1 /* 2 * Copyright (C) 2012,2013 - ARM Ltd 3 * Author: Marc Zyngier <marc.zyngier@arm.com> 4 * 5 * Derived from arch/arm/include/asm/kvm_host.h: 6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 7 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program. If not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #ifndef __ARM64_KVM_HOST_H__ 23 #define __ARM64_KVM_HOST_H__ 24 25 #include <linux/bitmap.h> 26 #include <linux/types.h> 27 #include <linux/jump_label.h> 28 #include <linux/kvm_types.h> 29 #include <linux/percpu.h> 30 #include <asm/arch_gicv3.h> 31 #include <asm/barrier.h> 32 #include <asm/cpufeature.h> 33 #include <asm/daifflags.h> 34 #include <asm/fpsimd.h> 35 #include <asm/kvm.h> 36 #include <asm/kvm_asm.h> 37 #include <asm/kvm_mmio.h> 38 #include <asm/smp_plat.h> 39 #include <asm/thread_info.h> 40 41 #define __KVM_HAVE_ARCH_INTC_INITIALIZED 42 43 #define KVM_USER_MEM_SLOTS 512 44 #define KVM_HALT_POLL_NS_DEFAULT 500000 45 46 #include <kvm/arm_vgic.h> 47 #include <kvm/arm_arch_timer.h> 48 #include <kvm/arm_pmu.h> 49 50 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS 51 52 #define KVM_VCPU_MAX_FEATURES 7 53 54 #define KVM_REQ_SLEEP \ 55 KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 56 #define KVM_REQ_IRQ_PENDING KVM_ARCH_REQ(1) 57 #define KVM_REQ_VCPU_RESET KVM_ARCH_REQ(2) 58 59 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use); 60 61 extern unsigned int kvm_sve_max_vl; 62 int kvm_arm_init_sve(void); 63 64 int __attribute_const__ kvm_target_cpu(void); 65 int kvm_reset_vcpu(struct kvm_vcpu *vcpu); 66 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu); 67 int kvm_arch_vm_ioctl_check_extension(struct kvm *kvm, long ext); 68 void __extended_idmap_trampoline(phys_addr_t boot_pgd, phys_addr_t idmap_start); 69 70 struct kvm_vmid { 71 /* The VMID generation used for the virt. memory system */ 72 u64 vmid_gen; 73 u32 vmid; 74 }; 75 76 struct kvm_arch { 77 struct kvm_vmid vmid; 78 79 /* stage2 entry level table */ 80 pgd_t *pgd; 81 phys_addr_t pgd_phys; 82 83 /* VTCR_EL2 value for this VM */ 84 u64 vtcr; 85 86 /* The last vcpu id that ran on each physical CPU */ 87 int __percpu *last_vcpu_ran; 88 89 /* The maximum number of vCPUs depends on the used GIC model */ 90 int max_vcpus; 91 92 /* Interrupt controller */ 93 struct vgic_dist vgic; 94 95 /* Mandated version of PSCI */ 96 u32 psci_version; 97 }; 98 99 #define KVM_NR_MEM_OBJS 40 100 101 /* 102 * We don't want allocation failures within the mmu code, so we preallocate 103 * enough memory for a single page fault in a cache. 104 */ 105 struct kvm_mmu_memory_cache { 106 int nobjs; 107 void *objects[KVM_NR_MEM_OBJS]; 108 }; 109 110 struct kvm_vcpu_fault_info { 111 u32 esr_el2; /* Hyp Syndrom Register */ 112 u64 far_el2; /* Hyp Fault Address Register */ 113 u64 hpfar_el2; /* Hyp IPA Fault Address Register */ 114 u64 disr_el1; /* Deferred [SError] Status Register */ 115 }; 116 117 /* 118 * 0 is reserved as an invalid value. 119 * Order should be kept in sync with the save/restore code. 120 */ 121 enum vcpu_sysreg { 122 __INVALID_SYSREG__, 123 MPIDR_EL1, /* MultiProcessor Affinity Register */ 124 CSSELR_EL1, /* Cache Size Selection Register */ 125 SCTLR_EL1, /* System Control Register */ 126 ACTLR_EL1, /* Auxiliary Control Register */ 127 CPACR_EL1, /* Coprocessor Access Control */ 128 ZCR_EL1, /* SVE Control */ 129 TTBR0_EL1, /* Translation Table Base Register 0 */ 130 TTBR1_EL1, /* Translation Table Base Register 1 */ 131 TCR_EL1, /* Translation Control Register */ 132 ESR_EL1, /* Exception Syndrome Register */ 133 AFSR0_EL1, /* Auxiliary Fault Status Register 0 */ 134 AFSR1_EL1, /* Auxiliary Fault Status Register 1 */ 135 FAR_EL1, /* Fault Address Register */ 136 MAIR_EL1, /* Memory Attribute Indirection Register */ 137 VBAR_EL1, /* Vector Base Address Register */ 138 CONTEXTIDR_EL1, /* Context ID Register */ 139 TPIDR_EL0, /* Thread ID, User R/W */ 140 TPIDRRO_EL0, /* Thread ID, User R/O */ 141 TPIDR_EL1, /* Thread ID, Privileged */ 142 AMAIR_EL1, /* Aux Memory Attribute Indirection Register */ 143 CNTKCTL_EL1, /* Timer Control Register (EL1) */ 144 PAR_EL1, /* Physical Address Register */ 145 MDSCR_EL1, /* Monitor Debug System Control Register */ 146 MDCCINT_EL1, /* Monitor Debug Comms Channel Interrupt Enable Reg */ 147 DISR_EL1, /* Deferred Interrupt Status Register */ 148 149 /* Performance Monitors Registers */ 150 PMCR_EL0, /* Control Register */ 151 PMSELR_EL0, /* Event Counter Selection Register */ 152 PMEVCNTR0_EL0, /* Event Counter Register (0-30) */ 153 PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30, 154 PMCCNTR_EL0, /* Cycle Counter Register */ 155 PMEVTYPER0_EL0, /* Event Type Register (0-30) */ 156 PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30, 157 PMCCFILTR_EL0, /* Cycle Count Filter Register */ 158 PMCNTENSET_EL0, /* Count Enable Set Register */ 159 PMINTENSET_EL1, /* Interrupt Enable Set Register */ 160 PMOVSSET_EL0, /* Overflow Flag Status Set Register */ 161 PMSWINC_EL0, /* Software Increment Register */ 162 PMUSERENR_EL0, /* User Enable Register */ 163 164 /* Pointer Authentication Registers in a strict increasing order. */ 165 APIAKEYLO_EL1, 166 APIAKEYHI_EL1, 167 APIBKEYLO_EL1, 168 APIBKEYHI_EL1, 169 APDAKEYLO_EL1, 170 APDAKEYHI_EL1, 171 APDBKEYLO_EL1, 172 APDBKEYHI_EL1, 173 APGAKEYLO_EL1, 174 APGAKEYHI_EL1, 175 176 /* 32bit specific registers. Keep them at the end of the range */ 177 DACR32_EL2, /* Domain Access Control Register */ 178 IFSR32_EL2, /* Instruction Fault Status Register */ 179 FPEXC32_EL2, /* Floating-Point Exception Control Register */ 180 DBGVCR32_EL2, /* Debug Vector Catch Register */ 181 182 NR_SYS_REGS /* Nothing after this line! */ 183 }; 184 185 /* 32bit mapping */ 186 #define c0_MPIDR (MPIDR_EL1 * 2) /* MultiProcessor ID Register */ 187 #define c0_CSSELR (CSSELR_EL1 * 2)/* Cache Size Selection Register */ 188 #define c1_SCTLR (SCTLR_EL1 * 2) /* System Control Register */ 189 #define c1_ACTLR (ACTLR_EL1 * 2) /* Auxiliary Control Register */ 190 #define c1_CPACR (CPACR_EL1 * 2) /* Coprocessor Access Control */ 191 #define c2_TTBR0 (TTBR0_EL1 * 2) /* Translation Table Base Register 0 */ 192 #define c2_TTBR0_high (c2_TTBR0 + 1) /* TTBR0 top 32 bits */ 193 #define c2_TTBR1 (TTBR1_EL1 * 2) /* Translation Table Base Register 1 */ 194 #define c2_TTBR1_high (c2_TTBR1 + 1) /* TTBR1 top 32 bits */ 195 #define c2_TTBCR (TCR_EL1 * 2) /* Translation Table Base Control R. */ 196 #define c3_DACR (DACR32_EL2 * 2)/* Domain Access Control Register */ 197 #define c5_DFSR (ESR_EL1 * 2) /* Data Fault Status Register */ 198 #define c5_IFSR (IFSR32_EL2 * 2)/* Instruction Fault Status Register */ 199 #define c5_ADFSR (AFSR0_EL1 * 2) /* Auxiliary Data Fault Status R */ 200 #define c5_AIFSR (AFSR1_EL1 * 2) /* Auxiliary Instr Fault Status R */ 201 #define c6_DFAR (FAR_EL1 * 2) /* Data Fault Address Register */ 202 #define c6_IFAR (c6_DFAR + 1) /* Instruction Fault Address Register */ 203 #define c7_PAR (PAR_EL1 * 2) /* Physical Address Register */ 204 #define c7_PAR_high (c7_PAR + 1) /* PAR top 32 bits */ 205 #define c10_PRRR (MAIR_EL1 * 2) /* Primary Region Remap Register */ 206 #define c10_NMRR (c10_PRRR + 1) /* Normal Memory Remap Register */ 207 #define c12_VBAR (VBAR_EL1 * 2) /* Vector Base Address Register */ 208 #define c13_CID (CONTEXTIDR_EL1 * 2) /* Context ID Register */ 209 #define c13_TID_URW (TPIDR_EL0 * 2) /* Thread ID, User R/W */ 210 #define c13_TID_URO (TPIDRRO_EL0 * 2)/* Thread ID, User R/O */ 211 #define c13_TID_PRIV (TPIDR_EL1 * 2) /* Thread ID, Privileged */ 212 #define c10_AMAIR0 (AMAIR_EL1 * 2) /* Aux Memory Attr Indirection Reg */ 213 #define c10_AMAIR1 (c10_AMAIR0 + 1)/* Aux Memory Attr Indirection Reg */ 214 #define c14_CNTKCTL (CNTKCTL_EL1 * 2) /* Timer Control Register (PL1) */ 215 216 #define cp14_DBGDSCRext (MDSCR_EL1 * 2) 217 #define cp14_DBGBCR0 (DBGBCR0_EL1 * 2) 218 #define cp14_DBGBVR0 (DBGBVR0_EL1 * 2) 219 #define cp14_DBGBXVR0 (cp14_DBGBVR0 + 1) 220 #define cp14_DBGWCR0 (DBGWCR0_EL1 * 2) 221 #define cp14_DBGWVR0 (DBGWVR0_EL1 * 2) 222 #define cp14_DBGDCCINT (MDCCINT_EL1 * 2) 223 224 #define NR_COPRO_REGS (NR_SYS_REGS * 2) 225 226 struct kvm_cpu_context { 227 struct kvm_regs gp_regs; 228 union { 229 u64 sys_regs[NR_SYS_REGS]; 230 u32 copro[NR_COPRO_REGS]; 231 }; 232 233 struct kvm_vcpu *__hyp_running_vcpu; 234 }; 235 236 struct kvm_pmu_events { 237 u32 events_host; 238 u32 events_guest; 239 }; 240 241 struct kvm_host_data { 242 struct kvm_cpu_context host_ctxt; 243 struct kvm_pmu_events pmu_events; 244 }; 245 246 typedef struct kvm_host_data kvm_host_data_t; 247 248 struct vcpu_reset_state { 249 unsigned long pc; 250 unsigned long r0; 251 bool be; 252 bool reset; 253 }; 254 255 struct kvm_vcpu_arch { 256 struct kvm_cpu_context ctxt; 257 void *sve_state; 258 unsigned int sve_max_vl; 259 260 /* HYP configuration */ 261 u64 hcr_el2; 262 u32 mdcr_el2; 263 264 /* Exception Information */ 265 struct kvm_vcpu_fault_info fault; 266 267 /* State of various workarounds, see kvm_asm.h for bit assignment */ 268 u64 workaround_flags; 269 270 /* Miscellaneous vcpu state flags */ 271 u64 flags; 272 273 /* 274 * We maintain more than a single set of debug registers to support 275 * debugging the guest from the host and to maintain separate host and 276 * guest state during world switches. vcpu_debug_state are the debug 277 * registers of the vcpu as the guest sees them. host_debug_state are 278 * the host registers which are saved and restored during 279 * world switches. external_debug_state contains the debug 280 * values we want to debug the guest. This is set via the 281 * KVM_SET_GUEST_DEBUG ioctl. 282 * 283 * debug_ptr points to the set of debug registers that should be loaded 284 * onto the hardware when running the guest. 285 */ 286 struct kvm_guest_debug_arch *debug_ptr; 287 struct kvm_guest_debug_arch vcpu_debug_state; 288 struct kvm_guest_debug_arch external_debug_state; 289 290 /* Pointer to host CPU context */ 291 struct kvm_cpu_context *host_cpu_context; 292 293 struct thread_info *host_thread_info; /* hyp VA */ 294 struct user_fpsimd_state *host_fpsimd_state; /* hyp VA */ 295 296 struct { 297 /* {Break,watch}point registers */ 298 struct kvm_guest_debug_arch regs; 299 /* Statistical profiling extension */ 300 u64 pmscr_el1; 301 } host_debug_state; 302 303 /* VGIC state */ 304 struct vgic_cpu vgic_cpu; 305 struct arch_timer_cpu timer_cpu; 306 struct kvm_pmu pmu; 307 308 /* 309 * Anything that is not used directly from assembly code goes 310 * here. 311 */ 312 313 /* 314 * Guest registers we preserve during guest debugging. 315 * 316 * These shadow registers are updated by the kvm_handle_sys_reg 317 * trap handler if the guest accesses or updates them while we 318 * are using guest debug. 319 */ 320 struct { 321 u32 mdscr_el1; 322 } guest_debug_preserved; 323 324 /* vcpu power-off state */ 325 bool power_off; 326 327 /* Don't run the guest (internal implementation need) */ 328 bool pause; 329 330 /* IO related fields */ 331 struct kvm_decode mmio_decode; 332 333 /* Cache some mmu pages needed inside spinlock regions */ 334 struct kvm_mmu_memory_cache mmu_page_cache; 335 336 /* Target CPU and feature flags */ 337 int target; 338 DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES); 339 340 /* Detect first run of a vcpu */ 341 bool has_run_once; 342 343 /* Virtual SError ESR to restore when HCR_EL2.VSE is set */ 344 u64 vsesr_el2; 345 346 /* Additional reset state */ 347 struct vcpu_reset_state reset_state; 348 349 /* True when deferrable sysregs are loaded on the physical CPU, 350 * see kvm_vcpu_load_sysregs and kvm_vcpu_put_sysregs. */ 351 bool sysregs_loaded_on_cpu; 352 }; 353 354 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */ 355 #define vcpu_sve_pffr(vcpu) ((void *)((char *)((vcpu)->arch.sve_state) + \ 356 sve_ffr_offset((vcpu)->arch.sve_max_vl))) 357 358 #define vcpu_sve_state_size(vcpu) ({ \ 359 size_t __size_ret; \ 360 unsigned int __vcpu_vq; \ 361 \ 362 if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) { \ 363 __size_ret = 0; \ 364 } else { \ 365 __vcpu_vq = sve_vq_from_vl((vcpu)->arch.sve_max_vl); \ 366 __size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq); \ 367 } \ 368 \ 369 __size_ret; \ 370 }) 371 372 /* vcpu_arch flags field values: */ 373 #define KVM_ARM64_DEBUG_DIRTY (1 << 0) 374 #define KVM_ARM64_FP_ENABLED (1 << 1) /* guest FP regs loaded */ 375 #define KVM_ARM64_FP_HOST (1 << 2) /* host FP regs loaded */ 376 #define KVM_ARM64_HOST_SVE_IN_USE (1 << 3) /* backup for host TIF_SVE */ 377 #define KVM_ARM64_HOST_SVE_ENABLED (1 << 4) /* SVE enabled for EL0 */ 378 #define KVM_ARM64_GUEST_HAS_SVE (1 << 5) /* SVE exposed to guest */ 379 #define KVM_ARM64_VCPU_SVE_FINALIZED (1 << 6) /* SVE config completed */ 380 #define KVM_ARM64_GUEST_HAS_PTRAUTH (1 << 7) /* PTRAUTH exposed to guest */ 381 382 #define vcpu_has_sve(vcpu) (system_supports_sve() && \ 383 ((vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_SVE)) 384 385 #define vcpu_has_ptrauth(vcpu) ((system_supports_address_auth() || \ 386 system_supports_generic_auth()) && \ 387 ((vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_PTRAUTH)) 388 389 #define vcpu_gp_regs(v) (&(v)->arch.ctxt.gp_regs) 390 391 /* 392 * Only use __vcpu_sys_reg if you know you want the memory backed version of a 393 * register, and not the one most recently accessed by a running VCPU. For 394 * example, for userspace access or for system registers that are never context 395 * switched, but only emulated. 396 */ 397 #define __vcpu_sys_reg(v,r) ((v)->arch.ctxt.sys_regs[(r)]) 398 399 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg); 400 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg); 401 402 /* 403 * CP14 and CP15 live in the same array, as they are backed by the 404 * same system registers. 405 */ 406 #define vcpu_cp14(v,r) ((v)->arch.ctxt.copro[(r)]) 407 #define vcpu_cp15(v,r) ((v)->arch.ctxt.copro[(r)]) 408 409 struct kvm_vm_stat { 410 ulong remote_tlb_flush; 411 }; 412 413 struct kvm_vcpu_stat { 414 u64 halt_successful_poll; 415 u64 halt_attempted_poll; 416 u64 halt_poll_invalid; 417 u64 halt_wakeup; 418 u64 hvc_exit_stat; 419 u64 wfe_exit_stat; 420 u64 wfi_exit_stat; 421 u64 mmio_exit_user; 422 u64 mmio_exit_kernel; 423 u64 exits; 424 }; 425 426 int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init); 427 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu); 428 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices); 429 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg); 430 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg); 431 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, 432 struct kvm_vcpu_events *events); 433 434 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, 435 struct kvm_vcpu_events *events); 436 437 #define KVM_ARCH_WANT_MMU_NOTIFIER 438 int kvm_unmap_hva_range(struct kvm *kvm, 439 unsigned long start, unsigned long end); 440 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte); 441 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end); 442 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva); 443 444 struct kvm_vcpu *kvm_arm_get_running_vcpu(void); 445 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 446 void kvm_arm_halt_guest(struct kvm *kvm); 447 void kvm_arm_resume_guest(struct kvm *kvm); 448 449 u64 __kvm_call_hyp(void *hypfn, ...); 450 451 /* 452 * The couple of isb() below are there to guarantee the same behaviour 453 * on VHE as on !VHE, where the eret to EL1 acts as a context 454 * synchronization event. 455 */ 456 #define kvm_call_hyp(f, ...) \ 457 do { \ 458 if (has_vhe()) { \ 459 f(__VA_ARGS__); \ 460 isb(); \ 461 } else { \ 462 __kvm_call_hyp(kvm_ksym_ref(f), ##__VA_ARGS__); \ 463 } \ 464 } while(0) 465 466 #define kvm_call_hyp_ret(f, ...) \ 467 ({ \ 468 typeof(f(__VA_ARGS__)) ret; \ 469 \ 470 if (has_vhe()) { \ 471 ret = f(__VA_ARGS__); \ 472 isb(); \ 473 } else { \ 474 ret = __kvm_call_hyp(kvm_ksym_ref(f), \ 475 ##__VA_ARGS__); \ 476 } \ 477 \ 478 ret; \ 479 }) 480 481 void force_vm_exit(const cpumask_t *mask); 482 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot); 483 484 int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run, 485 int exception_index); 486 void handle_exit_early(struct kvm_vcpu *vcpu, struct kvm_run *run, 487 int exception_index); 488 489 int kvm_perf_init(void); 490 int kvm_perf_teardown(void); 491 492 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome); 493 494 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr); 495 496 DECLARE_PER_CPU(kvm_host_data_t, kvm_host_data); 497 498 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt, 499 int cpu) 500 { 501 /* The host's MPIDR is immutable, so let's set it up at boot time */ 502 cpu_ctxt->sys_regs[MPIDR_EL1] = cpu_logical_map(cpu); 503 } 504 505 void __kvm_enable_ssbs(void); 506 507 static inline void __cpu_init_hyp_mode(phys_addr_t pgd_ptr, 508 unsigned long hyp_stack_ptr, 509 unsigned long vector_ptr) 510 { 511 /* 512 * Calculate the raw per-cpu offset without a translation from the 513 * kernel's mapping to the linear mapping, and store it in tpidr_el2 514 * so that we can use adr_l to access per-cpu variables in EL2. 515 */ 516 u64 tpidr_el2 = ((u64)this_cpu_ptr(&kvm_host_data) - 517 (u64)kvm_ksym_ref(kvm_host_data)); 518 519 /* 520 * Call initialization code, and switch to the full blown HYP code. 521 * If the cpucaps haven't been finalized yet, something has gone very 522 * wrong, and hyp will crash and burn when it uses any 523 * cpus_have_const_cap() wrapper. 524 */ 525 BUG_ON(!static_branch_likely(&arm64_const_caps_ready)); 526 __kvm_call_hyp((void *)pgd_ptr, hyp_stack_ptr, vector_ptr, tpidr_el2); 527 528 /* 529 * Disabling SSBD on a non-VHE system requires us to enable SSBS 530 * at EL2. 531 */ 532 if (!has_vhe() && this_cpu_has_cap(ARM64_SSBS) && 533 arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) { 534 kvm_call_hyp(__kvm_enable_ssbs); 535 } 536 } 537 538 static inline bool kvm_arch_requires_vhe(void) 539 { 540 /* 541 * The Arm architecture specifies that implementation of SVE 542 * requires VHE also to be implemented. The KVM code for arm64 543 * relies on this when SVE is present: 544 */ 545 if (system_supports_sve()) 546 return true; 547 548 /* Some implementations have defects that confine them to VHE */ 549 if (cpus_have_cap(ARM64_WORKAROUND_1165522)) 550 return true; 551 552 return false; 553 } 554 555 void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu); 556 557 static inline void kvm_arch_hardware_unsetup(void) {} 558 static inline void kvm_arch_sync_events(struct kvm *kvm) {} 559 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {} 560 static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {} 561 562 void kvm_arm_init_debug(void); 563 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu); 564 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu); 565 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu); 566 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu, 567 struct kvm_device_attr *attr); 568 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu, 569 struct kvm_device_attr *attr); 570 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu, 571 struct kvm_device_attr *attr); 572 573 static inline void __cpu_init_stage2(void) {} 574 575 /* Guest/host FPSIMD coordination helpers */ 576 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu); 577 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu); 578 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu); 579 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu); 580 581 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr) 582 { 583 return (!has_vhe() && attr->exclude_host); 584 } 585 586 #ifdef CONFIG_KVM /* Avoid conflicts with core headers if CONFIG_KVM=n */ 587 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 588 { 589 return kvm_arch_vcpu_run_map_fp(vcpu); 590 } 591 592 void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr); 593 void kvm_clr_pmu_events(u32 clr); 594 595 void kvm_vcpu_pmu_restore_guest(struct kvm_vcpu *vcpu); 596 void kvm_vcpu_pmu_restore_host(struct kvm_vcpu *vcpu); 597 #else 598 static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {} 599 static inline void kvm_clr_pmu_events(u32 clr) {} 600 #endif 601 602 static inline void kvm_arm_vhe_guest_enter(void) 603 { 604 local_daif_mask(); 605 606 /* 607 * Having IRQs masked via PMR when entering the guest means the GIC 608 * will not signal the CPU of interrupts of lower priority, and the 609 * only way to get out will be via guest exceptions. 610 * Naturally, we want to avoid this. 611 */ 612 if (system_uses_irq_prio_masking()) { 613 gic_write_pmr(GIC_PRIO_IRQON); 614 dsb(sy); 615 } 616 } 617 618 static inline void kvm_arm_vhe_guest_exit(void) 619 { 620 /* 621 * local_daif_restore() takes care to properly restore PSTATE.DAIF 622 * and the GIC PMR if the host is using IRQ priorities. 623 */ 624 local_daif_restore(DAIF_PROCCTX_NOIRQ); 625 626 /* 627 * When we exit from the guest we change a number of CPU configuration 628 * parameters, such as traps. Make sure these changes take effect 629 * before running the host or additional guests. 630 */ 631 isb(); 632 } 633 634 static inline bool kvm_arm_harden_branch_predictor(void) 635 { 636 return cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR); 637 } 638 639 #define KVM_SSBD_UNKNOWN -1 640 #define KVM_SSBD_FORCE_DISABLE 0 641 #define KVM_SSBD_KERNEL 1 642 #define KVM_SSBD_FORCE_ENABLE 2 643 #define KVM_SSBD_MITIGATED 3 644 645 static inline int kvm_arm_have_ssbd(void) 646 { 647 switch (arm64_get_ssbd_state()) { 648 case ARM64_SSBD_FORCE_DISABLE: 649 return KVM_SSBD_FORCE_DISABLE; 650 case ARM64_SSBD_KERNEL: 651 return KVM_SSBD_KERNEL; 652 case ARM64_SSBD_FORCE_ENABLE: 653 return KVM_SSBD_FORCE_ENABLE; 654 case ARM64_SSBD_MITIGATED: 655 return KVM_SSBD_MITIGATED; 656 case ARM64_SSBD_UNKNOWN: 657 default: 658 return KVM_SSBD_UNKNOWN; 659 } 660 } 661 662 void kvm_vcpu_load_sysregs(struct kvm_vcpu *vcpu); 663 void kvm_vcpu_put_sysregs(struct kvm_vcpu *vcpu); 664 665 void kvm_set_ipa_limit(void); 666 667 #define __KVM_HAVE_ARCH_VM_ALLOC 668 struct kvm *kvm_arch_alloc_vm(void); 669 void kvm_arch_free_vm(struct kvm *kvm); 670 671 int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type); 672 673 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature); 674 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu); 675 676 #define kvm_arm_vcpu_sve_finalized(vcpu) \ 677 ((vcpu)->arch.flags & KVM_ARM64_VCPU_SVE_FINALIZED) 678 679 #endif /* __ARM64_KVM_HOST_H__ */ 680