xref: /openbmc/linux/arch/arm64/include/asm/kvm_host.h (revision 9d4fa1a1)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/include/asm/kvm_host.h:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #ifndef __ARM64_KVM_HOST_H__
12 #define __ARM64_KVM_HOST_H__
13 
14 #include <linux/bitmap.h>
15 #include <linux/types.h>
16 #include <linux/jump_label.h>
17 #include <linux/kvm_types.h>
18 #include <linux/percpu.h>
19 #include <asm/arch_gicv3.h>
20 #include <asm/barrier.h>
21 #include <asm/cpufeature.h>
22 #include <asm/cputype.h>
23 #include <asm/daifflags.h>
24 #include <asm/fpsimd.h>
25 #include <asm/kvm.h>
26 #include <asm/kvm_asm.h>
27 #include <asm/thread_info.h>
28 
29 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
30 
31 #define KVM_USER_MEM_SLOTS 512
32 #define KVM_HALT_POLL_NS_DEFAULT 500000
33 
34 #include <kvm/arm_vgic.h>
35 #include <kvm/arm_arch_timer.h>
36 #include <kvm/arm_pmu.h>
37 
38 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
39 
40 #define KVM_VCPU_MAX_FEATURES 7
41 
42 #define KVM_REQ_SLEEP \
43 	KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
44 #define KVM_REQ_IRQ_PENDING	KVM_ARCH_REQ(1)
45 #define KVM_REQ_VCPU_RESET	KVM_ARCH_REQ(2)
46 #define KVM_REQ_RECORD_STEAL	KVM_ARCH_REQ(3)
47 #define KVM_REQ_RELOAD_GICv4	KVM_ARCH_REQ(4)
48 
49 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
50 
51 extern unsigned int kvm_sve_max_vl;
52 int kvm_arm_init_sve(void);
53 
54 int __attribute_const__ kvm_target_cpu(void);
55 int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
56 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
57 int kvm_arch_vm_ioctl_check_extension(struct kvm *kvm, long ext);
58 void __extended_idmap_trampoline(phys_addr_t boot_pgd, phys_addr_t idmap_start);
59 
60 struct kvm_vmid {
61 	/* The VMID generation used for the virt. memory system */
62 	u64    vmid_gen;
63 	u32    vmid;
64 };
65 
66 struct kvm_arch {
67 	struct kvm_vmid vmid;
68 
69 	/* stage2 entry level table */
70 	pgd_t *pgd;
71 	phys_addr_t pgd_phys;
72 
73 	/* VTCR_EL2 value for this VM */
74 	u64    vtcr;
75 
76 	/* The last vcpu id that ran on each physical CPU */
77 	int __percpu *last_vcpu_ran;
78 
79 	/* The maximum number of vCPUs depends on the used GIC model */
80 	int max_vcpus;
81 
82 	/* Interrupt controller */
83 	struct vgic_dist	vgic;
84 
85 	/* Mandated version of PSCI */
86 	u32 psci_version;
87 
88 	/*
89 	 * If we encounter a data abort without valid instruction syndrome
90 	 * information, report this to user space.  User space can (and
91 	 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
92 	 * supported.
93 	 */
94 	bool return_nisv_io_abort_to_user;
95 };
96 
97 #define KVM_NR_MEM_OBJS     40
98 
99 /*
100  * We don't want allocation failures within the mmu code, so we preallocate
101  * enough memory for a single page fault in a cache.
102  */
103 struct kvm_mmu_memory_cache {
104 	int nobjs;
105 	void *objects[KVM_NR_MEM_OBJS];
106 };
107 
108 struct kvm_vcpu_fault_info {
109 	u32 esr_el2;		/* Hyp Syndrom Register */
110 	u64 far_el2;		/* Hyp Fault Address Register */
111 	u64 hpfar_el2;		/* Hyp IPA Fault Address Register */
112 	u64 disr_el1;		/* Deferred [SError] Status Register */
113 };
114 
115 /*
116  * 0 is reserved as an invalid value.
117  * Order should be kept in sync with the save/restore code.
118  */
119 enum vcpu_sysreg {
120 	__INVALID_SYSREG__,
121 	MPIDR_EL1,	/* MultiProcessor Affinity Register */
122 	CSSELR_EL1,	/* Cache Size Selection Register */
123 	SCTLR_EL1,	/* System Control Register */
124 	ACTLR_EL1,	/* Auxiliary Control Register */
125 	CPACR_EL1,	/* Coprocessor Access Control */
126 	ZCR_EL1,	/* SVE Control */
127 	TTBR0_EL1,	/* Translation Table Base Register 0 */
128 	TTBR1_EL1,	/* Translation Table Base Register 1 */
129 	TCR_EL1,	/* Translation Control Register */
130 	ESR_EL1,	/* Exception Syndrome Register */
131 	AFSR0_EL1,	/* Auxiliary Fault Status Register 0 */
132 	AFSR1_EL1,	/* Auxiliary Fault Status Register 1 */
133 	FAR_EL1,	/* Fault Address Register */
134 	MAIR_EL1,	/* Memory Attribute Indirection Register */
135 	VBAR_EL1,	/* Vector Base Address Register */
136 	CONTEXTIDR_EL1,	/* Context ID Register */
137 	TPIDR_EL0,	/* Thread ID, User R/W */
138 	TPIDRRO_EL0,	/* Thread ID, User R/O */
139 	TPIDR_EL1,	/* Thread ID, Privileged */
140 	AMAIR_EL1,	/* Aux Memory Attribute Indirection Register */
141 	CNTKCTL_EL1,	/* Timer Control Register (EL1) */
142 	PAR_EL1,	/* Physical Address Register */
143 	MDSCR_EL1,	/* Monitor Debug System Control Register */
144 	MDCCINT_EL1,	/* Monitor Debug Comms Channel Interrupt Enable Reg */
145 	DISR_EL1,	/* Deferred Interrupt Status Register */
146 
147 	/* Performance Monitors Registers */
148 	PMCR_EL0,	/* Control Register */
149 	PMSELR_EL0,	/* Event Counter Selection Register */
150 	PMEVCNTR0_EL0,	/* Event Counter Register (0-30) */
151 	PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
152 	PMCCNTR_EL0,	/* Cycle Counter Register */
153 	PMEVTYPER0_EL0,	/* Event Type Register (0-30) */
154 	PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
155 	PMCCFILTR_EL0,	/* Cycle Count Filter Register */
156 	PMCNTENSET_EL0,	/* Count Enable Set Register */
157 	PMINTENSET_EL1,	/* Interrupt Enable Set Register */
158 	PMOVSSET_EL0,	/* Overflow Flag Status Set Register */
159 	PMSWINC_EL0,	/* Software Increment Register */
160 	PMUSERENR_EL0,	/* User Enable Register */
161 
162 	/* Pointer Authentication Registers in a strict increasing order. */
163 	APIAKEYLO_EL1,
164 	APIAKEYHI_EL1,
165 	APIBKEYLO_EL1,
166 	APIBKEYHI_EL1,
167 	APDAKEYLO_EL1,
168 	APDAKEYHI_EL1,
169 	APDBKEYLO_EL1,
170 	APDBKEYHI_EL1,
171 	APGAKEYLO_EL1,
172 	APGAKEYHI_EL1,
173 
174 	/* 32bit specific registers. Keep them at the end of the range */
175 	DACR32_EL2,	/* Domain Access Control Register */
176 	IFSR32_EL2,	/* Instruction Fault Status Register */
177 	FPEXC32_EL2,	/* Floating-Point Exception Control Register */
178 	DBGVCR32_EL2,	/* Debug Vector Catch Register */
179 
180 	NR_SYS_REGS	/* Nothing after this line! */
181 };
182 
183 /* 32bit mapping */
184 #define c0_MPIDR	(MPIDR_EL1 * 2)	/* MultiProcessor ID Register */
185 #define c0_CSSELR	(CSSELR_EL1 * 2)/* Cache Size Selection Register */
186 #define c1_SCTLR	(SCTLR_EL1 * 2)	/* System Control Register */
187 #define c1_ACTLR	(ACTLR_EL1 * 2)	/* Auxiliary Control Register */
188 #define c1_CPACR	(CPACR_EL1 * 2)	/* Coprocessor Access Control */
189 #define c2_TTBR0	(TTBR0_EL1 * 2)	/* Translation Table Base Register 0 */
190 #define c2_TTBR0_high	(c2_TTBR0 + 1)	/* TTBR0 top 32 bits */
191 #define c2_TTBR1	(TTBR1_EL1 * 2)	/* Translation Table Base Register 1 */
192 #define c2_TTBR1_high	(c2_TTBR1 + 1)	/* TTBR1 top 32 bits */
193 #define c2_TTBCR	(TCR_EL1 * 2)	/* Translation Table Base Control R. */
194 #define c3_DACR		(DACR32_EL2 * 2)/* Domain Access Control Register */
195 #define c5_DFSR		(ESR_EL1 * 2)	/* Data Fault Status Register */
196 #define c5_IFSR		(IFSR32_EL2 * 2)/* Instruction Fault Status Register */
197 #define c5_ADFSR	(AFSR0_EL1 * 2)	/* Auxiliary Data Fault Status R */
198 #define c5_AIFSR	(AFSR1_EL1 * 2)	/* Auxiliary Instr Fault Status R */
199 #define c6_DFAR		(FAR_EL1 * 2)	/* Data Fault Address Register */
200 #define c6_IFAR		(c6_DFAR + 1)	/* Instruction Fault Address Register */
201 #define c7_PAR		(PAR_EL1 * 2)	/* Physical Address Register */
202 #define c7_PAR_high	(c7_PAR + 1)	/* PAR top 32 bits */
203 #define c10_PRRR	(MAIR_EL1 * 2)	/* Primary Region Remap Register */
204 #define c10_NMRR	(c10_PRRR + 1)	/* Normal Memory Remap Register */
205 #define c12_VBAR	(VBAR_EL1 * 2)	/* Vector Base Address Register */
206 #define c13_CID		(CONTEXTIDR_EL1 * 2)	/* Context ID Register */
207 #define c13_TID_URW	(TPIDR_EL0 * 2)	/* Thread ID, User R/W */
208 #define c13_TID_URO	(TPIDRRO_EL0 * 2)/* Thread ID, User R/O */
209 #define c13_TID_PRIV	(TPIDR_EL1 * 2)	/* Thread ID, Privileged */
210 #define c10_AMAIR0	(AMAIR_EL1 * 2)	/* Aux Memory Attr Indirection Reg */
211 #define c10_AMAIR1	(c10_AMAIR0 + 1)/* Aux Memory Attr Indirection Reg */
212 #define c14_CNTKCTL	(CNTKCTL_EL1 * 2) /* Timer Control Register (PL1) */
213 
214 #define cp14_DBGDSCRext	(MDSCR_EL1 * 2)
215 #define cp14_DBGBCR0	(DBGBCR0_EL1 * 2)
216 #define cp14_DBGBVR0	(DBGBVR0_EL1 * 2)
217 #define cp14_DBGBXVR0	(cp14_DBGBVR0 + 1)
218 #define cp14_DBGWCR0	(DBGWCR0_EL1 * 2)
219 #define cp14_DBGWVR0	(DBGWVR0_EL1 * 2)
220 #define cp14_DBGDCCINT	(MDCCINT_EL1 * 2)
221 
222 #define NR_COPRO_REGS	(NR_SYS_REGS * 2)
223 
224 struct kvm_cpu_context {
225 	struct kvm_regs	gp_regs;
226 	union {
227 		u64 sys_regs[NR_SYS_REGS];
228 		u32 copro[NR_COPRO_REGS];
229 	};
230 
231 	struct kvm_vcpu *__hyp_running_vcpu;
232 };
233 
234 struct kvm_pmu_events {
235 	u32 events_host;
236 	u32 events_guest;
237 };
238 
239 struct kvm_host_data {
240 	struct kvm_cpu_context host_ctxt;
241 	struct kvm_pmu_events pmu_events;
242 };
243 
244 typedef struct kvm_host_data kvm_host_data_t;
245 
246 struct vcpu_reset_state {
247 	unsigned long	pc;
248 	unsigned long	r0;
249 	bool		be;
250 	bool		reset;
251 };
252 
253 struct kvm_vcpu_arch {
254 	struct kvm_cpu_context ctxt;
255 	void *sve_state;
256 	unsigned int sve_max_vl;
257 
258 	/* HYP configuration */
259 	u64 hcr_el2;
260 	u32 mdcr_el2;
261 
262 	/* Exception Information */
263 	struct kvm_vcpu_fault_info fault;
264 
265 	/* State of various workarounds, see kvm_asm.h for bit assignment */
266 	u64 workaround_flags;
267 
268 	/* Miscellaneous vcpu state flags */
269 	u64 flags;
270 
271 	/*
272 	 * We maintain more than a single set of debug registers to support
273 	 * debugging the guest from the host and to maintain separate host and
274 	 * guest state during world switches. vcpu_debug_state are the debug
275 	 * registers of the vcpu as the guest sees them.  host_debug_state are
276 	 * the host registers which are saved and restored during
277 	 * world switches. external_debug_state contains the debug
278 	 * values we want to debug the guest. This is set via the
279 	 * KVM_SET_GUEST_DEBUG ioctl.
280 	 *
281 	 * debug_ptr points to the set of debug registers that should be loaded
282 	 * onto the hardware when running the guest.
283 	 */
284 	struct kvm_guest_debug_arch *debug_ptr;
285 	struct kvm_guest_debug_arch vcpu_debug_state;
286 	struct kvm_guest_debug_arch external_debug_state;
287 
288 	/* Pointer to host CPU context */
289 	struct kvm_cpu_context *host_cpu_context;
290 
291 	struct thread_info *host_thread_info;	/* hyp VA */
292 	struct user_fpsimd_state *host_fpsimd_state;	/* hyp VA */
293 
294 	struct {
295 		/* {Break,watch}point registers */
296 		struct kvm_guest_debug_arch regs;
297 		/* Statistical profiling extension */
298 		u64 pmscr_el1;
299 	} host_debug_state;
300 
301 	/* VGIC state */
302 	struct vgic_cpu vgic_cpu;
303 	struct arch_timer_cpu timer_cpu;
304 	struct kvm_pmu pmu;
305 
306 	/*
307 	 * Anything that is not used directly from assembly code goes
308 	 * here.
309 	 */
310 
311 	/*
312 	 * Guest registers we preserve during guest debugging.
313 	 *
314 	 * These shadow registers are updated by the kvm_handle_sys_reg
315 	 * trap handler if the guest accesses or updates them while we
316 	 * are using guest debug.
317 	 */
318 	struct {
319 		u32	mdscr_el1;
320 	} guest_debug_preserved;
321 
322 	/* vcpu power-off state */
323 	bool power_off;
324 
325 	/* Don't run the guest (internal implementation need) */
326 	bool pause;
327 
328 	/* Cache some mmu pages needed inside spinlock regions */
329 	struct kvm_mmu_memory_cache mmu_page_cache;
330 
331 	/* Target CPU and feature flags */
332 	int target;
333 	DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);
334 
335 	/* Detect first run of a vcpu */
336 	bool has_run_once;
337 
338 	/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
339 	u64 vsesr_el2;
340 
341 	/* Additional reset state */
342 	struct vcpu_reset_state	reset_state;
343 
344 	/* True when deferrable sysregs are loaded on the physical CPU,
345 	 * see kvm_vcpu_load_sysregs and kvm_vcpu_put_sysregs. */
346 	bool sysregs_loaded_on_cpu;
347 
348 	/* Guest PV state */
349 	struct {
350 		u64 steal;
351 		u64 last_steal;
352 		gpa_t base;
353 	} steal;
354 };
355 
356 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
357 #define vcpu_sve_pffr(vcpu) ((void *)((char *)((vcpu)->arch.sve_state) + \
358 				      sve_ffr_offset((vcpu)->arch.sve_max_vl)))
359 
360 #define vcpu_sve_state_size(vcpu) ({					\
361 	size_t __size_ret;						\
362 	unsigned int __vcpu_vq;						\
363 									\
364 	if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {		\
365 		__size_ret = 0;						\
366 	} else {							\
367 		__vcpu_vq = sve_vq_from_vl((vcpu)->arch.sve_max_vl);	\
368 		__size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);		\
369 	}								\
370 									\
371 	__size_ret;							\
372 })
373 
374 /* vcpu_arch flags field values: */
375 #define KVM_ARM64_DEBUG_DIRTY		(1 << 0)
376 #define KVM_ARM64_FP_ENABLED		(1 << 1) /* guest FP regs loaded */
377 #define KVM_ARM64_FP_HOST		(1 << 2) /* host FP regs loaded */
378 #define KVM_ARM64_HOST_SVE_IN_USE	(1 << 3) /* backup for host TIF_SVE */
379 #define KVM_ARM64_HOST_SVE_ENABLED	(1 << 4) /* SVE enabled for EL0 */
380 #define KVM_ARM64_GUEST_HAS_SVE		(1 << 5) /* SVE exposed to guest */
381 #define KVM_ARM64_VCPU_SVE_FINALIZED	(1 << 6) /* SVE config completed */
382 #define KVM_ARM64_GUEST_HAS_PTRAUTH	(1 << 7) /* PTRAUTH exposed to guest */
383 
384 #define vcpu_has_sve(vcpu) (system_supports_sve() && \
385 			    ((vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_SVE))
386 
387 #define vcpu_has_ptrauth(vcpu)	((system_supports_address_auth() || \
388 				  system_supports_generic_auth()) && \
389 				 ((vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_PTRAUTH))
390 
391 #define vcpu_gp_regs(v)		(&(v)->arch.ctxt.gp_regs)
392 
393 /*
394  * Only use __vcpu_sys_reg if you know you want the memory backed version of a
395  * register, and not the one most recently accessed by a running VCPU.  For
396  * example, for userspace access or for system registers that are never context
397  * switched, but only emulated.
398  */
399 #define __vcpu_sys_reg(v,r)	((v)->arch.ctxt.sys_regs[(r)])
400 
401 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
402 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
403 
404 /*
405  * CP14 and CP15 live in the same array, as they are backed by the
406  * same system registers.
407  */
408 #define vcpu_cp14(v,r)		((v)->arch.ctxt.copro[(r)])
409 #define vcpu_cp15(v,r)		((v)->arch.ctxt.copro[(r)])
410 
411 struct kvm_vm_stat {
412 	ulong remote_tlb_flush;
413 };
414 
415 struct kvm_vcpu_stat {
416 	u64 halt_successful_poll;
417 	u64 halt_attempted_poll;
418 	u64 halt_poll_invalid;
419 	u64 halt_wakeup;
420 	u64 hvc_exit_stat;
421 	u64 wfe_exit_stat;
422 	u64 wfi_exit_stat;
423 	u64 mmio_exit_user;
424 	u64 mmio_exit_kernel;
425 	u64 exits;
426 };
427 
428 int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init);
429 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
430 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
431 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
432 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
433 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
434 			      struct kvm_vcpu_events *events);
435 
436 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
437 			      struct kvm_vcpu_events *events);
438 
439 #define KVM_ARCH_WANT_MMU_NOTIFIER
440 int kvm_unmap_hva_range(struct kvm *kvm,
441 			unsigned long start, unsigned long end);
442 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);
443 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end);
444 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva);
445 
446 void kvm_arm_halt_guest(struct kvm *kvm);
447 void kvm_arm_resume_guest(struct kvm *kvm);
448 
449 u64 __kvm_call_hyp(void *hypfn, ...);
450 
451 /*
452  * The couple of isb() below are there to guarantee the same behaviour
453  * on VHE as on !VHE, where the eret to EL1 acts as a context
454  * synchronization event.
455  */
456 #define kvm_call_hyp(f, ...)						\
457 	do {								\
458 		if (has_vhe()) {					\
459 			f(__VA_ARGS__);					\
460 			isb();						\
461 		} else {						\
462 			__kvm_call_hyp(kvm_ksym_ref(f), ##__VA_ARGS__); \
463 		}							\
464 	} while(0)
465 
466 #define kvm_call_hyp_ret(f, ...)					\
467 	({								\
468 		typeof(f(__VA_ARGS__)) ret;				\
469 									\
470 		if (has_vhe()) {					\
471 			ret = f(__VA_ARGS__);				\
472 			isb();						\
473 		} else {						\
474 			ret = __kvm_call_hyp(kvm_ksym_ref(f),		\
475 					     ##__VA_ARGS__);		\
476 		}							\
477 									\
478 		ret;							\
479 	})
480 
481 void force_vm_exit(const cpumask_t *mask);
482 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot);
483 
484 int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
485 		int exception_index);
486 void handle_exit_early(struct kvm_vcpu *vcpu, struct kvm_run *run,
487 		       int exception_index);
488 
489 /* MMIO helpers */
490 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
491 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
492 
493 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu, struct kvm_run *run);
494 int io_mem_abort(struct kvm_vcpu *vcpu, struct kvm_run *run,
495 		 phys_addr_t fault_ipa);
496 
497 int kvm_perf_init(void);
498 int kvm_perf_teardown(void);
499 
500 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
501 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
502 void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
503 
504 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
505 			    struct kvm_device_attr *attr);
506 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
507 			    struct kvm_device_attr *attr);
508 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
509 			    struct kvm_device_attr *attr);
510 
511 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
512 {
513 	vcpu_arch->steal.base = GPA_INVALID;
514 }
515 
516 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
517 {
518 	return (vcpu_arch->steal.base != GPA_INVALID);
519 }
520 
521 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
522 
523 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
524 
525 DECLARE_PER_CPU(kvm_host_data_t, kvm_host_data);
526 
527 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
528 {
529 	/* The host's MPIDR is immutable, so let's set it up at boot time */
530 	cpu_ctxt->sys_regs[MPIDR_EL1] = read_cpuid_mpidr();
531 }
532 
533 void __kvm_enable_ssbs(void);
534 
535 static inline void __cpu_init_hyp_mode(phys_addr_t pgd_ptr,
536 				       unsigned long hyp_stack_ptr,
537 				       unsigned long vector_ptr)
538 {
539 	/*
540 	 * Calculate the raw per-cpu offset without a translation from the
541 	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
542 	 * so that we can use adr_l to access per-cpu variables in EL2.
543 	 */
544 	u64 tpidr_el2 = ((u64)this_cpu_ptr(&kvm_host_data) -
545 			 (u64)kvm_ksym_ref(kvm_host_data));
546 
547 	/*
548 	 * Call initialization code, and switch to the full blown HYP code.
549 	 * If the cpucaps haven't been finalized yet, something has gone very
550 	 * wrong, and hyp will crash and burn when it uses any
551 	 * cpus_have_const_cap() wrapper.
552 	 */
553 	BUG_ON(!system_capabilities_finalized());
554 	__kvm_call_hyp((void *)pgd_ptr, hyp_stack_ptr, vector_ptr, tpidr_el2);
555 
556 	/*
557 	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
558 	 * at EL2.
559 	 */
560 	if (!has_vhe() && this_cpu_has_cap(ARM64_SSBS) &&
561 	    arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
562 		kvm_call_hyp(__kvm_enable_ssbs);
563 	}
564 }
565 
566 static inline bool kvm_arch_requires_vhe(void)
567 {
568 	/*
569 	 * The Arm architecture specifies that implementation of SVE
570 	 * requires VHE also to be implemented.  The KVM code for arm64
571 	 * relies on this when SVE is present:
572 	 */
573 	if (system_supports_sve())
574 		return true;
575 
576 	/* Some implementations have defects that confine them to VHE */
577 	if (cpus_have_cap(ARM64_WORKAROUND_SPECULATIVE_AT_VHE))
578 		return true;
579 
580 	return false;
581 }
582 
583 void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu);
584 
585 static inline void kvm_arch_hardware_unsetup(void) {}
586 static inline void kvm_arch_sync_events(struct kvm *kvm) {}
587 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
588 static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {}
589 
590 void kvm_arm_init_debug(void);
591 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
592 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
593 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
594 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
595 			       struct kvm_device_attr *attr);
596 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
597 			       struct kvm_device_attr *attr);
598 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
599 			       struct kvm_device_attr *attr);
600 
601 static inline void __cpu_init_stage2(void) {}
602 
603 /* Guest/host FPSIMD coordination helpers */
604 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
605 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
606 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
607 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
608 
609 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
610 {
611 	return (!has_vhe() && attr->exclude_host);
612 }
613 
614 #ifdef CONFIG_KVM /* Avoid conflicts with core headers if CONFIG_KVM=n */
615 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
616 {
617 	return kvm_arch_vcpu_run_map_fp(vcpu);
618 }
619 
620 void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr);
621 void kvm_clr_pmu_events(u32 clr);
622 
623 void kvm_vcpu_pmu_restore_guest(struct kvm_vcpu *vcpu);
624 void kvm_vcpu_pmu_restore_host(struct kvm_vcpu *vcpu);
625 #else
626 static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {}
627 static inline void kvm_clr_pmu_events(u32 clr) {}
628 #endif
629 
630 #define KVM_BP_HARDEN_UNKNOWN		-1
631 #define KVM_BP_HARDEN_WA_NEEDED		0
632 #define KVM_BP_HARDEN_NOT_REQUIRED	1
633 
634 static inline int kvm_arm_harden_branch_predictor(void)
635 {
636 	switch (get_spectre_v2_workaround_state()) {
637 	case ARM64_BP_HARDEN_WA_NEEDED:
638 		return KVM_BP_HARDEN_WA_NEEDED;
639 	case ARM64_BP_HARDEN_NOT_REQUIRED:
640 		return KVM_BP_HARDEN_NOT_REQUIRED;
641 	case ARM64_BP_HARDEN_UNKNOWN:
642 	default:
643 		return KVM_BP_HARDEN_UNKNOWN;
644 	}
645 }
646 
647 #define KVM_SSBD_UNKNOWN		-1
648 #define KVM_SSBD_FORCE_DISABLE		0
649 #define KVM_SSBD_KERNEL		1
650 #define KVM_SSBD_FORCE_ENABLE		2
651 #define KVM_SSBD_MITIGATED		3
652 
653 static inline int kvm_arm_have_ssbd(void)
654 {
655 	switch (arm64_get_ssbd_state()) {
656 	case ARM64_SSBD_FORCE_DISABLE:
657 		return KVM_SSBD_FORCE_DISABLE;
658 	case ARM64_SSBD_KERNEL:
659 		return KVM_SSBD_KERNEL;
660 	case ARM64_SSBD_FORCE_ENABLE:
661 		return KVM_SSBD_FORCE_ENABLE;
662 	case ARM64_SSBD_MITIGATED:
663 		return KVM_SSBD_MITIGATED;
664 	case ARM64_SSBD_UNKNOWN:
665 	default:
666 		return KVM_SSBD_UNKNOWN;
667 	}
668 }
669 
670 void kvm_vcpu_load_sysregs(struct kvm_vcpu *vcpu);
671 void kvm_vcpu_put_sysregs(struct kvm_vcpu *vcpu);
672 
673 void kvm_set_ipa_limit(void);
674 
675 #define __KVM_HAVE_ARCH_VM_ALLOC
676 struct kvm *kvm_arch_alloc_vm(void);
677 void kvm_arch_free_vm(struct kvm *kvm);
678 
679 int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type);
680 
681 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
682 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
683 
684 #define kvm_arm_vcpu_sve_finalized(vcpu) \
685 	((vcpu)->arch.flags & KVM_ARM64_VCPU_SVE_FINALIZED)
686 
687 #endif /* __ARM64_KVM_HOST_H__ */
688