ns; 557 u64 halt_poll_invalid; 558 u64 halt_wakeup; 559 u64 hvc_exit_stat; 560 u64 wfe_exit_stat; 561 u64 wfi_exit_stat; 562 u64 mmio_exit_user; 563 u64 mmio_exit_kernel; 564 u64 exits; 565 }; 566 567 int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init); 568 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu); 569 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices); 570 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg); 571 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg); 572 573 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu); 574 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices); 575 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *); 576 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *); 577 578 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, 579 struct kvm_vcpu_events *events); 580 581 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, 582 struct kvm_vcpu_events *events); 583 584 #define KVM_ARCH_WANT_MMU_NOTIFIER 585 int kvm_unmap_hva_range(struct kvm *kvm, 586 unsigned long start, unsigned long end, unsigned flags); 587 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte); 588 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end); 589 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva); 590 591 void kvm_arm_halt_guest(struct kvm *kvm); 592 void kvm_arm_resume_guest(struct kvm *kvm); 593 594 #define kvm_call_hyp_nvhe(f, ...) \ 595 ({ \ 596 struct arm_smccc_res res; \ 597 \ 598 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f), \ 599 ##__VA_ARGS__, &res); \ 600 WARN_ON(res.a0 != SMCCC_RET_SUCCESS); \ 601 \ 602 res.a1; \ 603 }) 604 605 /* 606 * The couple of isb() below are there to guarantee the same behaviour 607 * on VHE as on !VHE, where the eret to EL1 acts as a context 608 * synchronization event. 609 */ 610 #define kvm_call_hyp(f, ...) \ 611 do { \ 612 if (has_vhe()) { \ 613 f(__VA_ARGS__); \ 614 isb(); \ 615 } else { \ 616 kvm_call_hyp_nvhe(f, ##__VA_ARGS__); \ 617 } \ 618 } while(0) 619 620 #define kvm_call_hyp_ret(f, ...) \ 621 ({ \ 622 typeof(f(__VA_ARGS__)) ret; \ 623 \ 624 if (has_vhe()) { \ 625 ret = f(__VA_ARGS__); \ 626 isb(); \ 627 } else { \ 628 ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__); \ 629 } \ 630 \ 631 ret; \ 632 }) 633 634 void force_vm_exit(const cpumask_t *mask); 635 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot); 636 637 int handle_exit(struct kvm_vcpu *vcpu, int exception_index); 638 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index); 639 640 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu); 641 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu); 642 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu); 643 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu); 644 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu); 645 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu); 646 647 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu); 648 649 void kvm_sys_reg_table_init(void); 650 651 /* MMIO helpers */ 652 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data); 653 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len); 654 655 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu); 656 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa); 657 658 int kvm_perf_init(void); 659 int kvm_perf_teardown(void); 660 661 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu); 662 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu); 663 void kvm_update_stolen_time(struct kvm_vcpu *vcpu); 664 665 bool kvm_arm_pvtime_supported(void); 666 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu, 667 struct kvm_device_attr *attr); 668 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu, 669 struct kvm_device_attr *attr); 670 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu, 671 struct kvm_device_attr *attr); 672 673 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch) 674 { 675 vcpu_arch->steal.base = GPA_INVALID; 676 } 677 678 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch) 679 { 680 return (vcpu_arch->steal.base != GPA_INVALID); 681 } 682 683 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome); 684 685 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr); 686 687 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data); 688 689 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt) 690 { 691 /* The host's MPIDR is immutable, so let's set it up at boot time */ 692 ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr(); 693 } 694 695 static inline bool kvm_arch_requires_vhe(void) 696 { 697 /* 698 * The Arm architecture specifies that implementation of SVE 699 * requires VHE also to be implemented. The KVM code for arm64 700 * relies on this when SVE is present: 701 */ 702 if (system_supports_sve()) 703 return true; 704 705 return false; 706 } 707 708 void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu); 709 710 static inline void kvm_arch_hardware_unsetup(void) {} 711 static inline void kvm_arch_sync_events(struct kvm *kvm) {} 712 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {} 713 static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {} 714 715 void kvm_arm_init_debug(void); 716 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu); 717 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu); 718 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu); 719 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu, 720 struct kvm_device_attr *attr); 721 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu, 722 struct kvm_device_attr *attr); 723 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu, 724 struct kvm_device_attr *attr); 725 726 /* Guest/host FPSIMD coordination helpers */ 727 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu); 728 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu); 729 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu); 730 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu); 731 732 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr) 733 { 734 return (!has_vhe() && attr->exclude_host); 735 } 736 737 #ifdef CONFIG_KVM /* Avoid conflicts with core headers if CONFIG_KVM=n */ 738 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 739 { 740 return kvm_arch_vcpu_run_map_fp(vcpu); 741 } 742 743 void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr); 744 void kvm_clr_pmu_events(u32 clr); 745 746 void kvm_vcpu_pmu_restore_guest(struct kvm_vcpu *vcpu); 747 void kvm_vcpu_pmu_restore_host(struct kvm_vcpu *vcpu); 748 #else 749 static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {} 750 static inline void kvm_clr_pmu_events(u32 clr) {} 751 #endif 752 753 void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu); 754 void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu); 755 756 int kvm_set_ipa_limit(void); 757 758 #define __KVM_HAVE_ARCH_VM_ALLOC 759 struct kvm *kvm_arch_alloc_vm(void); 760 void kvm_arch_free_vm(struct kvm *kvm); 761 762 int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type); 763 764 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature); 765 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu); 766 767 #define kvm_arm_vcpu_sve_finalized(vcpu) \ 768 ((vcpu)->arch.flags & KVM_ARM64_VCPU_SVE_FINALIZED) 769 770 #define kvm_vcpu_has_pmu(vcpu) \ 771 (test_bit(KVM_ARM_VCPU_PMU_V3, (vcpu)->arch.features)) 772 773 int kvm_trng_call(struct kvm_vcpu *vcpu); 774 775 #endif /* __ARM64_KVM_HOST_H__ */ 776