xref: /openbmc/linux/arch/arm64/include/asm/kvm_host.h (revision ba61bb17)
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * Derived from arch/arm/include/asm/kvm_host.h:
6  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #ifndef __ARM64_KVM_HOST_H__
23 #define __ARM64_KVM_HOST_H__
24 
25 #include <linux/types.h>
26 #include <linux/kvm_types.h>
27 #include <asm/cpufeature.h>
28 #include <asm/daifflags.h>
29 #include <asm/fpsimd.h>
30 #include <asm/kvm.h>
31 #include <asm/kvm_asm.h>
32 #include <asm/kvm_mmio.h>
33 #include <asm/thread_info.h>
34 
35 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
36 
37 #define KVM_USER_MEM_SLOTS 512
38 #define KVM_HALT_POLL_NS_DEFAULT 500000
39 
40 #include <kvm/arm_vgic.h>
41 #include <kvm/arm_arch_timer.h>
42 #include <kvm/arm_pmu.h>
43 
44 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
45 
46 #define KVM_VCPU_MAX_FEATURES 4
47 
48 #define KVM_REQ_SLEEP \
49 	KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
50 #define KVM_REQ_IRQ_PENDING	KVM_ARCH_REQ(1)
51 
52 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
53 
54 int __attribute_const__ kvm_target_cpu(void);
55 int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
56 int kvm_arch_dev_ioctl_check_extension(struct kvm *kvm, long ext);
57 void __extended_idmap_trampoline(phys_addr_t boot_pgd, phys_addr_t idmap_start);
58 
59 struct kvm_arch {
60 	/* The VMID generation used for the virt. memory system */
61 	u64    vmid_gen;
62 	u32    vmid;
63 
64 	/* 1-level 2nd stage table and lock */
65 	spinlock_t pgd_lock;
66 	pgd_t *pgd;
67 
68 	/* VTTBR value associated with above pgd and vmid */
69 	u64    vttbr;
70 
71 	/* The last vcpu id that ran on each physical CPU */
72 	int __percpu *last_vcpu_ran;
73 
74 	/* The maximum number of vCPUs depends on the used GIC model */
75 	int max_vcpus;
76 
77 	/* Interrupt controller */
78 	struct vgic_dist	vgic;
79 
80 	/* Mandated version of PSCI */
81 	u32 psci_version;
82 };
83 
84 #define KVM_NR_MEM_OBJS     40
85 
86 /*
87  * We don't want allocation failures within the mmu code, so we preallocate
88  * enough memory for a single page fault in a cache.
89  */
90 struct kvm_mmu_memory_cache {
91 	int nobjs;
92 	void *objects[KVM_NR_MEM_OBJS];
93 };
94 
95 struct kvm_vcpu_fault_info {
96 	u32 esr_el2;		/* Hyp Syndrom Register */
97 	u64 far_el2;		/* Hyp Fault Address Register */
98 	u64 hpfar_el2;		/* Hyp IPA Fault Address Register */
99 	u64 disr_el1;		/* Deferred [SError] Status Register */
100 };
101 
102 /*
103  * 0 is reserved as an invalid value.
104  * Order should be kept in sync with the save/restore code.
105  */
106 enum vcpu_sysreg {
107 	__INVALID_SYSREG__,
108 	MPIDR_EL1,	/* MultiProcessor Affinity Register */
109 	CSSELR_EL1,	/* Cache Size Selection Register */
110 	SCTLR_EL1,	/* System Control Register */
111 	ACTLR_EL1,	/* Auxiliary Control Register */
112 	CPACR_EL1,	/* Coprocessor Access Control */
113 	TTBR0_EL1,	/* Translation Table Base Register 0 */
114 	TTBR1_EL1,	/* Translation Table Base Register 1 */
115 	TCR_EL1,	/* Translation Control Register */
116 	ESR_EL1,	/* Exception Syndrome Register */
117 	AFSR0_EL1,	/* Auxiliary Fault Status Register 0 */
118 	AFSR1_EL1,	/* Auxiliary Fault Status Register 1 */
119 	FAR_EL1,	/* Fault Address Register */
120 	MAIR_EL1,	/* Memory Attribute Indirection Register */
121 	VBAR_EL1,	/* Vector Base Address Register */
122 	CONTEXTIDR_EL1,	/* Context ID Register */
123 	TPIDR_EL0,	/* Thread ID, User R/W */
124 	TPIDRRO_EL0,	/* Thread ID, User R/O */
125 	TPIDR_EL1,	/* Thread ID, Privileged */
126 	AMAIR_EL1,	/* Aux Memory Attribute Indirection Register */
127 	CNTKCTL_EL1,	/* Timer Control Register (EL1) */
128 	PAR_EL1,	/* Physical Address Register */
129 	MDSCR_EL1,	/* Monitor Debug System Control Register */
130 	MDCCINT_EL1,	/* Monitor Debug Comms Channel Interrupt Enable Reg */
131 	DISR_EL1,	/* Deferred Interrupt Status Register */
132 
133 	/* Performance Monitors Registers */
134 	PMCR_EL0,	/* Control Register */
135 	PMSELR_EL0,	/* Event Counter Selection Register */
136 	PMEVCNTR0_EL0,	/* Event Counter Register (0-30) */
137 	PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
138 	PMCCNTR_EL0,	/* Cycle Counter Register */
139 	PMEVTYPER0_EL0,	/* Event Type Register (0-30) */
140 	PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
141 	PMCCFILTR_EL0,	/* Cycle Count Filter Register */
142 	PMCNTENSET_EL0,	/* Count Enable Set Register */
143 	PMINTENSET_EL1,	/* Interrupt Enable Set Register */
144 	PMOVSSET_EL0,	/* Overflow Flag Status Set Register */
145 	PMSWINC_EL0,	/* Software Increment Register */
146 	PMUSERENR_EL0,	/* User Enable Register */
147 
148 	/* 32bit specific registers. Keep them at the end of the range */
149 	DACR32_EL2,	/* Domain Access Control Register */
150 	IFSR32_EL2,	/* Instruction Fault Status Register */
151 	FPEXC32_EL2,	/* Floating-Point Exception Control Register */
152 	DBGVCR32_EL2,	/* Debug Vector Catch Register */
153 
154 	NR_SYS_REGS	/* Nothing after this line! */
155 };
156 
157 /* 32bit mapping */
158 #define c0_MPIDR	(MPIDR_EL1 * 2)	/* MultiProcessor ID Register */
159 #define c0_CSSELR	(CSSELR_EL1 * 2)/* Cache Size Selection Register */
160 #define c1_SCTLR	(SCTLR_EL1 * 2)	/* System Control Register */
161 #define c1_ACTLR	(ACTLR_EL1 * 2)	/* Auxiliary Control Register */
162 #define c1_CPACR	(CPACR_EL1 * 2)	/* Coprocessor Access Control */
163 #define c2_TTBR0	(TTBR0_EL1 * 2)	/* Translation Table Base Register 0 */
164 #define c2_TTBR0_high	(c2_TTBR0 + 1)	/* TTBR0 top 32 bits */
165 #define c2_TTBR1	(TTBR1_EL1 * 2)	/* Translation Table Base Register 1 */
166 #define c2_TTBR1_high	(c2_TTBR1 + 1)	/* TTBR1 top 32 bits */
167 #define c2_TTBCR	(TCR_EL1 * 2)	/* Translation Table Base Control R. */
168 #define c3_DACR		(DACR32_EL2 * 2)/* Domain Access Control Register */
169 #define c5_DFSR		(ESR_EL1 * 2)	/* Data Fault Status Register */
170 #define c5_IFSR		(IFSR32_EL2 * 2)/* Instruction Fault Status Register */
171 #define c5_ADFSR	(AFSR0_EL1 * 2)	/* Auxiliary Data Fault Status R */
172 #define c5_AIFSR	(AFSR1_EL1 * 2)	/* Auxiliary Instr Fault Status R */
173 #define c6_DFAR		(FAR_EL1 * 2)	/* Data Fault Address Register */
174 #define c6_IFAR		(c6_DFAR + 1)	/* Instruction Fault Address Register */
175 #define c7_PAR		(PAR_EL1 * 2)	/* Physical Address Register */
176 #define c7_PAR_high	(c7_PAR + 1)	/* PAR top 32 bits */
177 #define c10_PRRR	(MAIR_EL1 * 2)	/* Primary Region Remap Register */
178 #define c10_NMRR	(c10_PRRR + 1)	/* Normal Memory Remap Register */
179 #define c12_VBAR	(VBAR_EL1 * 2)	/* Vector Base Address Register */
180 #define c13_CID		(CONTEXTIDR_EL1 * 2)	/* Context ID Register */
181 #define c13_TID_URW	(TPIDR_EL0 * 2)	/* Thread ID, User R/W */
182 #define c13_TID_URO	(TPIDRRO_EL0 * 2)/* Thread ID, User R/O */
183 #define c13_TID_PRIV	(TPIDR_EL1 * 2)	/* Thread ID, Privileged */
184 #define c10_AMAIR0	(AMAIR_EL1 * 2)	/* Aux Memory Attr Indirection Reg */
185 #define c10_AMAIR1	(c10_AMAIR0 + 1)/* Aux Memory Attr Indirection Reg */
186 #define c14_CNTKCTL	(CNTKCTL_EL1 * 2) /* Timer Control Register (PL1) */
187 
188 #define cp14_DBGDSCRext	(MDSCR_EL1 * 2)
189 #define cp14_DBGBCR0	(DBGBCR0_EL1 * 2)
190 #define cp14_DBGBVR0	(DBGBVR0_EL1 * 2)
191 #define cp14_DBGBXVR0	(cp14_DBGBVR0 + 1)
192 #define cp14_DBGWCR0	(DBGWCR0_EL1 * 2)
193 #define cp14_DBGWVR0	(DBGWVR0_EL1 * 2)
194 #define cp14_DBGDCCINT	(MDCCINT_EL1 * 2)
195 
196 #define NR_COPRO_REGS	(NR_SYS_REGS * 2)
197 
198 struct kvm_cpu_context {
199 	struct kvm_regs	gp_regs;
200 	union {
201 		u64 sys_regs[NR_SYS_REGS];
202 		u32 copro[NR_COPRO_REGS];
203 	};
204 
205 	struct kvm_vcpu *__hyp_running_vcpu;
206 };
207 
208 typedef struct kvm_cpu_context kvm_cpu_context_t;
209 
210 struct kvm_vcpu_arch {
211 	struct kvm_cpu_context ctxt;
212 
213 	/* HYP configuration */
214 	u64 hcr_el2;
215 	u32 mdcr_el2;
216 
217 	/* Exception Information */
218 	struct kvm_vcpu_fault_info fault;
219 
220 	/* State of various workarounds, see kvm_asm.h for bit assignment */
221 	u64 workaround_flags;
222 
223 	/* Miscellaneous vcpu state flags */
224 	u64 flags;
225 
226 	/*
227 	 * We maintain more than a single set of debug registers to support
228 	 * debugging the guest from the host and to maintain separate host and
229 	 * guest state during world switches. vcpu_debug_state are the debug
230 	 * registers of the vcpu as the guest sees them.  host_debug_state are
231 	 * the host registers which are saved and restored during
232 	 * world switches. external_debug_state contains the debug
233 	 * values we want to debug the guest. This is set via the
234 	 * KVM_SET_GUEST_DEBUG ioctl.
235 	 *
236 	 * debug_ptr points to the set of debug registers that should be loaded
237 	 * onto the hardware when running the guest.
238 	 */
239 	struct kvm_guest_debug_arch *debug_ptr;
240 	struct kvm_guest_debug_arch vcpu_debug_state;
241 	struct kvm_guest_debug_arch external_debug_state;
242 
243 	/* Pointer to host CPU context */
244 	kvm_cpu_context_t *host_cpu_context;
245 
246 	struct thread_info *host_thread_info;	/* hyp VA */
247 	struct user_fpsimd_state *host_fpsimd_state;	/* hyp VA */
248 
249 	struct {
250 		/* {Break,watch}point registers */
251 		struct kvm_guest_debug_arch regs;
252 		/* Statistical profiling extension */
253 		u64 pmscr_el1;
254 	} host_debug_state;
255 
256 	/* VGIC state */
257 	struct vgic_cpu vgic_cpu;
258 	struct arch_timer_cpu timer_cpu;
259 	struct kvm_pmu pmu;
260 
261 	/*
262 	 * Anything that is not used directly from assembly code goes
263 	 * here.
264 	 */
265 
266 	/*
267 	 * Guest registers we preserve during guest debugging.
268 	 *
269 	 * These shadow registers are updated by the kvm_handle_sys_reg
270 	 * trap handler if the guest accesses or updates them while we
271 	 * are using guest debug.
272 	 */
273 	struct {
274 		u32	mdscr_el1;
275 	} guest_debug_preserved;
276 
277 	/* vcpu power-off state */
278 	bool power_off;
279 
280 	/* Don't run the guest (internal implementation need) */
281 	bool pause;
282 
283 	/* IO related fields */
284 	struct kvm_decode mmio_decode;
285 
286 	/* Cache some mmu pages needed inside spinlock regions */
287 	struct kvm_mmu_memory_cache mmu_page_cache;
288 
289 	/* Target CPU and feature flags */
290 	int target;
291 	DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);
292 
293 	/* Detect first run of a vcpu */
294 	bool has_run_once;
295 
296 	/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
297 	u64 vsesr_el2;
298 
299 	/* True when deferrable sysregs are loaded on the physical CPU,
300 	 * see kvm_vcpu_load_sysregs and kvm_vcpu_put_sysregs. */
301 	bool sysregs_loaded_on_cpu;
302 };
303 
304 /* vcpu_arch flags field values: */
305 #define KVM_ARM64_DEBUG_DIRTY		(1 << 0)
306 #define KVM_ARM64_FP_ENABLED		(1 << 1) /* guest FP regs loaded */
307 #define KVM_ARM64_FP_HOST		(1 << 2) /* host FP regs loaded */
308 #define KVM_ARM64_HOST_SVE_IN_USE	(1 << 3) /* backup for host TIF_SVE */
309 #define KVM_ARM64_HOST_SVE_ENABLED	(1 << 4) /* SVE enabled for EL0 */
310 
311 #define vcpu_gp_regs(v)		(&(v)->arch.ctxt.gp_regs)
312 
313 /*
314  * Only use __vcpu_sys_reg if you know you want the memory backed version of a
315  * register, and not the one most recently accessed by a running VCPU.  For
316  * example, for userspace access or for system registers that are never context
317  * switched, but only emulated.
318  */
319 #define __vcpu_sys_reg(v,r)	((v)->arch.ctxt.sys_regs[(r)])
320 
321 u64 vcpu_read_sys_reg(struct kvm_vcpu *vcpu, int reg);
322 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
323 
324 /*
325  * CP14 and CP15 live in the same array, as they are backed by the
326  * same system registers.
327  */
328 #define vcpu_cp14(v,r)		((v)->arch.ctxt.copro[(r)])
329 #define vcpu_cp15(v,r)		((v)->arch.ctxt.copro[(r)])
330 
331 struct kvm_vm_stat {
332 	ulong remote_tlb_flush;
333 };
334 
335 struct kvm_vcpu_stat {
336 	u64 halt_successful_poll;
337 	u64 halt_attempted_poll;
338 	u64 halt_poll_invalid;
339 	u64 halt_wakeup;
340 	u64 hvc_exit_stat;
341 	u64 wfe_exit_stat;
342 	u64 wfi_exit_stat;
343 	u64 mmio_exit_user;
344 	u64 mmio_exit_kernel;
345 	u64 exits;
346 };
347 
348 int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init);
349 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
350 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
351 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
352 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
353 
354 #define KVM_ARCH_WANT_MMU_NOTIFIER
355 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva);
356 int kvm_unmap_hva_range(struct kvm *kvm,
357 			unsigned long start, unsigned long end);
358 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);
359 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end);
360 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva);
361 
362 struct kvm_vcpu *kvm_arm_get_running_vcpu(void);
363 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
364 void kvm_arm_halt_guest(struct kvm *kvm);
365 void kvm_arm_resume_guest(struct kvm *kvm);
366 
367 u64 __kvm_call_hyp(void *hypfn, ...);
368 #define kvm_call_hyp(f, ...) __kvm_call_hyp(kvm_ksym_ref(f), ##__VA_ARGS__)
369 
370 void force_vm_exit(const cpumask_t *mask);
371 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot);
372 
373 int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
374 		int exception_index);
375 void handle_exit_early(struct kvm_vcpu *vcpu, struct kvm_run *run,
376 		       int exception_index);
377 
378 int kvm_perf_init(void);
379 int kvm_perf_teardown(void);
380 
381 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
382 
383 void __kvm_set_tpidr_el2(u64 tpidr_el2);
384 DECLARE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
385 
386 static inline void __cpu_init_hyp_mode(phys_addr_t pgd_ptr,
387 				       unsigned long hyp_stack_ptr,
388 				       unsigned long vector_ptr)
389 {
390 	u64 tpidr_el2;
391 
392 	/*
393 	 * Call initialization code, and switch to the full blown HYP code.
394 	 * If the cpucaps haven't been finalized yet, something has gone very
395 	 * wrong, and hyp will crash and burn when it uses any
396 	 * cpus_have_const_cap() wrapper.
397 	 */
398 	BUG_ON(!static_branch_likely(&arm64_const_caps_ready));
399 	__kvm_call_hyp((void *)pgd_ptr, hyp_stack_ptr, vector_ptr);
400 
401 	/*
402 	 * Calculate the raw per-cpu offset without a translation from the
403 	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
404 	 * so that we can use adr_l to access per-cpu variables in EL2.
405 	 */
406 	tpidr_el2 = (u64)this_cpu_ptr(&kvm_host_cpu_state)
407 		- (u64)kvm_ksym_ref(kvm_host_cpu_state);
408 
409 	kvm_call_hyp(__kvm_set_tpidr_el2, tpidr_el2);
410 }
411 
412 static inline bool kvm_arch_check_sve_has_vhe(void)
413 {
414 	/*
415 	 * The Arm architecture specifies that implementation of SVE
416 	 * requires VHE also to be implemented.  The KVM code for arm64
417 	 * relies on this when SVE is present:
418 	 */
419 	if (system_supports_sve())
420 		return has_vhe();
421 	else
422 		return true;
423 }
424 
425 static inline void kvm_arch_hardware_unsetup(void) {}
426 static inline void kvm_arch_sync_events(struct kvm *kvm) {}
427 static inline void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) {}
428 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
429 static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {}
430 
431 void kvm_arm_init_debug(void);
432 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
433 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
434 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
435 bool kvm_arm_handle_step_debug(struct kvm_vcpu *vcpu, struct kvm_run *run);
436 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
437 			       struct kvm_device_attr *attr);
438 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
439 			       struct kvm_device_attr *attr);
440 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
441 			       struct kvm_device_attr *attr);
442 
443 static inline void __cpu_init_stage2(void)
444 {
445 	u32 parange = kvm_call_hyp(__init_stage2_translation);
446 
447 	WARN_ONCE(parange < 40,
448 		  "PARange is %d bits, unsupported configuration!", parange);
449 }
450 
451 /* Guest/host FPSIMD coordination helpers */
452 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
453 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
454 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
455 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
456 
457 #ifdef CONFIG_KVM /* Avoid conflicts with core headers if CONFIG_KVM=n */
458 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
459 {
460 	return kvm_arch_vcpu_run_map_fp(vcpu);
461 }
462 #endif
463 
464 static inline void kvm_arm_vhe_guest_enter(void)
465 {
466 	local_daif_mask();
467 }
468 
469 static inline void kvm_arm_vhe_guest_exit(void)
470 {
471 	local_daif_restore(DAIF_PROCCTX_NOIRQ);
472 
473 	/*
474 	 * When we exit from the guest we change a number of CPU configuration
475 	 * parameters, such as traps.  Make sure these changes take effect
476 	 * before running the host or additional guests.
477 	 */
478 	isb();
479 }
480 
481 static inline bool kvm_arm_harden_branch_predictor(void)
482 {
483 	return cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR);
484 }
485 
486 #define KVM_SSBD_UNKNOWN		-1
487 #define KVM_SSBD_FORCE_DISABLE		0
488 #define KVM_SSBD_KERNEL		1
489 #define KVM_SSBD_FORCE_ENABLE		2
490 #define KVM_SSBD_MITIGATED		3
491 
492 static inline int kvm_arm_have_ssbd(void)
493 {
494 	switch (arm64_get_ssbd_state()) {
495 	case ARM64_SSBD_FORCE_DISABLE:
496 		return KVM_SSBD_FORCE_DISABLE;
497 	case ARM64_SSBD_KERNEL:
498 		return KVM_SSBD_KERNEL;
499 	case ARM64_SSBD_FORCE_ENABLE:
500 		return KVM_SSBD_FORCE_ENABLE;
501 	case ARM64_SSBD_MITIGATED:
502 		return KVM_SSBD_MITIGATED;
503 	case ARM64_SSBD_UNKNOWN:
504 	default:
505 		return KVM_SSBD_UNKNOWN;
506 	}
507 }
508 
509 void kvm_vcpu_load_sysregs(struct kvm_vcpu *vcpu);
510 void kvm_vcpu_put_sysregs(struct kvm_vcpu *vcpu);
511 
512 #define __KVM_HAVE_ARCH_VM_ALLOC
513 struct kvm *kvm_arch_alloc_vm(void);
514 void kvm_arch_free_vm(struct kvm *kvm);
515 
516 #endif /* __ARM64_KVM_HOST_H__ */
517